线性电路的一般分析方法分解
- 格式:ppt
- 大小:1.96 MB
- 文档页数:74
线性电路的一般分析方法—节点电压法一. 书籍. 《国外电子与通信教材系列–电路》–电子工业出版社–2012年2月–第9版–Page (77‥96). 《中国科学院电子信息与通信系列规划教材–电路分析基础》–科学出版社–2006年8月–第1版–Page (49‥60)二. 线性电路的一般分析方法1. 基尔霍夫定律KCL:Kirchhoff’s Current Law基尔霍夫电流定律KVL:Kirchhoff’s V oltage Law基尔霍夫电压定律2. 线性电路的一般分析方法已知线性电路中有n个节点、b条支路,则对于不同的分析方法,所需独立方程的数目见下。
⑴. 2b法,需列出2b个独立方程根据KCL:列写n-1个独立方程;根据KVL:列写b-(n-1)=b-n+1个独立方程。
求得2b个结果:b条支路中的电流、b条支路的两端电压。
⑵. 1b法,需列出b个独立方程a. 支路电流法将支路电压用支路电流表示,代入2b法中的KVL方程;加之支路的KCL方程,则得到以支路电流为电路变量的b个独立方程。
求得b个结果:b条支路中的电流。
b. 支路电压法将支路电流用支路电压表示,代入2b法中的KCL方程;加之支路的KVL方程,则得到以支路电压为电路变量的b个独立方程。
求得b个结果:b条支路的两端电压。
⑶. 节点电压法,需列出n-1个独立方程任意假定某一节点为参考节点(0V),则其余n-1个节点对于参考节点的电压值就称为节点电压,节点电压是一组独立完备的电压变量;将n-1个节点电压作为未知变量,列写出n-1个KCL方程。
求得n-1个结果:n-1个节点对于参考节点(假定为0V)的电压差值。
⑷. 网孔电流法⑸. 回路电流法⑹. 割集分析法3. 平面电路、非平面电路任意的两条支路,除了端点之外均不相交,或者说是在空间上没有上、下交叠关系,这样的电路称为平面电路。
否则,称为非平面电路。
(参照《电路分析基础》Page12)网孔电流法仅适用于平面电路,其它各法对于平面电路、非平面电路均适用。
线性电路的分析方法解析线性电路是由被动元件(如电阻、电容、电感等)和有源元件(如电源、放大器等)组成的一种电路。
线性电路主要通过应用基本电路定律和电路分析方法来分析和解决电路问题。
以下是常见的线性电路分析方法:1.基本电路定律:线性电路分析的基础是基本电路定律,包括欧姆定律(电流与电压成正比关系)、基尔霍夫电压定律(环路电压之和为0)和基尔霍夫电流定律(节点电流之和为0)。
通过这些定律可以建立电路的等式,进一步解决电路问题。
2.等效电路:将复杂的线性电路简化为等效电路是简化分析的常见方法。
等效电路可以用简单的电路元件(如电阻、电流源等)来代替原始电路,但仍然保持电路特性不变。
常见的等效电路包括电阻串联、并联、电流源串联和电压源并联等。
3.节点电压法:节点电压法是一种常用的线性电路分析方法。
它通过将电路中的节点连接到地(或任意选定基准点)上,使用基尔霍夫电流定律分析各节点的电压。
通过列写节点电压方程,可以解得节点的电压值,进而计算电路中的电流和功率等参数。
4.微分方程法:微分方程法是分析线性电路的另一种常见方法。
通过对电路中的元件进行建模,可以得到元件之间的基本关系式,进而得到描述电路行为的微分方程。
通过求解微分方程可以得到电路中的电流和电压等参数。
5.模拟计算:模拟计算是一种常用的线性电路分析方法。
通过使用模拟计算软件,将电路图输入并设置元件参数和初始条件,软件可以自动计算电路中的电流、电压和功率等参数,并绘制相应的波形图。
模拟计算可以方便地分析复杂的线性电路,并可以进行参数的优化和灵敏度分析。
6.相量法:对于交流电路,相量法是一种便捷的分析方法。
相量法将交流电压和电流看作有大小和相位的量,通过将它们用复数表示来进行分析。
通过相量法可以方便地计算交流电路中的电路参数,如电流、电压、功率等。
7.频域分析:频域分析是分析交流电路的另一种常用方法。
频域分析通过将电路中的电压和电流信号进行傅里叶变换,将它们从时域转换为频域。
1.1电路分析的一般方法1.1.1支路电流分析法1)适用范围对任何线性电路都适用。
2)支路电流分析法的详细解题步骤①设定各支路电流的参考方向和网孔(回路的)绕行方向。
②当电路中有n个节点时,泽列出(n-1)个节点的kcl电流方程。
③当电路中有m个网孔时,则列出m个网孔的kvl电压方程。
④联立求解方程组,得出各支路电流1.1.2 节点电压分析法1)适用范围节点少的电路。
2)节点电流法的详细解题步骤①设定各支路电流的参考方向②选取某一节点为参考节点(点位为零)③当电路中有n个节点时,则列出(n-1)个节点的节点电压方程④解出方程3)补充概念和方程①自电导:流入节点的所有支路的电导和(恒为正)。
②互电导:本节电与其他节点相连支路上的电导(恒为负)。
③节点电压方程:自电导x节点电压-所有支路上的(互电导x相连节点电压)=流入(正)或流出(负)所有电流源之和1.1.3网孔电流分析1)适用范围仅适用于平面电路。
2)网孔电流分析法的详细解题步骤①将所有网孔设置相同参考方向(顺时针或逆时针,这样可以使互电阻全部为负)。
②将每一个网孔设置一个未知电流I 。
③列出m个网孔电流方程(默认参考方向一致,互电阻全部为负数)。
④解出方程3)补充概念和方程①自电阻:网孔上的所有电阻之和(恒为正)。
②互电阻:俩个相邻网孔公共支路中所有电阻之和(网孔与相邻网孔方向参考方向一致为负,参考方向不一致则为负)③网孔电流方程:自电阻x网孔电流-相邻网孔上的(互电阻x相邻网孔电流)=所有电压升之和(电压升为正,电压降为负)1.1.4回路电流分析1)适用范围比较节点和回路的多少,回路少时用回路电流法,节点少时用节点电压法。
与网孔电流法比较能够适用更复杂的电路当中。
2)回路电流分析法的详细解题步骤与网孔电流法基本一致(网孔分析法是回路电流的特殊情况)3)补充概念①支路:电路中的每一个分支②回路:电路中的闭合路径③网孔:内部不含有任何支路的回路,即“空心”回路。
线性电路的分析方法和网络定理
线性电路的分析方法主要有两种:基尔霍夫定律分析法和等效电路法。
1. 基尔霍夫定律分析法:
基尔霍夫定律是指基尔霍夫电流定律和基尔霍夫电压定律。
根据基尔霍夫电流定律,一个节点的进入电流等于离开电流的代数和。
根据基尔霍夫电压定律,一个回路中所有电压的代数和等于零。
利用这两个定律,可以列出若干个方程来求解电路的未知量,比如电流和电压。
2. 等效电路法:
等效电路法是指通过将复杂的线性电路简化为等效电路,再进行分析。
常见的等效电路包括电阻、电容和电感等。
通过将电路中的各个元件用等效电路替代,可以用简单的电阻、电容和电感的连接方式来分析电路。
等效电路法可以大大简化复杂的电路分析过程,使得计算更加方便。
网络定理是一种用于分析线性电路的重要工具,常见的网络定理包括:欧姆定律、基尔霍夫定律、奥姆-柯西定律、叠加原理、原电流原压理论、特尔肯定理等。
这些定理可以用来简化电路分析过程,提高分析的效率和准确性。
例如,奥姆定律可以通过电压和电阻的关系来计算电流;叠加原理可以将复杂电路分解为几个简单电路进行分析;特尔肯定理可以通过等效电路简化电路分析等。
线性电路的分析方法网孔电流法是以网孔电流作为电路的变量,利用基尔霍夫电压定律列写网孔电压方程,进行网孔电流的求解,然后再根据电路的要求,进一步求出待求量。
网孔电流法的一般步骤:1,选定各网孔电流的参考方向2,按照网孔电流方程的一般形式列出各网孔电流方程。
自电阻始终取正值,互电阻前的号由通过互电阻上的两个网孔电流的流向而定,两个网孔电流的流向相同,取正;否则取负。
等效电压源是理想电压源的袋鼠和,注意理想电压源的符号。
3,联立求解,,解出各网孔电流。
4,根据网孔电流再求待求量。
含独立电流源电路的网孔方程1,若有电阻与电流源并联,则转化为电压源电路;2,若没有电阻与电流源并联,则增加电流源两端电压做变量建立方程,这是需要补充电流源与网孔电流的关系方程。
节点电压法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n-1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。
然后进一步求出各待求量。
节点电压法适用于节后复杂、非平面电路、独立回路选择麻烦/以及节点少/回路多的电路的分析求解。
对于n个节点,m条之路的电路,节点电压法仅需(n-1)个独立方程,比之路电流法少[m-(n-1)]个方程。
节点电压方程的一般步骤:1,指定电路中某一节点为参考点,标出各独立节点点位(符号)2,按照节点电压方程的一般形式,根据实际电路直接列出各节点电压方程列写第K个节点电压方程时,与K节点相连接的之路上电阻元件的电导之和(自电导)一律取“+”号;与K节点相关联之路的电阻元件的电导(互电导)一律去“—”号。
流入K节点的理想电流源的电流取“+”号;流出的则取“-”号。
含独立电压源电路的节点方程1.若有电阻与电压源串联,则转化为电流源电路2.若没有电阻与电流源并联,则增加电压源的电流做变量建立方程,这时需补充电压源与节点电压的关系方程。