基于Verilog HDL语言的ISE设计流程
- 格式:ppt
- 大小:3.54 MB
- 文档页数:89
ISE开发环境使用指南简介ISE(Integrated Software Environment)是Xilinx公司开发的一套FPGA设计软件工具。
本文档将为您介绍如何使用ISE开发环境进行FPGA开发,包括环境的安装、基本操作和常见问题解决方法。
环境安装1.在Xilinx官网上下载最新版本的ISE软件。
2.双击安装文件,按照向导指示完成安装过程。
3.完成安装后,打开ISE软件,进行必要的设置和配置。
基本操作创建工程1.打开ISE软件,选择“File” -> “New Project”。
2.在弹出的对话框中输入工程名称和路径,选择FPGA型号等相关参数,点击“Next”。
3.添加源文件和约束文件,点击“Next”。
4.点击“Finish”完成工程创建。
编译工程1.在ISE软件中选择“Project” -> “Run Implementation”进行工程编译。
2.检查编译过程中是否有错误,根据提示进行修正。
下载到FPGA1.将FPGA与电脑连接,选择“Tools” -> “iMPACT”打开下载工具。
2.配置下载参数,选择对应的FPGA型号和文件路径。
3.点击“Program”开始下载程序到FPGA。
常见问题解决方法编译错误•检查代码中是否有语法错误或逻辑问题。
•检查约束文件是否设置正确。
下载失败•检查FPGA与电脑的连接是否正常。
•检查下载工具配置是否正确。
总结通过本文档的介绍,您应该对如何使用ISE开发环境进行FPGA开发有了一定了解。
希望您在实际操作中能够顺利完成项目的开发和调试。
如果遇到任何问题,可以参考本文档中提供的常见问题解决方法或参考Xilinx官方文档进行进一步学习和搜索。
基于Verilog 的有限状态机设计与优化1 引言在集成电路的设计过程中, 不论是使用FPGA还是ASIC 来实现, 有限状态机经常是作为一个电路设计的关键部分而出现的. 状态机的功能是否完善( 是否强壮型) 对整个电路会产生重大的影响.有限状态机主要有两种类型: Moore 型状态机和M ealy 型状态机. Moore 型状态机是指输出只与当前状态有关, 与输入信号无直接关系. 而Mealy 型状态机的输出不只与当前状态有关, 还与输入信号有关.文中以目前常用的硬件描述语言Verilog HDL 为基础, 对不同的状态机编码类型和状态机描述风格对状态机性能的影响进行了深入的分析. 分别使用Xilinx ISE 和Design Compiler 对实例进行了综合,分析了面积、速度与功耗的信息, 给出了对于不同类型状态机的最佳编码风格.2 状态机编码状态的编码方式最常用的有二进制码、格雷码和独热码三种, 不同的状态机编码方式对状态机的影响非常大. 如表1 所示.二进制的编码从第一个状态到最后一个状态是按二进制码的顺序排列的, 是一种最普通的编码方式.表1 不同的编码比较十进制码Binary code Gray code One- hot code0 000 000 00011 001 001 00102 010 011 01003 011 010 1000用格雷码进行状态的变换时, 相邻状态转换只有一个状态位发生翻转. 这样就可以消除转换时由多条状态信号线的传输延迟所造成的毛刺, 大大地减少了由一个状态到下一个状态时逻辑的混淆可以降低功耗.one- hot 状态译码简单, 只有1 位是1 其他位为0, 易于修改, 可以减少组合逻辑, 但会使用更多的触发, 增加电路面积.Binary- code、Gray- code 编码使用最少的触发器, 较多的组合逻辑, 而One- hot 编码反之.因此, Binary 和Gray- code 适用于触发器资源较少, 组合电路资源丰富的情况( CPLD) , 对于FP GA 则更适用One- hot code, 因为这样可以充分利用FPGA 丰富的触发器资源. 另外, 小型设计通常使用Binary- code 和Gray- code, 对于大型的设计使用One- hot code 效果更佳.3 状态机的描述方法状态机的描述方法通常有三种: 一段式( one al ways) 、二段式( two always) 和三段式( three always) .3. 1 一段式一段式的状态机描述方法是指将整个状态机写到一个alw ays 模块里, 该模块描述当前状态转移, 又描述状态的输入和输出.由于一段式的描述方法是给STATE 自身赋值, 所以本身就会引入一个周期的延时, 需要在设计中通过预计算考虑进去.一段式的描述方法所有输出都是寄存器输出的, 因此不会产生毛刺, 但是这种组合逻辑和时序逻辑都写到一起的方法是不可取的, 而且在描述当前状态的时候还要考虑到下一状态的输出. 这种描述方法可读性差、难于理解和维护, 不利于时许约束、功能更改及调试, 对于Mealy 型的状态机来说, 容易出现Latches.3. 2 二段式二段式的状态机描述方法是指使用两个always模块, 其中一个always 模块采用同步时序的方式描述当前状态和下一状态的转移, 另一个alw ays 模块采用组合逻辑来描述下一状态和输出向量的赋值.二段式的描述方法比一段式的更合理, 它更易于阅读、理解和维护, 更利于综合并优化代码. 但是它的缺点是第二个alw ays 块组合逻辑的输出会出现毛刺, 影响电路性能.3. 3 三段式三段式的状态机描述方法是由二段式发展而来的, 在二段式两个alw ays 的基础上又增加了一个alw ays 块来描述每个状态的输出, 用寄存器寄存了一拍, 达到同步输出的目的.需要注意的是, 增加的一级寄存器会引入一个周期的延时, 需要在设计中通过预计算考虑进去, 避免逻辑发生错误. 这样一级寄存器的引入, 也就形成了FSMs 输入逻辑的一级流水.引入了组合逻辑寄存, 输出同步不仅会带来运行性能的提升, 还会增加系统的稳定性, 防止输出信号出现毛刺, 防止组合回路的产生.4 实例分析下面以一个简单红绿灯状态转移为例进行分析, 当RESET 信号给出以后进入IDEL 状态, 之后状态机的描述方法通常有三种: 一段式( one al 进入RED 状态, 之后进入GREEN 状态, 之后进入YELLOW 状态, 最后回到RED 状态. Default 时进入IDEL 状态.一4. 1 使用Xilinx ISE 进行分析在使用Xilinx ISE 对例子进行综合的时候, 右键点中综合软件, 选属性选型, 在HDL Options 中有一个优化选项为FSM Encoding Algorithm, 在其下拉菜单中选中AUTO( 默认项) , 工具就可以自动修改设计中的状态机的状态编码, 使其成为对FPGA 来说最优的编码风格.对于本设计来说, 由于只有4 个状态, 所以状态编码被优化成了Gray- code. 但是经过验证, 在状态较多的状态机设计中, 状态编码一般都被优化成One- hot code.通过表2, 对Xilinx ISE 的综合后报表进行分析可以看到, 由于one always 的状态机全部为时序电路,所以最大频率会比two alw ays 和three always 大.在面积方面, two always 型的状态机所占面积最小, three alw ays 稍大, 而one alw ays 型的状态机所用门数最多, 所占面积也最大.对于功耗来说, 使用Xilinx ISE 集成的Xpower进行功耗分析, 所得到的三种状态机编码风格的功耗并不存在明显差异.表2 Xilinx ISE 的综合结果使用门数最大频率one alw ays 8 313. 283MHztwo always 43 312. 891MHzthree alw ays 67 312. 891MHz4. 2 使用Design Compiler 进行分析在使用Design Complier 对所举实例进行分析话时, 分别选取了1always& binary、1always& one - hot、2always& binary、2alw ays& one - hot 、3alw ays& binary、3always& one- hot 等6 种设计, 每个设计分别设定了2 个时钟周期( . ns 和7ns) 进行分析. 综合得到的面积和延时的结果按顺序标在图2、图3 中. 表3、表4 给出了详细的数据.由图2 可见, 2alw ays 在面积上具有明显优势,其次是3alw ays. 由图3 对时序的分析可见, 2alw ays也是具有一定的优势.比较使用Design Compiler 和Xilinx ISE 的综合结果可以发现, 不论是使用FPGA 还是ASIC, tw oalw ays 所占面积总是最小的, 其次是three alw ays,而one alw ays 所占面积最大. 这主要是由于one alw ays 的状态机全部为时序电路, 所以花费的面积最大, three alw ays 由于多采用一级寄存器同步, 所以所花费的面积比two always 的要大一些.5 比较分析通过以上分别使用Xilinx ISE 和Design Compiler 对实例进行的分析, 可见two alw ays 的编码风格存在巨大的优势. 因为Moore 型的状态机输出只有状态寄存器驱动, 状态机所受影响差异不会很大,所以建议对Moore 型状态机采用two alw ays 的编码风格.而Mealy 型状态机, 输出不只与当前状态有关,还与输入信号有关, 输出是组合逻辑的输出, 这样在每个STATE 中产生的信号复杂而且有不同的timeskew , 如果信号直接输出而不引用寄存器同步的话, 在高频的电路中很可能会导致时序上的错误. 所以建议使用three alw ays 风格, 将输出同步一拍.对于one alw ays 的风格, 虽然在一些开源的IP盒中经常见到, 但是通过以上的分析, 可以发现这种状态及描述风格存在着巨大的缺陷.至于状态编码的使用, 对于FPGA 来说建议使用工具自动优化状态机的状态编码, 而对于ASIC 来说, 建议在小型设计中使用Binary- code 和Gray code, 而对于大型的设计则使用One- hot code.6 结束语文中结合了一个Verilog HDL 的实例, 对三种不同的状态机编码和状态机描述方式进行了深入的研究, 分析了其各自的优缺点. 并分别使用Xilinx ISE 和Design Compiler 对一个实例进行了综合, 对面积、速度与功耗进行了分析. 结果表明one alw ays的写法需要被摒弃, two alw ays 的编码风格适合Moore 型状态机, 而three always 的编码风格适合Mealy 型状态机. 文中同时也给出了适合不同设计的最优状态编码。
引言:概述:ISE软件是由Xilinx公司开发的一款集成电路设计工具,使用该软件可以进行数字电路设计、仿真、验证以及实现等多个阶段的工作。
在设计阶段,ISE软件提供了丰富的组件库和设计工具,方便用户进行电路原理图的绘制和逻辑设计。
在验证阶段,ISE软件可以进行功能仿真和时序仿真,以确保设计的正确性和稳定性。
在实现阶段,ISE软件提供了先进的布局与布线工具,能够将设计转化为实际的电路板。
正文内容:1.安装与启动1.1ISE软件安装包1.2安装ISE软件1.3启动ISE软件2.项目管理2.1创建新项目2.2导入已有项目2.3添加设计文件2.4设定项目属性2.5保存和备份项目3.设计流程3.1电路原理图设计3.1.1组件选择3.1.2连接元件3.1.3设置元件属性3.2逻辑设计3.2.1设计约束3.2.2逻辑优化3.2.3时序约束3.3约束文件编辑3.3.1约束规则3.3.2约束语法3.3.3约束检查3.4时序仿真3.4.1创建仿真波形3.4.2设定初始状态3.4.3运行仿真3.5功能仿真3.5.1设置输入信号3.5.2运行仿真3.5.3分析仿真结果4.仿真与验证4.1时序分析4.1.1设定时钟4.1.2时序路径分析4.1.3时序优化4.2时序约束验证4.2.1满足约束4.2.2修复时序错误4.3灵敏度分析4.3.1设定输入敏感性4.3.2分析敏感性4.4逻辑分析4.4.1切换敏感性4.4.2分析逻辑状态5.布局与布线5.1物理约束5.1.1面积约束5.1.2信号完整性约束5.1.3电源与接地约束5.2布局5.2.1网表导入5.2.2管理物理资源5.2.3进行布局布线5.3时序优化5.3.1满足时序约束5.3.2缩短信号传输路径5.3.3优化时钟分配5.4布线5.4.1管理布线资源5.4.2进行布线5.4.3路由与优化5.5设计规约检查5.5.1检查布局布线规约5.5.2修复设计规约错误总结:引言概述:ISE软件是一款功能强大的集成开发环境工具,广泛应用于数字电路设计和实现。
ISE的使用说明建立工程 (2)综合 (12)管脚约束 (14)布局布线的综合 (18)添加波形 (19)仿真 (21)下载 (25)启动桌面上名为Project Navigator的ISE软件图标,进入ISE开发系统如图所示。
在上拉菜单file栏打开,单击New project选项,开始新建一项工程。
如果想打开已有的ISE工程文件(文件格式为*.npl),则单击open project选项。
下面我们将以一个包括了24进制和60进制计数器的复合计数器的VHDL程序为例,来说明ISE的具体使用。
首先单击New project选项,出现如图所示对话框:在Project name一栏填上工程文件名,我们在此工程名命名为counter,放在目录F:\teacher_li 下。
下一步,进行可编程器件型号的选择以及设计流程的设置。
在器件型号栏有Device family ,Device (型号),封装,speed grade,可以根据实验平台所用的可编程逻辑器件分别设置相应选项。
对话框下半部分是对设计语言和综合仿真工具的选择。
然后下一步,采用默认设置,完成了New Project Information的设置。
如图所示:单击“完成”按钮,进入到如下对话框:在Source in Project一栏,选择菜单Module View选项,在工程名counter的图标位置单击右键,出现如下对话框。
New Project :新建一项文件,单击ew Project图标,出现的对话框包括了以下选项:新建IP核,电路设计,状态机,新建测试波形,用户文档,Verilog编写文件,Verilog测试文件,VHDL库,VHDL编写文件,VHDL包,VHDL测试平台。
Add Source :添加一项已经存在的文件。
本例中,首先选择VHDL Module项,我们file name命名为count。
下一步,进行管脚信号名称,位数和方向的设置。
verilog hdl应用程序设计实例精讲网上现在有很多关于verilog hdl应用程序设计的资料,但是并没有一个很系统和全面的教程来帮助初学者快速入门。
本文就verilog hdl应用程序设计实例进行了精讲,从基本概念到应用实例一步一步地回答了初学者的问题,帮助大家理解verilog hdl的设计和应用。
一、verilog hdl的基本概念Verilog HDL是一种硬件描述语言,用于描述数字系统,包括逻辑电路、集成电路等等。
它既可以进行仿真验证,也可以直接生成硬件电路。
简单来说,verilog hdl就是一种用来描述数字系统的语言。
1.1 模块与实例化在verilog hdl中,模块是最基本的设计单元,每个模块包含一个或多个端口和内部逻辑电路。
模块可以包含其他模块,这被称为实例化。
实例化可以理解为创建一个模块的实例,并根据实例进行连接。
1.2 端口和内部信号模块的端口是与其他模块或外部电路连接的接口,可以是输入、输出或双向。
内部信号是模块内部产生和使用的信号,只在模块内部可见。
1.3 组合逻辑与时序逻辑组合逻辑是指只有输入信号改变时才会改变输出信号的逻辑电路,而时序逻辑是指输出信号的改变还受到时钟信号的控制。
在verilog hdl中,可以使用逻辑门、逻辑运算符和条件语句来实现组合逻辑和时序逻辑。
二、verilog hdl应用程序设计实例接下来,我们通过一些实例来展示verilog hdl的应用程序设计。
2.1 4位全加器我们首先来实现一个4位全加器。
全加器是用来实现两个二进制数的加法的电路,它能够实现两个输入和一个进位的相加操作,输出结果和进位。
在verilog hdl 中,可以使用逻辑运算符和条件语句来实现全加器。
2.2 4位加法器我们可以使用四个全加器来实现一个4位加法器。
加法器是用来实现两个二进制数的加法的电路,它能够实现多位的相加操作,输出结果和进位。
2.3 4位计数器计数器是一种能够实现计数功能的电路,它能够根据时钟信号进行计数,并在达到一定数值时输出特定信号。
打开ISE8.2i软件:双击桌面快捷方式或者按步骤Start →All Programs →Xilinx ISE 8.2i →Project Navigator打开ISE软件。
建立新工程:1.点击File,选择New Project,打开新工程创建向导。
2.在工程名字中输入led_test。
并将工程保存在自己想保存的位置:F:\FPGA_study\ISE_project。
3.在Top-Level Source Type选择项中选择HDL,然后点next进行下一步。
4.在对话框“New Project Wizard – Device Properties”中,按下图选择工程的器件配置。
然后点击next进行下一步5.点next。
6.点next。
7.点Finish。
创建Verilog资源1.在sources窗口中右击,选择new source。
如下图。
2.选择Verilog Module,并在File name中输入led_test。
点击next。
3.在对话框中Port Name栏中分别输入CLOCK和led,其中CLOCK为输入;led为输出,且led的Bus一栏打上勾,并在MSB一栏输入数字7。
然后点next。
4.选择Finish。
生成的文件窗口如下图。
5.编辑文件“led_test.v”module led_test(CLOCK, led);input CLOCK;output [7:0] led;reg [7:0] led;reg [22:0] count = 0;parameter bit1 = 8'b0000_0001,bit2 = 8'b0000_0010,bit3 = 8'b0000_0100,bit4 = 8'b0000_1000,bit5 = 8'b0001_0000,bit6 = 8'b0010_0000,bit7 = 8'b0100_0000,bit8 = 8'b1000_0000;always @(posedge CLOCK)begincount <= count + 1;if(count == 4000000)count <= 0; //每100ms变一次0 endalways @(posedge CLOCK)beginif(count == 1)begincase(led)bit1: led <= bit2;bit2: led <= bit3;bit3: led <= bit4;bit4: led <= bit5;bit5: led <= bit6;bit6: led <= bit7;bit7: led <= bit8;bit8: led <= bit1;default: led <= bit1;endcaseendendendmodule检查所写的程序代码是否有误1.在Sources窗口的下拉项中选择Synthesis/Implementation。
一、引言在现代数字电子领域,Vivado是一种流行的集成开发环境,用于FPGA设计和综合。
SystemVerilog是一种基于Verilog的硬件描述语言,它增加了一些高级特性以支持更复杂的硬件设计。
本文将探讨在Vivado中使用SystemVerilog进行开发的步骤,以帮助读者更好地理解和掌握这一技术。
二、准备工作在开始使用Vivado和SystemVerilog进行开发之前,首先需要安装Vivado并配置好开发环境。
确保你已经安装了合适的Vivado版本,并且能够正确连接到你的FPGA开发板。
另外,也需要一定的SystemVerilog编程基础,包括对模块化设计、数据类型和并发控制等概念的理解。
三、创建工程在Vivado中创建一个新的工程,选择你的FPGA型号并确定工程保存的位置。
在创建工程的过程中,你需要设置好工程的基本信息,包括名称、版本和描述等。
在工程创建完成后,Vivado会自动生成一些默认的文件和目录结构,用于存放你的设计文件和约束文件等。
四、编写SystemVerilog代码接下来,你需要编写SystemVerilog代码来描述你的硬件设计。
可以使用Vivado内置的文本编辑器或者外部编辑器来编写代码文件,然后将代码文件添加到你的工程中。
在编写代码时,要注意遵循SystemVerilog的语法规范,并且使用模块化的设计思想来构建你的硬件模块。
五、综合和实现完成SystemVerilog代码编写后,你需要进行综合和实现操作,将代码映射到FPGA上。
在Vivado中,可以通过执行综合和实现的工具链来完成这一过程。
综合操作将把你的代码转换成逻辑门级的表示形式,而实现操作则将逻辑门映射到FPGA的逻辑资源上。
六、仿真和调试在综合和实现完成后,你可以进行仿真和调试来验证你的设计的功能和性能。
Vivado提供了强大的仿真工具,可以方便地对你的设计进行测算和调试。
通过仿真和调试,你可以发现并解决设计中的问题,保证最终的硬件设计能够正确地工作。