瑞安九年级数学竞赛试题
- 格式:doc
- 大小:691.11 KB
- 文档页数:3
初三数学竞赛试题班级 姓名一、选择题(共8小题,每小题5分,共40分)1.要使方程组⎩⎨⎧=+=+23223y x a y x 的解是一对异号的数,则a 的取值范围是( )(A )334<<a (B )34<a (C )3>a (D )343<>a a 或 2.一块含有︒30AB =8cm, 里面空 心DEF ∆的各边与ABC ∆的对应边平行,且各对应边的距离都是1cm,那么DEF ∆的周长是( )(A)5cm (B)6cm (C) cm )(36- (D) cm )(33+3.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )(A)5种 (B) 6种 (C)7种 (D)8种4.作抛物线A 关于x 轴对称的抛物线B ,再将抛物线B 向左平移2个单位,向上平移1个单位,得到的抛物线C 的函数解析式是1122-+=)x (y ,则抛物线A 所对应的函数表达式是 ( )(A)2322-+-=)x (y (B) 2322++-=)x (y(C) 2122---=)x (y (D) 2322++-=)x (y5.书架上有两套同样的教材,每套分上、下两册,在这四册教材中随机抽取两册,恰好组成一套教材的概率是( ) (A)32 (B) 31 (C) 21 (D) 61 6.如图,一枚棋子放在七边形ABCDEFG 的顶点处,现顺时针方向移动这枚棋子10次,移动规则是:第k 次依次移动k 个顶点。
如第一次移动1个顶点,棋子停在顶点B 处,第二次移动2个顶点,棋子停在顶点D 。
依这样的规则,在这10次移动的过程中,棋子不可能分为两停到的顶点是( )(A)C,E,F (B)C,E,G (C)C,E (D)E,F.7.一元二次方程)a (c bx ax 002≠=++中,若b ,a 都是偶数,C 是奇数,则这个方程( )(A)有整数根 (B)没有整数根 (C)没有有理数根 (D)没有实数根8.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L 形,那么在由54⨯ 个小方格组成的方格纸上可以画出不同位置的L 形图案个数是( )(A)16 (B) 32 (C) 48 (D) 64二、填空题:(共有6个小题,每小题5分,满分30分)9.已知直角三角形的两直角边长分别为3cm,4cm ,那么以两直角边为直径的两圆公共弦的长为 cm.10.将一组数据按由小到大(或由大到小)的顺序排列,处于最中间位置的数(当数据的个数是奇数时),或最中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数,现有一组数据共100个数,其中有15个数在中位数和平均数之间,如果这组数据的中位数和平均数都不在这100个数中,那么这组数据中小于平均数的数据占这100个数据的百分比是11.ABC ∆中,c ,b ,a 分别是C ,B ,A ∠∠∠的对边,已知232310-=+==C ,b ,a ,则C s i n c B s i n b +的值是等于 。
九年数学竞赛试题一、选择题(每小题7分,共42分)1.在直角坐标系中,若一点的纵、横坐标都是整数,则称该点为整点.设k 为整数,当直线y=x-2与y=kx+k的交点为整点时,k的值可以取( )(A)4个(B)5个(C)6个(D)7个2.如图,AB是⊙O的直径,C为AB上的一个动点(C点不与A、B重合),CD⊥AB,AD、CD分别交⊙O于E、F,则与AB·AC相等的一定是( )(A)AE·AD(B)AE·ED(C)CF·CD(D)CF·FD3.在△ABC与△A′B′C′中,已知AB<A′B′,BC<B′C′,CA<C′A′.下列结论:(1)△ABC的边AB上的高小于△A′B′C′的边A′B′上的高;(2)△ABC的面积小于△A′B′C′的面积;(3)△ABC的外接圆半径小于△A′B′C′的外接圆半径;(4)△ABC的内切圆半径小于△A′B′C′的内切圆半径.其中,正确结论的个数为( )(A)0 (B)1 (C)2 (D) 44.设,那么S与2的大小关系是( )(A)S=2 (B)S<2(C)S>2 (D)S与2之间的大小与x的取值有关5.折叠圆心为O、半径为10cm的圆纸片,使圆周上的某一点A与圆心O重合.对圆周上的每一点,都这样折叠纸片,从而都有一条折痕.那么,所有折痕所在直线上点的全体为( )(A)以O为圆心、半径为10cm的圆周(B)以O为圆心、半径为5cm的圆周(C)以O为圆心、半径为5cm的圆内部分 (D)以O为圆心,半径为5cm的圆周及圆外部分6.已知x,y,z都是实数,且x2+y2+z2=1,则m=xy+yz+zx( )(A)只有最大值 (B)只有最小值(C)既有最大值又有最小值 (D)既无最大值又无最小值二、填空题(每小题7分,共56分)7.如图是一个树形图的生长过程,依据图中所示的生长规律,第15行的实心圆点的个数等于______.8.如图3,在△ABC中,AD是BC边上的中线,M是AD的中点,CM的延长线交AB于N,则AN:AB的值为______.9.如图,取一张长方形纸片,它的长AB=10cm,宽BC=5cm,然后以虚线CE(E点在AD上)为折痕,使D点落在AB边上.则AE=_____cm,∠DCE=______°.10.如图4,BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,若AD:DB=2:3,AC=10,sinB的值为_____11.直角三角形ABC中,∠A=90°,AB=5cm,AC=4cm,则∠A的平分线AD的长为______cm.12.如图,⊙C通过原点,并与坐标轴分别交于A,D两点.已知∠OBA=30°,点D的坐标为(0,2),则点A,C的坐标分别为A( , );C( , ).13.若关于x的方程rx2-(2r+7)x+(r+7)=0的根是正整数,则整数r的值可以是______.14.将2,3,4,5,…,n(n为大于4的整数)分成两组,使得每组中任意两数之和都不是完全平方数.那么,整数n可以取得的最大值是______.三、解答题(每题13分,共52分)15.九年(1)班尚剩班费m(m为小于400的整数)元,拟为每位同学买1本相册.某批发兼零售文具店规定:购相册50本起可按批发价出售,少于50本则按零售价出售,批发价比零售价每本便宜2元,班长若为每位同学买1本,刚好用完m元;但若多买12本给任课教师,可按批发价结算,也恰好只要m元.问该班有多少名同学?每本相册的零售价是多少元?16.已知关于x的方程x2+4x+3k-1=0的两个实根的平方和不小于这两个根的积;反比例函数的图像的两个分支在各自的象限内,点的纵坐标y随点的横坐标x的增大而减小.求满足上述条件的k的整数值.17.某中学预计用1500元购买甲商品x个,乙商品y个,不料甲商品每个涨价1.5元,乙商品每个涨价1元,尽管购买甲商品的个数比预定减少10个,总金额多用29元.又若甲商品每个只涨价1元,并且购买甲商品的数量只比预定数少5个,那么买甲、乙两商品支付的总金额是1563.5元.(1)求x、y的关系式;(2)若预计购买甲商品的个数的2倍与预计购买乙商品的个数的和大于205,但小于210,求x,y的值.18.如图,在△ABC中,BC=6,AC=4,∠C=45°,P为BC上的动点,过P作PD∥AB交AC于点D,连结AP,△ABP、△APD、△CDP的面积分别记为S1,S2,S3,设BP=x.(1)试用x的代数式分别表示S1,S2,S3;(2)当P点位于BC上某处使得△APD的面积最大时,你能得出S1、S2、S3之间或S1、S2、S3两两之间的哪些数量关系(要求写出不少于3条)?九年数学竞赛试题答案一、选择题1.A2.A3.A4.D5.D6.C二、填空题7.377 8.1:39.,30 10.11.12.(,0),(,1) 13.0,1或7 14.2815.设该班共有x名同学,相册零售价每本y元.由题设,得xy=(x+12)(y-2),①且整数x满足38<x<50.②由①得12y-2x-24=0,y=+2,xy=+2x.③由③及xy=m为整数,知整数x必为6的倍数,再由②,x只可能为42或48.此时相应的y为9或10.但m<400,∴x=42,y=9.答:(略).16.由题意,方程x2+4x+3k-1=0①有实数根,故△=42-4(3k-1)≥0,解之,得k≤.②设x1,x2为①的根,由根与系数关系知x1+x2=-4,x1·x2=3k-1,因≥x1x2,故(x1+x2)2-3x1x2≥0,即(-4)2-3(3k-1)≥0,∴k≤.③又由当x>0或x<0时,分别随x值增大而减小,知1+5k>0,即k>-.④综合②③④,得-<k≤.∴满足题中条件的k可取整数值为0, 1.17.(1)设预计购买甲、乙商品的单价分别为a元和b元,则原计划是:ax+by=1500,①由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529.②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5.③由①,②,③得:④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186.得54<y<.由于y是整数,得y=55,从而得x=76.答:略.18.(1)由题意知:BP=x,0<x<6,且有,故AD=·BP=x=x.过P作PM⊥AC交AC于M点,过A作AN⊥BC交BC于N点,则PM=PC·sinC=(BC-PB)sin45°=(6-x),S2=S△APD=AD·PM=·x·(6-x)=2x-x2;又AN=AC·sinC=4·sin45°=4,故S1=S△ABP=BP·AN=2x;S3=S△CDP=CD·PM=(AC-AD)·PM=(4-x)·(6-x)=(6-x)2.(2)因为S2=2x-x2=3-(x-3)2,所以当x=3时,S2取最大值S2=3,此时S1=6,S3=3,因此,S1,S2,S3之间的数量关系有S1=S2+S3,S2=S3,S1=2S2,S1=2S3.(以上4个关系只要写出3个即可)。
九年级数学竞赛试题(满分100)姓名: 班级: 成绩:一、选择题(''4832⨯=,每道题目只有一个正确选项)1.若||0a a +=+ )A.1B.-1C.21a -D.12a -2.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为( )A.-13B.-9C.6D.03.若三角形三边的长均能使代数式2918x x -+的值为0,则此三角形的周长是( )A.9或18B.12或15C.9或15或18D.9或12或15或184.已知2210m n mn m n +++-+=,则11m n+的值等于( ) A.-1 B.0 C.1 D.25.若实数,a b 满足21202a ab b -++=,则a 的取值范围是( ) A.2a ≤- B.4a ≥ C.2a ≤-或4a ≥ D.24a -≤≤6.如果方程210(0)x px p ++=>有实数根且它的两根之差是1,那么p 的值为( )A.2B.4C.7.设a =5432322a a a a a a a+---+=-( ) A.-1 B.1 C.-2 D.28.如图,在ABC 中,90ACB ∠=︒,20A ∠=︒,将A C B 绕点C 按逆时针方向旋转角α到'''A B C 的位置,其中'A ,'B 分别是,A B 的对应点,B 在''A B 上,'CA 交AB 于D ,则B D C ∠的度数为( )A.40︒B.45︒C.50︒D.60︒二、填空题(''4416⨯=,填写你认为最完美的答案)9.已知非零实数,a b 满足|24||2|42a b a -+++=,则a b +等于 .10.已知222246140x y z x y z ++-+-+=,则x y z ++= .11.已知关于x 的方程2210x px ++=的两个实数根,一个小于1,另一个大于1,则实数p 的取值范围是 .12.已知方程210090x x a -+=有两个质数根,则常数a = .三、解答题(3大题,共'48,解答题需要详细的解题过程)13. 1)(6+2)(6分)已知方程2220132014201210x x -⨯-=的较大根是r ,方程22013201410x x -+=的较小根为s ,求r s -的值.14.已知关于x 的方程220x kx k n -++=有两个不相等的实数根12,x x ,且21212(2)8(2)150x x x x +-++=,请问:(1)(4分)求证:0n <;(2)(6分)试用k 的代数式表示1x ;(3)(6分)当3n =-时,求k 的值.15.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连结DF ,G 为DF 中点,连接,EG CG .(1)(6分)求证:EG CG =;(2)(10分)将BEF 绕点B 逆时针旋转45︒,如图二所示,取DF 中点G ,连接,EG CG ,问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)(4分)将图一中BEF 绕B 点旋转任意角度,如图三所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察,你还能得出什么结论?(只写结论,不需要证明)图一图二图三。
城关中学九年级数学竞赛试题(2018.1)一、选择题(共5小题,每小题6分,满分30分.)1、已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c 2-ab-bc-ac 的值为( )A 、0B 、1C 、2D 、32、客运列车在哈尔滨与A 站之间运行,沿途要停靠5个车站,那么哈尔滨与A 站之间需要安排( )种不同的车票。
A 、6B 、7C 、21D 、423满足(n 2-n-1)n + 2=1的整数n 有几个?( )A 、4个B 、3个C 、2个D 、1个4、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至少可打( )A 、6折B 、7折C 、8折D 、9折5、铁板甲形状是等腰三角形,其顶角为45°,腰长为20cm ,铁板乙的形状是直角梯形,两底分别为7cm,16cm,且有一个角为60°,现在我们把这两块铁板任意翻转,分别试图从一个直径为14cm 的圆洞中穿过,若不考虑铁板厚度,则结果是( )A 、甲能穿过,乙不能穿过B 、甲不能穿过,乙能穿过C 、甲、乙都能穿过D 、甲、乙都不能穿过二、填空题(共5小题,每题6分,满分30分)6、a 、b 是一元二次方程012=--x x 的两个根,则b a b a 232322--+的值等于 . 7、设15+=m ,那么mm 1+的整数部分是 . 8、等腰三角形的一条腰上的高线等于该三角形某一条边的长度的一半,则其顶角的度数等于 。
9、如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则,完成五次操作以后,再剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有 个小孔.(第9题)10.在正方形ABCD 中,点E 是BC 上的一定点,且BE=10,EC=14,BC E点P 是BD 上的一动点,则PE+PC 的最小值是 。
初三数学竞赛考试试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的立方根是2,这个数是多少?A. 2B. 4C. 8D. 164. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 6D. -66. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 07. 如果一个二次方程的解是x1=2和x2=3,那么这个方程可以表示为?A. x^2 - 5x + 6 = 0B. x^2 - 5x + 4 = 0C. x^2 + 5x - 6 = 0D. x^2 + 5x + 4 = 08. 一个数列的前三项是2, 4, 6,这是一个什么数列?A. 等差数列B. 等比数列C. 等比数列D. 既不是等差也不是等比数列9. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是多少?A. 24B. 26C. 28D. 3210. 一个分数的分子是3,分母是6,化简后是多少?A. 1/2B. 2/3C. 3/6D. 1/3二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是_________。
12. 一个数的平方是16,这个数是_________。
13. 一个数的立方是27,这个数是_________。
14. 一个数的倒数是2/3,这个数是_________。
15. 一个数的对数(以10为底)是2,这个数是_________。
三、解答题(每题10分,共50分)16. 解一个一元二次方程:x^2 - 7x + 10 = 0。
17. 证明:对于任意实数a和b,(a + b)^2 ≤ 2(a^2 + b^2)。
初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分)。
每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.在平面直角坐标系xOy 中,已知点(02)B ,,点A 在x 轴正半轴上且30BAO ∠=︒。
将OAB △沿直线AB 折叠得CAB △,则点C 的坐标为( )A.(1 B.3) C.(3 D.1)2.若实数a ,b 满足232a a +=,232b b +=,且a b ≠,则22(1)(1)a b ++=( ) A .18 B .12 C .9 D .63.若关于x 的方程22240224x x x ax x x +-+++=-+-只有一个实数根,则符合条件的所有实数a 的值的总和为( )A .6-B .30-C .32-D .38-4.如图,在ABC △中,6AB =,3BC =,7CA =,I 为ABC △的内心,连接CI 并延长交AB 于点D 。
记CAI △的面积为m , DAI △的面积为n ,则mn=( ) A .32 B .43 C .53 D .745.已知x ,y 为实数,且满足2244x xy y -+=,记224u x xy y =++的最大值为M ,最小值为m ,则M m +=( )A .403B .6415C .13615D .315二、填空题(共5小题,每小题7分,共35分)6.在平面直角坐标系内有两点(11)A ,,(23)B ,,若一次函数2y kx =+的图像与线段AB 有公共点,则k 的取值范围为 。
7.如图,在ABC △中,D 为BC 边上一点,E 为线段AD 上一F BCADEABC DI点,延长BE 交AC 于点F 。
若25BD BC =,12AE AD =,则AFAC= 。
8.设1x ,2x ,3x ,…,n x 是n 个互不相同的正整数,且1232017n x x x x ++++=L ,则n 的最大值是 。
一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. -√2B. 0.5C. 3D. 2/32. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a + b的值为()A. 4B. -4C. 3D. 13. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^34. 在直角坐标系中,点A(2,3)关于原点对称的点的坐标是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 若等差数列{an}的前n项和为Sn,且S5 = 50,S9 = 90,则公差d为()A. 2C. 4D. 5二、填空题(每题5分,共20分)6. 若一个数的平方等于它本身,则这个数是_______。
7. 二项式定理中,(x + y)^n展开式中,x的系数是_______。
8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = _______。
9. 若x^2 - 5x + 6 = 0,则x^2 - 5x的值为_______。
10. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的周长为_______。
三、解答题(每题10分,共30分)11. 解方程:3x^2 - 5x + 2 = 0。
12. 已知函数y = 2x - 3,求证:对于任意实数x1,x2,都有y1 + y2 ≥ 2y。
13. 在△ABC中,AB = AC,点D是边BC上的一点,且BD = DC。
若∠ADB = 40°,求∠A的度数。
答案一、选择题1. A2. A3. D4. A5. A二、填空题6. 07. C_n^1 x^(n-1) y9. -510. 28三、解答题11. 解:分解因式得 (3x - 2)(x - 1) = 0,所以 x = 2/3 或 x = 1。
12. 证明:设x1 < x2,则y1 = 2x1 - 3,y2 = 2x2 - 3。
初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 若a、b、c是三角形的三边长,且满足a²+b²+c²=ab+ac+bc,则该三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知a、b、c是实数,且a+b+c=0,那么下列式子中一定成立的是()A. ab+bc+ca=0B. (a+b)(b+c)(c+a)=0C. a²+b²+c²=ab+bc+caD. a³+b³+c³=3abc3. 一个等腰三角形的两边长分别为6和8,那么这个三角形的周长是()A. 16B. 20C. 22D. 244. 已知x²-3x+1=0,那么x³-5x+1的值为()A. 0B. 1C. -4D. -85. 一个数的平方根是2和-2,那么这个数是()A. 4B. -4C. 0D. 26. 已知一个二次函数y=ax²+bx+c(a≠0),其图像开口向上,且与x轴有两个交点,那么下列说法正确的是()A. a>0,b²-4ac>0B. a<0,b²-4ac>0C. a>0,b²-4ac<0D. a<0,b²-4ac<07. 一个圆的半径为r,那么这个圆的面积是()A. πrB. πr²C. 2πrD. 2πr²8. 已知一个等差数列的首项为a,公差为d,那么这个数列的第n项是()A. a+(n-1)dB. a-(n-1)dC. a+ndD. a-nd9. 已知一个等比数列的首项为a,公比为q,那么这个数列的第n项是()A. aq^(n-1)B. aq^nC. a/q^(n-1)D. a/q^n10. 已知一个函数y=f(x),那么下列说法正确的是()A. f(a)=f(b) 则a=bB. f(a)≠f(b) 则a≠bC. f(a)=f(b) 则a≠bD. f(a)≠f(b) 则a=b二、填空题(每题4分,共20分)11. 已知一个三角形的三边长分别为3、4、5,那么这个三角形的面积是_________。
初三数学竞赛试题及答案一、选择题(每题4分,共40分)1. 下列哪个数不是有理数?A. √2B. 0.5C. -3D. 2/3答案:A2. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是多少?A. 11B. 13C. 16D. 无法确定答案:B3. 一个数的平方根等于它本身,那么这个数是?A. 0B. 1C. -1D. 以上都是答案:A4. 下列哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^3答案:B5. 一个圆的半径为r,那么它的面积是多少?A. πrB. πr^2C. 2πrD. 4πr^2答案:B6. 一个数的相反数是-5,那么这个数是?A. 5B. -5C. 0D. 无法确定答案:A7. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则图形答案:C8. 一个数的绝对值是5,那么这个数是?A. 5B. -5C. 5或-5D. 无法确定答案:C9. 一个等差数列的首项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A10. 一个二次函数的顶点坐标是(1, -4),那么它的对称轴是?A. x = 1B. x = -1C. y = -4D. y = 1答案:A二、填空题(每题4分,共20分)11. 一个数的立方根等于它本身,那么这个数是____。
答案:0或±112. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是____。
答案:513. 一个二次函数的图像开口向上,且经过点(1, 0)和(-1, 0),那么它的对称轴是____。
答案:x = 014. 一个等比数列的首项是2,公比是3,那么第4项是____。
答案:16215. 一个圆的直径是10,那么它的周长是____。
答案:31.4三、解答题(每题10分,共40分)16. 已知一个等腰三角形的两边长分别为5和8,求这个三角形的周长。
初三数学竞赛试题一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题2分,共20分)1.下列各式中,最简二次根式为( )A. B.D.2.方程(x+1)x=0的根是( )A.x1=1,x2=0B.x1=-1,x2=1C.x1=-1,x2=0D.x1=x2=03.如图,PA、PB分别切⊙O于A、B,点C 为优弧上一点,∠ACB=60°,则∠APB的度数是( )A.60°B.120°C.30°或120°D.30°4.二次函数y=-x2-4x+2的顶点坐标、对称轴分别是( )A.(-2,6),x=-2B.(2,6),x=2C.(2,6),x=-2D.(-2,6),x=25.已知Rt△ABC∽Rt△A′B′C′,∠C=∠C′=90°,且AB=2A′B′,则sinA 与sinA′的关系为( )A.sinA=2sinA′B.2sinA=sinA′C.sinA=sinA′D.不确定6.在下面四种边长相等的正多边形的组合中,能作平面镶嵌的组合是( )7.如图,点P是x轴正半轴上的一个动点,过点P做x轴的垂线PQ交双曲线y=1x于点Q,连结OQ,当点P向右运动时,Rt△QOP的面积( ) A.逐渐增大 B.逐渐减小 C.保持不变 D.无法确定8.已知⊙O1和⊙O2的半径分别为2和m,圆心距为n,且2和m都是方程x2-10x+n=0的两根,则两圆的位置关系是( )A.相交B.外离C.内切D.外切9.将某氢氧化钠溶液加水,则描述溶液pH值与加水量(m)间变化规律的图象大致是( )10.如图,AB是⊙O的弦,C是AB的三等分点,连结OC并延长交⊙O于点D。
若OC=3,CD=2,则圆心O到弦AB的距离是( )二、填空题(每小题2分,共20分)11.已知点P(-3,2),点P′是点P关于原点的对称点,则点P′的坐标是____。
年初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1003. 一个数的60%加上它的40%等于这个数的:A. 100%B. 80%C. 60%D. 40%4. 下列哪个分数是最接近1的?A. 1/2B. 3/4C. 4/5D. 9/105. 一个数除以3的商是15,这个数是多少?A. 45B. 54C. 60D. 406. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 167. 一个班级有21个男生和9个女生,男生人数占全班的百分比是多少?A. 70%B. 75%C. 80%D. 85%8. 一本书的价格是35元,如果打8折,那么现价是多少元?A. 28B. 30C. 35D. 429. 一个数的1/3加上它的1/4等于7/12,这个数是多少?A. 12B. 3C. 4D. 910. 一个长方体的长是15cm,宽是10cm,如果高增加5cm,体积将增加多少立方厘米?A. 750B. 500C. 375D. 250二、填空题(每题4分,共20分)11. 一个数的1/2与它的1/3的和是5/6,这个数是_________。
12. 一本书的原价是x元,打7折后售价为0.7x元,如果售价是21元,那么原价是_________元。
13. 一个长方形的长是14cm,宽是长的1/2,这个长方形的面积是_________平方厘米。
14. 一个数的3倍加上这个数的2倍等于36,这个数是_________。
15. 一个数的75%是45,那么这个数的50%是_________。
三、解答题(共两题,每题25分)16. 一个长方体的长、宽、高分别是12cm、10cm和8cm,求这个长方体的表面积和体积。
九年级数学竞赛试卷(本卷满分120分,考试时间2小时)班级________ 姓名________一、选择题:(共6小题,每小题5分,共30分)1、-20042003,-20032002,-19981997,-19991998这四个数从小到大的排列顺序是( A )A 、-20042003﹤-20032002﹤-19991998﹤-19981997B 、-19981997﹤-19991998﹤-20032002﹤-20042003C 、-20032002﹤-20042003﹤-19991998﹤-19981997D 、-19991998﹤-19981997﹤-20042003﹤-200320022、设b ﹤a ﹤0,a 2﹢b 2﹦4ab ,则ba b a +-的值为( B )A 、33 B 、-33 C 、3 D 、-33、用一根长为a 米的线围成一个等边三角形,测得这个等边三角形的面积为b 平方米,现于这个等边三角形内任取一点P ,则点P 到等边三角形三边距离之和为( C )米。
A 、a b 2 B 、a b 4 C 、a b 6 D 、ab 8 4、如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G ﹦( B )度。
A 、720 B 、540 C 、450 D 、3605、已知如图,平行四边形ABCD 中,AB ﹦2BC ,BE ⊥AD 于E ,F 是CD 中点,记∠DEF ﹦α,∠EFC=β,则下列结论正确的是( B )A 、β﹦4αB 、β﹦3αC 、β﹤4αD 、β﹤4αEF第4题第5题6、一个一次函数图象与直线y ﹦45x+495平行,与x 轴,y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B )A 、4个B 、5个C 、6个D 、7个 二、填空题:(共8小题,每小题5分,共40分) 7、如果107142+--x x x ﹦5-x A +2-x B,则A ﹦__________,B ﹦___________。
九年级数学测验二满分:120分时间:150分钟一、填空题(共9小题,每小题3分,满分27分)1.实数x 、y满足等式|3|0x y -++=,则x y -的取值范围为 。
2.关于x 的方程113267a a x x a +=-++无解,则实数a 的可能取值有 。
3. 已知111Rt A B C ∆的直角边长分别为1a 、1b ,斜边长为1x ,222Rt A B C ∆的直角边长分别为2a 、2b ,斜边长为2x ;请以111Rt A B C ∆与222Rt A B C ∆的直角边长构造出Rt ABC ∆的直角边:,使得其斜边长为4.在ABC ∆中,P 为其内部一点,请你构造出一对全等三角形,使得以下结论分别成立:当 时,ABC ∆为以BC 为底边的等腰三角形;当 时,ABC ∆为以AC 为底边的等腰三角形,且P 为它外接圆的圆心;当 时,ABC ∆为等边三角形。
5.在四边形ABCD 中,P 、Q 、R 、S 分别为AB 、BC 、CD 、DA 四边中点,记四边形ABCD 的对角线长度之和为1l ,四边形PQRS 的对角线长度之和为2l ,令12l k l =,则k 的取值范围为 。
6.已知函数21y ax ax a =++-与直线0x ay a ++=只有一个交点,那么这个交点的坐标为 。
7.给出三个关于x 的方程:22220,20,20ax bx c bx cx a cx ax b ++=++=++=,若220a b ac bc -+-≠,且这三个方程有相同的根,则这个根为 ;若0abc ≠,则前两个方程均有实根的概率为 ;若0ab >,在这三个方程中恰有某个方程存在唯一实根,则它们共有 个不相等的实根。
8. 已知某梯形的边长与对角线可构成三组长度相等的线段,那么最短边与最长边之比为 。
9.如图,给出反比例函数3k y x=,这里1k >;在x 轴正半轴上依次排列 2010个点122010,,,A A A ,点n A 的坐标为(,0)(1,2,,2010)n x n =,1(1,2,,2009)n n x x d n +=+=,1(1)x d k =-;过点n A 作x 轴的垂线交反比例函数于点n P ,记12n n n P P P ++∆的面积为(1,2,,2008)n S n =,那么122008S S S +++= 。
初三数学竞赛选拔试题(含答案)初三数学竞赛选拔试题(含答案)一、选择题1. 若 3x + 2 = 17,则 x 的值是A. 5B. 7C. 9D. 112. 在一个几何图形中,有一个正方形,边长为 x 厘米,另有一个等腰直角三角形,直角边的长为 y 厘米。
已知正方形的面积是等腰直角三角形面积的 20 倍,下列等式成立的是A. x² = 20y²B. x² + y² = 20C. 20x² = y²D. x + y = 203. 若 a² - b² = 15 且 a + b = 5,则 a 的值是A. 10B. 5C. 3D. -104. 某校参加比赛的男女生比例为 5:3 ,男生比女生多 48 人,那么该校一共有多少学生?A. 320B. 480C. 800D. 9605. 以下各数中,最小的是A. -0.5B. -1/2C. -50%D. 1/-2二、填空题6. 将 120 分钟化为小时的形式,填入空白:____小时。
7. 三个角相加是 180°,如果有两个角是 50°和 80°,那么第三个角的度数是____°。
8. 分数 7/10 是小数____。
9. 甲、乙两地相距 150 公里,有两辆车同时相向而行,如果两车速度一样,则若干小时后两车相遇,填入空白:____小时。
10. (-a) ×(-a) ×(-a) ×(-a) ×(-a) ×(-a)表示的结果是____。
三、解答题11. 某衣服打对折后价格为 420 元,原价是多少元?12. 小丽拥有一些小球,其中有红球、蓝球和绿球。
红球比蓝球的 3 倍多 2 个,蓝球比绿球的 2 倍少 4 个。
如果小丽总共有 51 个球,求小丽拥有的绿球数量。
13. 若 a + b = 5 ,a - b = 3 ,求 a 和 b 的值。
九年级数学竞赛试卷班级 姓名一、选择题(每题4分,共40分)1、,则1<x <2,则分式|x-2|x-2-|x-1|x-1+|x|x=( )A 、-1B 、3C 、1D 、22、某工厂计划两年把产品的成本下降19%,则平均每年下降( )A 、9.5%B 、10%C 、19%D 、以上都不对 3、如图AB 是半圆O 的直径,AD 、DC 、BC 都是圆的切线,若BC=9, AD=4,则AB 长为( )A 、509B 、253C 、252D 、124、如果m,n 为正实数,方程x 2+mx+2n=0和方程x 2+2nx+m=0都有实数根,则m+n 的最小值( )A 、2B 、4C 、5D 、6 5、如图各边都相等的五边形ABCDE 中,∠ABC =2∠DBE, 那么∠ABC 为( ) A 、45° B 、60° C 、90° D 、120°6、方程X 3-4X=0的解…………………………………………( )A 、-2、2B 、0、-2C 、0、2D 、0、-2、2 7、如下图,正方形ABCD 内接于△EFG ,已知ADE 、△ABG 、△DCF 的面积分别1,3,1,那么正方形ABCD 的边长…………………( ) A 、 2 B 、 3 C 、2 D 、3 8、△ABC 中,AC=5,中线AD=7,则AB 边的取值范围( )A 、1<AB <29 B 、4<AB <C 、5<AB <19D 、9<AB <199、如图△ABC 与△BDE 都是等边三角形,AB <BD ,△ABC 不动,将△BDE 绕点B 点旋转,则在旋转过程中,AE 与CD 的大小关系( ) A 、AE=CD B 、AE >CD C 、AE <CD D 、无法确定 10长的一半,则其顶角为………………………………………………………………( ) A 、30° B 、150° C 、30°或150° D 、120°或60°二、填空题(每题4分,共20分)11、三角形各边长为1或2,则满足条件的三角形有 个。
初三数学竞赛题2014-12-8时间90分钟 满分120分一、选择题(每小题6分,共36分)1、设235-=x ,则代数式()()()321+++x x x x 的值为( ) A 、0 B 、1 C 、—1 D 、22、对于任意实数a,b,c,d,定义有序实数对(a,b )与(c,d)之间的运算“▲”为:(a,b )▲(c,d)=(ac+bd,ad+bc)。
如果对于任意实数u,v,都有(u,v )▲(x,y)= (u,v ),那么 (x,y)为( )A 、(0,1)B 、(1,0)C 、(—1,0)D 、(0,—1)3、设333320141312111++++= s ,则4s 的整数部分等于( ) A 、4 B 、5 C 、6 D 、74、已知,21,21-=+=n m 且()()876314722=--+-n n a m m ,则a 的值等于( )A 、—5B 、5C 、—9D 、95、R t △ABC 的三个顶点A,B,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴,若斜边上的高为h ,则( )A 、h <1B 、h=1C 、1<h <2D 、h >26、如图,正方形ABCD 内接与⊙O ,点P 在劣弧AB 上,连接DP ,交AC 于点Q 。
若QP=QO ,则QA QC 的值为( ) A 、1-32 B 、32 C 、2-3 D 、23+二、填空题(每小题6分,共36分)7、两条直角边长分别是整数a,b (其中b <2014),斜边长是b+1的直角三角形的个数为______________。
8、一枚质地均匀的正方形骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方形骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数字之和为5的概率是________________。
9、有一跳蚤在直线上从O 点开始,第1次向右跳了1个单位,紧接着第2次向左跳了4个单位,第3次向右跳了9个单位,第4次向左跳了16个单位,第5次向右跳了25个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离为__________________个单位。
瑞安九年级数学竞赛试题
一、选择题(共5小题,每小题6分,满分30分.)
1、已知a=2005x+2004,b=2005x+2005,c=2005x+2006则多项式a 2+b 2+c 2-ab-bc-ac
的值为( )A 、0 B 、1 C 、2 D 、3
2、客运列车在哈尔滨与A 站之间运行,沿途要停靠5个车站,那么哈尔滨与A 站之间需要安排( )种不同的车票。
A 、6 B 、7 C 、21 D 、42
3满足(n 2-n-1)n + 2=1的整数n 有几个?( )
A 、4个
B 、3个
C 、2个
D 、1个
4、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至少可打( )
A 、6折
B 、7折
C 、8折
D 、9折
5、铁板甲形状是等腰三角形,其顶角为45°,腰长为20cm ,铁板乙的形状是直角梯形,两底分别为7cm,16cm,且有一个角为60°,现在我们把这两块铁板任意翻转,分别试图从一个直径为14cm 的圆洞中穿过,若不考虑铁板厚度,则结果是( )
A 、甲能穿过,乙不能穿过
B 、甲不能穿过,乙能穿过
C 、甲、乙都能穿过
D 、甲、乙都不能穿过
二、填空题(共5小题,每题6分,满分30分)
6、a 、b 是一元二次方程012=--x x 的两个根,
则b a b a 232322--+的值等于 . 7
、设15+=m ,那么m
m 1+的整数部分是 . 8、等腰三角形的一条腰上的高线等于该三角形某一条边的长度的一半,则其顶角的度数等于 。
9、如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作(见下图).按上边规则,完成五次操作以后,再剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有 个小孔.
(第9题)
10.在正方形ABCD 中,点E 是BC 上的一定点,且BE=10,EC=14,
点P 是BD 上的一动点,则PE+PC 的最小值是 。
三、解答题(共4小题,每小题15分,满分60分)
11.如图,直线82+-=x y 与两坐标轴分别交于P 、Q 两点, B C A D
P E
在线段PQ 上有一点A ,过A 点分别作两坐标轴的垂线,垂足分别为B 、C 。
(1)若矩形ABOC 的面积为5,求A 点坐标。
(2)若点A 在线段PQ 上移动,求矩形ABOC
12.如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC
上,且FE ⊥BE ,求△CEF 的面积.
13、已知二次函数()1122+-++=m x m x y (1)随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由。
(2)如果直线y=x+1经过二次函数()1122
+-++=m x m x y 图象的顶点P ,求此时m 的值
14.若m 为整数,在使m 2
+m +4为完全平方数的所有m 的值中,设其最大值为a ,最小值为b ,次小值为c .
(1)求a 、b 、c 的值;
(2)对a 、b 、c 进行如下操作:加上剩下的一个数,这样就仍得到三个数.再对所得三个数进行如上操作,问能否经过若干次上述操作,得到2004,2005,2006?证明你的结论.
A B C E F
参考答案
1、D;
2、D;
3、A;
4、B;
5、B;
6、5;
7、3;
8、300、1200、1500;9、256;10、26.11略
12、作EG⊥BC于G可得:2
,
2
,
2
,……10分
得:△CEF的面积为:1
24
. ……5分
13
14. 解:(1)设m2+m+4=k2(k为非负整数),则有m2+m+4-k2=0,
由m为整数知其△为完全平方数,即1-4(4-k2)=p2(p为非负整数),(2k+p)(2k-p)=15,显然:2k+p>2k-p,
所以
215
21
k p
k p
+=
-=
⎧
⎨
⎩
或
25
23
k p
k p
+=
-=
⎧
⎨
⎩
,解得p=7或p=1,
所以
1
2
p
m
-±
=,得:m1=3,m2=-4,m3=0,m4=-1,
所以a=3,b=-4,c=-1.
(2)因为
222222
((
2
2
a b a b
c a b c
++=++
+-
,即操作前后,这三个数的平方和不变,
而32+(-4)2+(-1)2≠20042+20052+20062.所以,对a、b、c进行若干次操作后,不能得到2004,2005,2006这三个数.。