数控直流电流源设计文档
- 格式:doc
- 大小:807.50 KB
- 文档页数:20
题目名称:数控直流电流源摘要:该数控直流电流源以精密压控电流源为核心、用单片机、DAC组成控制电路,引入“S类”反馈控制功率放大电路,实现超精密电流控制、具备精准的扩流能力、低失调、有步进、同时带有丰富扩展功能的精密电流源。
经过ADC采样,完成输出电流显示功能,并使输出范围覆盖0~2A,是理想的电流源解决方案。
关键词:精密电流源低失调S类功率放大器Abstract:The direct current source of numerical control bases on accurate VCCS, using MCU and DAC as controller kernel, importing circuit of power amplification of type S with feedback control; achieves ultra accurate current control; has low offset and excellent capacity for current enlarging; has step by step motion. At the same time, it provides abundance extended functions. According to the ADC sampling, it carries out the function of displaying the current output, meanwhile it achieves a range of 0 to 2A. Above all, it is an ideal solution of current source.Keyword: accurate current source , low offset , power amplification of type S目录1方案论证与比较 (3)1.1精密压控电流源方案论证 (3)1.2扩流模块方案论证 (3)1.3电流检测方案论证 (4)1.4功率输出级电源方案论证 (4)1.5其它模块电源方案论证 (4)2 系统设计 (5)2.2单元电路设计 (6)2.2.1 压控电流源单元电路设计 (6)2.2.2S类功率放大器电路设计(理论推导和证明) (7)2.2.3 数控电路设计 (10)2.2.4 大功率电源模块 (11)3 软件设计 (11)4系统测试 (13)4.1测试仪器 (13)4.2测试方法 (13)4.3测试数据 (14)5 结论 (15)参考文献: (15)附录: (16)附1:元器件明细表 (16)附2:仪器设备清单 (16)附3:电路图图纸 (16)附4:程序清单 (19)附5:使用说明 (24)1方案论证与比较本系统主要由精密的电流源模块、S类扩流模块、电流检测模块、数控模块、以及大功率的电源模块组成,如图1所示。
(数控加工)数控直流电流源设计报告数控直流电流源一、设计任务和技术要求1.设计壹个数控直流电流源。
2.输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。
3.具有输出电流大小的数码显示。
4.负载供电电压+12V,负载等效阻值100Ω。
5.电路应具有对负载驱动电流较好的线性控制特性。
6.设计电路工作的直流供电电源电路。
二、系统原理概述本设计要求设计出壹个数控的直流电源,且且输出电流为0~99mA,能够手动控制增减。
在此采用数模转换的原理,只要产生和0~99mA电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I转换器将电压量转换为和电压量相对应的电流量即可。
为控制输出电流手动步进为1mA增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为1可调即可。
综上,整个系统的原理框图如图壹所示:图一系统原理框图三、方案论证1.直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成。
如图二所示:图二稳压电源组成示意图方案壹:输出可调的开关电源开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护和过流保护,可是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。
方案二:由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚V0、输入脚V i和接地脚GND组成,它们的输入端接电容能够进壹步滤波,输出端接电容能够改善负载的瞬间影响,且且此电路也比较稳定,实现简单。
因此在此采用方案二,电路原理图如图三所示:图三固定三端式直流稳压电源电路2.手动增减数字量产生单元方案壹:74LS163为可预置的4位二进制同步加法计数器。
采用俩片74LS163运用反馈清零或者反馈置数法构成十进制计数器,再将俩片73LS163构成2位十进制加法计数器。
摘要:本设计由三个部分组成,键盘与显示,基于单片机的控制器,稳流电源。
以89C52为主控单元,以数模转换器DAC0832输出参考电压,以该参考电压控制电压转换模块LM350K的输出电压大小,设计实用,精度高。
Abstract:This design is consisted of three elements, The controller based on microintrollers 89C52,Keyboard and display,Stable electric current source. The 51 synthesized with HD7279,achieve the aim to control the output current.一、方案论证与比较1、电源部分(1)开关电源采用单极开关电源,由220V交流整流后,经开关电源稳压输出。
该方案的优点是电路的效率较高,可以达到70%—80%,在电联接较好的情况下效率可以达到90%左右。
但是此方案产生的直流纹波和干扰较大,而且开关电源结构复杂,在以后的电路中很难加以控制,很可能造成设计的失败和技术参数的超标,鉴于时间和电路可靠性的考虑没有选择这套方案。
(2)线性电源交流电压经桥式电路整流滤波输出,直接进入稳流电路。
这种方案的优点是,电路简单,容易实现,并且调试起来比较方便,只是功率损耗稍大,但是在这种小型非连续工作电源中这些功率损耗可以承受。
2、稳流部分(1)内环反馈在稳流部分加入一个负反馈,在DAC0832输出电压值之后与LM350K输出电压相比较,使其产生误差信号,运用负反馈原理降低误差,使输出性能较理想。
电路连接图如图1 所示:图1 内环反馈(2)双闭环控制在内环反馈基础上再加上一个外部的负反馈。
如图2 所示,即把输出后电压值经过A/D转换之后,再与D/A转换之前的电压值相比较,然后经过内环反馈,即经过了两次负反馈过程。
数控直流电流源的设计1.设计思路本设计以ATmega16L为核心,通过A/D、D/A转换、V/I转换及独特的算法实现高精度的,电流输出范围为20mA~2000mA的数控直流电流源。
该电流源具有电流可预置,1mA步进,同时显示给定值和实测值等功能。
2.方案设计2.1控制器模块方案利用ATmega16L单片机将电流步进值或设定值通过换算由D/A转换,驱动压控恒流源电路实现电流输出。
输出电流经处理电路,作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。
D/A转换器选用12位优质D/A转换芯片 TLC5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器选用高精度16位模数转换芯片AD7705。
2.2显示器模块方案采用19264D汉字图形点阵液晶显示模块同时显示电流给定值和实测值。
使用LCD显示。
LCD具有轻薄短小,可视面积大,方便的显示汉字数字,分辨率高,抗干扰能力强,功耗小,且设计简单等特点。
2.3键盘模块方案采用标准4X4键盘,此类键盘采用矩阵式行列扫描方式,优点是当按键较多时可降低占用单片机的I/O口数目,而且可以做到直接输入电流值而不必步进。
2.4压控电流源模块方案精密压控电流源是本数控电流源的关键之所在,针对设计要求和使用需求、结合设计思路,精密电流源模块必须具备以下指标:纹波小于2mA,误差小于0.1%,具有低的输出失调。
基于稳定性要求和以上考虑,电流源电路选择了经典的压控电流源电路,它负责与后级扩流模块连接,用电压控制后者,而使用电流反馈,这样可以保证有足够高的精度。
该部分采用了高性能、低温漂、低失调的运算放大器OP77和精密元件组成,保证性能指标的良好发挥。
2.5扩流模块方案为了克服传统扩流电路在高精度、高稳定性要求下的缺陷,追求一种精度高、稳定性好、对前级影响小的扩流电路,受到S类功率放大器的启发,本设计率先把S类放大器优秀的电压跟随器原理引入电流源电路之中。
《关于单片机数控直流的电流源设计》要:本文介绍了基于单片机的数控直流电流源设计方案,给出了硬件组成及软件系统。
本系统以单片机AT89S52为核心部件,由键盘、显示、D/A及A/D转换,V/I转换、功率放大等模块组成。
采用负反馈闭环控制系统,单片机实时将预置值和实测值进行比较、调整控制,提高了电流源的输出精度。
所设计的数控直流电流源采用PID算法实现了量程可选、输出可调、步进精确、纹波电流极小的功能,而且可将输出电流预置值、实测值在LED上同时显示。
经实验证明具有较高的控制精度。
关键词:单片机,电流源,数控,V/I变换0引言低纹波、高精度稳定直流电流源是一种非常重要的特种电源,在现代科学研究和工业生产中得到了越来越广泛的应用。
普通电流源往往是用电位器进行调节,输出电流值无法实现精确步进。
有些电流源虽能实现数控但输出电流值往往比较小,且所设定的输出电流值是否准确不经测试无法知道等等[1,2]。
为此,结合单片机技术及V/I变换电路,采用反馈调整控制方案设计制作了一种新型的基于单片机高精度数控直流电流源。
它可实现以下功能:(1)具有多个量程,用户可根据实际需要选定。
(2)输出电流值可精确预置,最小步进为1mA,最大输出电流2000mA。
(3)纹波电流极小,小于0.1mA。
(4)LED可同时显示预置电流值、实测电流值及当前量程档,便于用户操作及进行误差分析。
1 硬件系统设计根据数控直流电流源的要求,由于要求有较大的输出电流范围和较精确的步进要求以及较小的纹波电流,所以不适合采用简单的恒流源电路FET和恒流二极管,亦不适合采用开关电源的开关恒流源,否则难以达到输出范围和精度以及纹波的要求[3]。
根据系统要求采用D/A转换后接运算放大器构成的功率放大,控制D/A的输入从而控制电流值的方法。
系统的原理框图如图1所示。
图1 系统的原理框图1.1 数控部分设计(1)89S52单片机基本系统:数控部分的核心采用89S 52。
数控直流电流源的设计数控直流电流源设计是一种电源研发中不可或缺的一种技术。
数控电源设计的基本原理是以数字信号为控制信号,通过模数转换器将信号进行处理,并在输出端通过运放和功率器件实现电源输出。
数控直流电流源设计通常有多种实现方案,下面我们将对数控直流电流源的设计方案和基本要点进行介绍。
一、数控直流电流源的设计方案1. 数控直流电流源通过电压降进行电流调节在设计中,可以将一个负载电阻串联在直流电源输出端,用操作信号控制电压降,从而在电阻上产生稳定的电流。
不同电源的电压调整范围不同,具体电源需要合理选择电压控制元件并加以调节。
2. 数控直流电流源采用二极管式恒流源技术该方法的设计基于二极管的固有特性,二极管正向电流与其正向电压成指数关系,某种程度上追求了电流不随负载电阻和电源电压的变化而发生改变的目的。
3. 数控直流电流源采用电压转换及限流技术该技术基于集回控制回路和恒压限流控制回路于一身。
输入时,集成回路不变,恒压限流回路负责输出电流的保护和限制,保证负载操作安全可靠。
二、数控直流电流源的基本要点在设计数控直流电流源的时候,需要考虑以下要点:1. 电源适应范围。
在选择模拟电源芯片之前,需要考虑需要连接的负载电流大小、所需合适的输出电流、输出电压和功率等因素。
2. 稳定性。
电源的稳定性是评价数控直流电流源优劣的重要指标。
电阻、电容组成的稳压、稳流回路是保证电源稳定性的有效手段。
3. 真实性。
在设计中,需要考虑到负载电流变化所产生的响应状况并给出合适的解决方法。
在许多情况下,需要对设计方案进行优化和调整,以达到输出电流的更为真实性。
4. 安全性。
电源在工作过程中需要考虑对安全的保护。
对于短路保护、过载保护和过热保护等方面需要进行设计。
5. 控制模式。
需要考虑到数控直流电流源的控制模式。
包括区间控制、精密控制、PID控制、阶梯控制等模式,具体的应选取相应的模式根据需求需按体制进行设计。
总结:数控直流电流源设计是非常有挑战性的,需要精密技术,高质量的工程人员和一定的实践经验。
摘要:本次主要任务是使用Proteus、Multisim、PSPICE、TINA-TI、Matlab等电路仿真软件,设计仿真一个简易数控恒流源电路方案以微控制器为核心,设计一数字式直流电流控制系统,实现了可控的恒电流源.系统以89c52单片机为控制核心,通过12位D/A MAX5822控制输出电流、12位A/D MAX1241对输出电流进行检测,利用电流串连负反馈特性采用OP07和达林顿管组成的恒流源,实现一种宽范围、高精度、低纹波、带负载能力强的直流电源。
此外,该电流源可以通过键盘进行预置调整设定值,且输出通过LCD显示。
本次仿真所用的软件主要是Proteus与Multisim。
关键词:数控直流电流源 89C52 MAX5822 MAX1241 仿真目录1.设计任务与要求 (2)1.设计任务与要求 (3)1.1任务 (3)1.2要求 (3)2. 方案论证与比较 (4)2.1. 数控模块 (4)2.2.恒流源电路模块 (4)3 系统硬件组成及各部分的原理分析 (5)3.1数控电流输出及测量模块 (5)3.1.1数控电流输出 (5)3.1.2 测量电流输出 (6)3.2键盘与显示电路 (7)3.3恒流源电路 (7)3.4供电电路 (9)4 系统软件设计 (9)4.1软件的结构 (9)4.1软件流程图 (10)5电路各部分的仿真结果 (11)5.1显示和按键控制电路仿真 (11)5.2 DA转换仿真 (11)5.3 AD转换仿真 (12)5.4恒流源电路仿真 (13)6设计总结 (14)7附录 (15)1.设计任务与要求1.1任务设计并制作数控直流电流源。
输入交流200~240V,50Hz;输出直流电压≤10V1.2要求用仿真软件对电路进行设计并仿真,使其满足以下要求:1、基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。
数控直流电流源1 方案比较,设计与论证1.1 控制方案比较方案一(见图1)此方案是传统的模拟PID控制方案,其优点是不占用CPU处理器的时间,对处理器性能的要求比较低。
但模拟PID控制方式的参数不易匹配,调节时间长,难以把精度做得很高,并且难以实现题中要求的良好的人机交互功能。
图1 控制方案一框图方案二(见图2)此方案采用摩托罗拉16位DSP芯片56F807为核心处理器来实现,该平台具有高处理速度,适合实现复杂的算法和控制。
这种方案可以方便地实现PID的控制算法。
本设计采用了方案二。
图2 控制方案二框图1.2 检测方案比较方案一 直接对负载进行采样直接对负载进行采样简单易行。
但由于负载电阻为可调节电阻,输出可能有电流可能会受接触电阻的变化而不稳定,故不宜选取。
方案二 对采样电阻进行采样采样电阻采用标准精密电阻,阻值稳定,将阻值的变化对电流的影响降低到最小程度。
另外,对采样电阻进行采样,有效避免了外接测量电路对电流的影响。
因此采用方案二。
2 理论分析2.1 PID 控制算法PID 是一种在单片机控制中常用的算法, PID 控制由于其具有控制方法简单、稳定性好、可靠性高和易于现场调试等优点,被广泛应用于工业过程控制。
其输入e (t)与输出u (t)的关系为[1]⎰++=t d i p dtde(t)K d e(τK e(t)K u(t)0)τ 数字PID 控制算法是以模拟PID 调节器控制为基础的,由于单片机是一种采样控制,它只能根据采样时刻的偏差计算控制量。
但是如果采样周期T 取得足够小,采用数值计算的方法逼近可相当准确,被控过程与连续控制十分接近。
离散化后的PID 算式为:[1]()001u e e T T e T T e K u ij i i d j i i i +⎥⎦⎤⎢⎣⎡-++=∑=- 式中:K : 比例系数u o : 偏差为零时的控制作用T i : 积分时间T d : 微分时间T : 采样时间以上公式称为位置式算法。
数控直流电流源(第一题)摘要:本系统以直流电压源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电压源的输出电流,设置步进等级可达0.1V,并可由数码管显示实际输出电压值和电压设定值。
本系统由单片机程控输出数字信号,经过D/A转换器(DAC0832)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电压。
实际测试结果表明,本系统输出电压稳定,不随负载和环境温度变化,并具有很高的精度,输出电流误差范围±1%,输出电压可在0V----18V范围内任意设定,因而可实际应用于需要高稳定度小功率恒压源的领域。
一方案设计与论证1.1.总体设计方案与比较:方案一:通过编码开关来控制存储器的地址;根据地址输出对应的数字量送数模(D/A)进行转换;再根据输出的电压量来控制稳压源的变化;同时;通过四个编码开关的BCD码送给4511及数码管显示。
此方案的优点是电路简单,缺点是数据量大且存储器存储容量有限,在实验过程中发现编码开关不稳定,所以不宜采用。
其电路方框图如图1.1所示:二模块电路设计及比较系统硬件以AT89S52单片机为核心,外围包括电源模块、数码管显示模块、D/A转换模块及恒压源模块。
2.1 电源模块:本设计共用到电源有四种:即±5V,±15V.2.1.1 电源原理稳压电源由电源变压器、整流电路、滤波电路和稳压电路组成,如图2.1a 整流和滤波电路:整流作用是将交流电压U2变换成脉动电压U3。
滤波电路一般由电容组成,其作用是脉动电压U3中的大部分纹波加以滤除,以得到较平滑的直流电压U4。
b 稳压电路:由于得到的输出电压U4受负载、输入电压和温度的影响不稳定,为了得到更为稳定电压添加了稳压电路,从而得到稳定的电压U。
+5V其中+5 V给DAC0832,单片机供电;-5V为ICL7107参考电压。
要求输出的电压最大值为18V,取样电阻为0.37欧图2.2中电路提供+5V的电源;主要用于单片机(AT89S52)、数码显示(包括74LS164,ICL7107)。
数控直流电流源设计摘要本设计大致分五个模块:单片机控制模块、数模(D/A)转换模块、恒流源模块、模数(A/D)转换模块、显示模块。
单片机控制模块以单片机为核心,对输入电流信号进行转换成数字量输出;恒流源模块将D/A转换来的电压模拟量通过恒流源电路变成恒流;显示模块采用数码管显示译码芯片与74LS47设计成10进制4位数码动态显示电路。
键盘模块采用常见单路复位开关,做成4×4矩阵键盘,用动态扫描方式读取外部按键动作,这样设计可靠,配合凌阳AT89S52单片机,可以很轻松的实现按键输入。
此外,本设计可实现电流0-2A且有±1mA和±10mA的两种步进,同时有数码显示输入的电流值。
关键词单片机键盘控制D/A转换恒流源A/D转换译码显示Constant Current Resource Digital ControlledABSTRACTThe design is divided into five modules: Single-chip control, digital-to-analog (D / A) conversion module, constant current source module, the output display module. To single-chip single - chip control module as the core of the input current signals to digital output; Constant current source modules will be D / A converter to the voltage analog circuit through the constant current source into a constant current; display module display digital 74LS47 decoder chip designed with 10-band digital dynamic display four circuits. Common use of the keyboard module reset single switch, make 4 * 4 matrix keyboard, using dynamic scanning button to read the external action, so that the design of reliable, with Sun plus AT89S52 microcontroller, can easily achieve the keystrokes. In addition, the design can achieve the current 0-2A and a ± 10mA and ± 1mA Step two, at the same time digital display of the current input.KEY WORDS Single - chip Keyboard control D / A converter A / D conversion Decoding show目录中文摘要 (I)英文摘要 (II)1 绪论 (1)1.1概述 (1)1.2课题的背景和意义 (1)1.3数控直流恒流源简介 (2)1.4恒流源的应用 (2)2 数控直流电流源整体设计 (3)2.1整体结构设计与论证 (3)2.2系统原理与基本框图 (5)3 硬件电路设计 (6)3.1单片机模块的设计 (6)3.1.1 单片机的选择 (6)3.1.2 单片机最小系统组成及AT89S52介绍 (6)3.1.2.1 AT89S52单片机功能特性描述 (6)3.1.2.2 AT89S52引脚功能描述 (7)3.2D/A转换模块设计 (11)3.2.1 D/A转换方案 (11)3.2.2 12位串行D/A转换芯片MAX538介绍 (11)3.2.2.1 性能特点 (11)3.2.2.2 主要参数 (12)3.2.2.3 内部结构 (12)3.2.2.4 引脚结构 (12)3.2.2.5 输入接口 (13)3.2.3 D/A转换模块电路 (14)3.3V/I转换模块设计 (14)3.3.1 V/I转换方案 (14)3.3.2 V/I转换电路 (15)3.4A/D转换模块设计 (17)3.4.1 A/D转换方案 (17)3.4.2 12位串行A/D转换芯片MAX197介绍 (18)3.4.2.1 MAX197的特性 (18)3.4.2.2 MAX197的结构 (18)3.4.3 A/D转换模块电路 (20)3.5显示模块设计 (21)3.5.1 显示电路方案 (21)3.5.2 译码器74LS47简要介绍 (21)3.5.3 LED显示器的工作原理 (23)3.5.4 显示模块电路 (25)3.6键盘模块设计 (26)3.6.1 键盘电路方案选择 (26)3.6.2 键盘模块的电路 (26)3.7电源模块设计 (28)3.7.1 稳压电路电源方案 (28)3.7.2 电源原理 (28)3.7.3 LM7805、LM7812简要介绍 (28)3.7.4 电源模块电路 (29)4 软件设计 (30)总结 (33)致谢 (34)参考文献 (35)附录 (36)。
数控直流电流源 (2)摘要: 本设计由三个部分组成,键盘与显示,基于单片机的控制器,稳流电源。
以89C52为主控单元,以数模转换器DAC0832输出参考电压,以该参考电压控制电压转换模块LM350K的输出电压大小,设计实用,精度高。
A bstract: This design is consisted of three elements, The controller based on microintrollers89C52,Keyboard and display,Stable electric current source. The51 synthesized with HD7279,achieve the aim to control the output current.一.方案论证与比较1.电源部分(1)开关电源采用单极开关电源,由220V交流整流后,经开关电源稳压输出。
该方案的优点是电路的效率较高,可以达到70%37V时可以提供1.5A的电流,本产品要求的最大电流为2A,所以必须用两个LM317并联,但是由于并联后两个LM317工作电流负载不均衡,使电路稳定性降低。
鉴于以上原因,本设计采用了单片LM350K。
LM350K可以提供最大为5A电流,满足本设计要求,而且不存在两片芯片同时运行中所产生的不同步问题,故性能比较优良,且电路稳定性提高。
本主电路的原理是通过MCU控制D/A的输出电压大小,通过放大器放大,给电压模块作为最终输出的参考电压,真正的电压,电流还是由电压模块LM350K输出。
为了达到2A的输出电流,LM350K必须选用金属外壳封装,并且带稍大面积的散热片3.DAC0832 为了实现对输出电流的数字控制,该设计选用了DAC0832。
DAC0832是一款常用的数模有两种连接模式,一种是电压输出模式,另外一种是电流输出模式,为了设计的方便,选用电压输出模式,引脚Iout1和Iout2之间接一参考电压。
数控电源设计(程序+原理图+测试数据)目录摘要 (2)1. 方案设计、比较与论证 (3)1.1 方案设计与论证 (3)1.2 方案论证 (4)2.系统硬件电路设计 (5)2.1 电源模块 (5)2.2 数控模块 (6)2.3 稳压输出模块 (9)3. 软件设计 (11)3.1 主流程图 (11)3.2 电压步进增减流程图 (12)4. 系统测试结果 (13)4.1 测试仪器 (13)4.2 测试方法 (13)附录1:源程序 (14)摘要本系统以AT89S52高档8位单片机为核心处理器,主要控制输出电压,最后显示在LED上。
在简易数控直流电源中,通过两个按键控制电压步进增减,单片机将数值信号送到DAC0832,转换成模拟信号,经过OP-07和LF356运算放大器,在经过TIP122和TIP127构成闭环推挽输出电路,将电压输出。
AT89S51主要是控制输出电压,信号处理,LED显示。
关键字:单片机,数模转换,数控电源.简易数控直流电源设计1. 方案设计、比较与论证1.1方案设计与论证方案一:为了完成题目的所要设计的各种功能,将整个电源分成三个部分:数控部分、稳压输出部分和供电系统。
框图如图1所示:图1:方案一原理图方框图数控部分主要由数字电路构成,它要完成键盘控制,预置拔码开关输入控制、电压控制字输出,数码管显示控制、电流过流时的软件保护及报警等功能。
由于数控部分功能较多,选用了新华公司的8位单片机C8051F020。
C8051F020实现数控功能的框图如图2所示:图2: 方案一数控部分数控部分的核心是一个C8051F020最小应用系统。
用两个键盘作为输入控制,键盘接到C8051F020的P3的两个端口。
控制输出电压。
在通过LED 显示。
预置电压输入电路有8个开关组成。
接到P1口。
四个开关接到P1口的低四位,表示预置电压的整数,四个开关接到P1口的高四位,表示预置电压小数位。
电源加电时,在初始化程序中CPU 从P1口读入预置值,根据预置值输出电压控制字,实现开机预置。
成都航院第六届科技创新竞赛——作品说明书题目:数控直流电流源系 别: 电子工程系姓 名: 李海军、蔡宗斌、魏峰鼎 班 级: 20733、20835、20835 指导教师: 曾伟一、曾友州 日 期: 2009年12月数控直流电流源设计——说明书制作人:李海军、蔡宗斌、魏峰鼎成都航空职业技术学院电子工程系一、方案论证本系统主要由单片机、显示器、键盘、电压控制电流源模块、电源等组成。
1.单片机的选择对单片机的要求:只要能够方便地扩展显示器、键盘等外设即可,其他并无特殊要求。
故我们选择的是MSP430.2.显示器的选择对显示器的要求:能够显示设定的输出电流、实际输出电流等;可以用6位以上LED数码显示器、液晶显示器或者触摸屏,LED使用比较方便,但液晶显示器和触摸屏显示信息量大,且可以显示汉字,人机交互的友好性强,所以不采用数码显示器。
而液晶显示器便宜实惠故选择它。
3.键盘选择单片机输入设备通常有键盘、拨码开关、触摸液晶屏等,也可以采用红外遥控的方法进行输入。
鉴于本设计中的输入设备主要用于设定输出电流值和(采用LED 数码显示器时)切换显示内容,故不方便采用拨码开关和红外遥控,所以选择键盘和触摸液晶屏作为输入设备都是可以的。
而本产品选择的是键盘作为输入设备。
4.压控电流源电压控制的电流源模块,可采用的方案有以下三种:①功率集成运放,如OPA501、OPA541、PA05等;②运放+晶体三极管放大;③可调集成稳压模块,如LM317。
方案一:直接使用功率集成运放。
特点:使用容易、性能稳定可靠。
常用的功率集成运放一般能够输出±40V,10~15A的功率,性能指标也较高,完全能够满足本产品的要求。
功率集成运放还可以双极性输出,但本产品只需单极性输出,却需要为功率集成运放配置正负双电源。
方案二:利用三端可调直流稳压集成芯片,通过调整其输出电压来实现负载的恒流特性。
特点:直接利用稳压片提供所需功率,只需要添加相应控制电路即可实现本产品的大部分要求,但是,其电流调整率指标只能达到0.5%~0.15%,不满足题目要求,方案三:采用“运放+功率三极管”的结构构成恒流源。
数控直流电流源总体方案论证与比较方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。
本方案电路复杂,灵活性不高,效率低,不利于系统的扩展,对信号处理比较困难。
方案二:采用AT89S52单片机作为整机的控制单元,通过改变AD7543的输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电流的大小。
为了能够使系统具备检测实际输出电流值的大小,可以将电流转换成电压,并经过ADC0809进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。
此系统比较灵活,采用软件方法来解决数据的预置以及电流的步进控制,使系统硬件更加简洁,各类功能易于实现,能很好地满足题目的要求。
本方案的基本原理如图1-1-1所示。
图1-1-1 系统原理框图比较以上两种方案的优缺点,方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。
模块电路设计与比较1.恒流源方案选择方案一:采用恒流二极管或者恒流三极管,精度比较高,但这种电路能实现的恒流范围很小,只能达到十几毫安,不能达到题目的要求。
方案二:采用四端可调恒流源,这种器件靠改变外围电阻元件参数,从而使电流达到可调的目的,这种器件能够达到1~2000毫安的输出电流。
改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足题目的数控调节要求;二是通过数字电位器来改变需要的电阻参数,虽然可以达到数控的目的,但数字电位器的每一级步进电阻比较大,所以很难调节输出电流。
方案三:压控恒流源,通过改变恒流源的外围电压,利用电压的大小来控制输出电流的大小。
电压控制电路采用数控的方式,利用单片机送出数字量,经过D/A 转换转变成模拟信号,再送到大功率三极管进行放大。
单片机系统实时对输出电流进行监控,采用数字方式作为反馈调整环节,由程序控制调节功率管的输出电流恒定。
当改变负载大小时,基本上不影响电流的输出,采用这样一个闭路环节使得系统一直在设定值维持电流恒定。
课程设计任务书一、设计题目:数控直流电流源的设计与制作二、主要内容及要求1.功能与主要技术指标(1)输出电流:0∽1A步进可调,调整步距4mA;误差≤0.1mA(2)输入电压:12V;(3)显示:输出电压值用LED数码管显示;(4)电流调整:由“+”、“-”两按键分别控制输出电流的步进增减;(5)输出电流预置:输出电流可预置在0∽1A之间的任意一个值;(6)其它:自制电路工作所需的直流稳压电源,输入电压为±12V,+5V;三、进度安排任务设计2012年3月12日— 2012年3月16日练习制作2012年3月19日— 2012年3月23日数控直流电流源设计与制作一、设计任务和技术要求1、设计一个数控直流电流源2、输出电流0~1A,手动步进4mA增、减可调,误差不大于0.1mA;3、负载供电电压+12V,负载等效阻值10欧姆;4、电路应具有对负载驱动电流较好的线性控制特性;二、总体设计方案原理及结构框图数控直流电流源共有六部分组成,其中输出电流的调节是通过“+” 和“-”两个按键来操作的;步进电流精确到0.1A以手动控制可逆计数器分别作加,减计数;控制数字量为8位二进制码:~增、减变化。
可逆计数器的二进制数字输出分两路运行,一路用于驱动数字显示电路,精确显示当前输出电流值;另一路进入数模转换电路(D/A转换电路);数模转换电路将数字量按比例,转换成模拟电流,然后经过射极跟随器的控制,调整输出级,使输出稳定直流电流。
图2-1电路结构原理框图三、部分模块原理及结构图1、74LS193芯片74LS193具有同步可逆计数功能、异步清零功能、异步并行置数和保持功能。
与 是为74LS193级联时使用的。
级联时只要把低位的 端、 端分别与高位的CP U 、CP D 连接起来,各芯片的CR 端连接在一起, 端连接在一起,就可以了。
图3-1 74LS193引脚排列图和逻辑功能示意图CR 异步清零端,高电平有效; 异步置数,低电平有效;CPU 加法计数脉冲输入端,上升沿触发; CPD 减法计数脉冲输入端,上升沿触发;BO COBOCO LD LD进位脉冲输出端; 借位脉冲输出端。
电子综合实践设计文档选题:数控直流电流源组员:*************************指导老师:********目录一、设计任务与要求 (3)一、任务 (3)二、要求 (3)1、基本要求 (3)2、发挥部分 (3)三、说明 (4)二、总体设计方案 (4)一、方案比较、设计与论证 (4)1. 数控模块 (4)2. 电流源部分 (4)3. 供电电源部分 (5)三、总体设计 (6)主要单元电路设计、分析与计算 (6)1、供电模块 (6)2、数控模块和测量模块 (7)3、A/D转换器ADC0809接口 (9)4、恒流源模块 (11)5、软件设计 (12)1、软件流程图 (12)2、软件模块分析 (12)四、系统测试及整机指标 (14)五、总结与心得 (14)六、参考文献 (15)附录1 主要软件清单 (15)1、端口、地址初始化 (15)2、按键处理函数 (16)3、INT0中断初始化及中断函数 (18)附录2 总原理图 (19)附录3 元器件清单 (20)一、设计任务与要求一、任务设计并制作数控直流电流源。
输入交流200~240V ,50Hz ;输出直流电压≤10V 。
其原理示意图如下所示。
二、要求1、基本要求 (1)输出电流范围:200mA ~2000mA ;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA ;(3)具有“+”、“-”步进调整功能,步进≤10mA ;(4)改变负载电阻,输出电压在10V 以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA ;(5)纹波电流≤2mA ;(6)自制电源。
2、发挥部分(1)输出电流范围为20mA ~2000mA ,步进1mA ;(2)设计、制作测量并显示输出电流的装置 (可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V 以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA ;(4)纹波电流≤0.2mA ;(5)其他。
电子综合实践设计文档选题:数控直流电流源组员: ************************* 指导老师: ********目录一、设计任务与要求 (3)一、任务 (3)二、要求 (3)1、基本要求 (3)2、发挥部分 (3)三、说明 (4)二、总体设计方案 (4)一、方案比较、设计与论证 (4)1. 数控模块 (4)2. 电流源部分 (4)3. 供电电源部分 (5)三、总体设计 (6)主要单元电路设计、分析与计算 (6)1、供电模块 (6)2、数控模块和测量模块 (7)3、A/D转换器ADC0809接口 (9)4、恒流源模块 (11)5、软件设计 (12)1、软件流程图 (12)2、软件模块分析 (12)四、系统测试及整机指标 (14)五、总结与心得 (14)六、参考文献 (15)附录1 主要软件清单 (15)1、端口、地址初始化 (15)2、按键处理函数 (16)3、INT0中断初始化及中断函数 (18)附录2 总原理图 (19)附录3 元器件清单 (20)一、设计任务与要求一、任务设计并制作数控直流电流源。
输入交流200~240V ,50Hz ;输出直流电压≤10V 。
其原理示意图如下所示。
二、要求1、基本要求(1)输出电流范围:200mA ~2000mA ;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA ;(3)具有“+”、“-”步进调整功能,步进≤10mA ;(4)改变负载电阻,输出电压在10V 以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA ; (5)纹波电流≤2mA ; (6)自制电源。
2、发挥部分(1)输出电流范围为20mA ~2000mA ,步进1mA ;(2)设计、制作测量并显示输出电流的装置 (可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V 以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA ; (4)纹波电流≤0.2mA ; (5)其他。
键盘控制器 电流源 负载显示器电 源三、说明1、需留出输出电流和电压测量端子;2、输出电流可用高精度电流表测量;如果没有高精度电流表,可在采样电阻上测量电压换算成电流;3、纹波电流的测量可用低频毫伏表测量输出纹波电压,换算成纹波电流。
二、总体设计方案一、方案比较、设计与论证根据题目要求,数控直流电源应该包括如下模块:电流源模块、测量模块、供电模块和数控模块等。
1. 数控模块数控模块可采用传统逻辑电路组成,如采用数字电路和FPGA门阵列等,也可以采用单片机系统。
单片机系统具有灵活的接口和在线编程能力,容易实现体重有关键盘设置、显示以及测量功能等。
故本方案采用了以AT89s52单片机为核心的单片机习题完成对整个电路的控制。
2. 电流源部分在小电流输出的电流源中,可采用晶体管构成的镜像电流源、微电流源等。
本设计中要求的输出电流为200~2000mA,输出电流较大,在实现方案上常用如下三中方案。
方案一:以可调直流稳压电源为基础,如图1所示。
当R2固定时,可保证流过负载的电流恒定,通过调节R2的大小,即可以实现改变负载电流的目的。
该方案可以输出较大的电流,但难于实现数控要求。
方案二:采用基于PWM 控制的电流源,该方案采用脉冲宽度调制技术,通过改变控制脉冲的占空比实现输出电流的控制,该方案的有点是效率高,可输出的电流大。
但由于功率管工作在开关状态,因此交流纹波较高。
方案三:采用基于运算放大器和晶体管构成的电流深度反馈电路。
该方案在电路中引入了深度电流负反馈,因此可以保证输出电流具有很高的稳定性。
电流源所需要的控制电压由高精度D/A 转换器提供,易实现输出电流的小步进调节。
该方案如图2所示。
综合上述分析,电流源部分采用方案三。
3. 供电电源部分根据设计的要求,需要一个具有20V 电压、2A 以上电流输出的电流电源,对电源没有Vin VoutRR2R1RlADJ Vin图 1 可调稳压管实现恒流源D/A 转换器带有电流负反馈的直流电流源Vc单片机输出Rl电源图 2 电流负反馈的直流电流源特别的要求。
本设计采用了机遇可调三端稳压器的线性直流稳压电源。
综上所述,整个系统的硬件组成框图如图3所示。
三、总体设计主要单元电路设计、分析与计算1、供电模块线性电源虽然简单,但在整个系统中有非常重要的作用。
电路中在输出端并联了大电容、串联了电感确保输出电流纹波小。
本电源先通过变压器电压变换隔离、桥式全波整流、电容滤波,再通过三端固定输出集成稳压器产生稳定电压+12V 、-12 V 、+5V 、-5V ,稳压器内部电路由恒流源、基准电压、取样电阻、比较放大、调整管、保护电路、温度补偿电路等组成,如图4所示。
为了改善纹波特性,在输入端加接电容;为了改善负载的瞬态响应,在输出端加接电容。
输入电压选择原则是:V imax >V i >V o +2V 。
V imax 为产品允许的最大输入电压,V o 为输出电压,2V 为最小输出电压。
MCUAT89s52 单 片 机D/A 转换电路I/V 转换电路输出直流电源调整电路取样电路A/D 转换电路液晶显示电路键盘控制电路电源模块图 3 系统组成框图图4 直流电源电路20V电压、2A以上电流输出的直流电源,我们采用LM338可变输出稳压芯片。
交流输入经过电容滤波后送到三端稳压集成电路LM338的Vin端,输出端Vout =VREF(1+RW1/R1)+IADJR2。
在LM338的ADJ短加一个接地滤波电容,会使纹波抑制比大幅提高,进而提供非常稳定的电源。
2、数控模块和测量模块( 1 ) 键盘与显示电路键盘显示电路如图5所示。
用单片机作为这一控制系统的核心,单片机与键盘相连,采用4*4矩阵式键盘,用查询方式,由键盘控制输入电流值,同时也由键盘进行控制其步进调整功能。
显示器LCD选用JHD1602-B,具有体积小、质量轻、功耗低等优点,单片机四条数据线与其相连,数据分两次传送;两条控制线E、R/S控制LCD的显示。
图5(1) 4 * 4 的矩阵键盘连接到P1口图5(2)LCD1602显示电路,数据口连接到P2口,1602的控制口由P3.3~P3.5控制( 2 ) D/A、A/D机器接口电路1、根基题目要求输出电流范围为20~2000mA、步进10mA,需要至少198个状态,2n>198,n≥8,为了达到系统的控制精度,选取8位D/A。
具体电路接口如图5所示。
D/A 转换器选用DAC0832,它是并行输入可编程双路8位D/A转换器。
该器件仅有20个引脚,本系统采用DAC0832的直通工作方式。
AT89s52单片机控制它只需要9个引脚,分别是8个数据口和一个片选端,非常方便。
+5V单电源工作。
选典型参考电压+5V,输出电压公式为:V0=V REF×(n/256)其输出电压范围为:0~5V。
图6 DAC0832与MCU的连接电路电路说明:单片机执行指令dac0832=P0(dac0832为DAC0832的地址)时在ALE产生一个地址锁存信号,将P0口的数据输出到DAC0832的输入端,由于DAC0832是采用直通的方式对输入的数据进行转换,故执行完该指令后直接将P0口给定的数字量进行转换,由于DAC0832输出的是电流,且内部自带反馈电阻,故在其输出端采用LM358对电流转换成电压信号并进行放大,放大后的信号直接控制恒流源电路使其输出指定恒定的电流值。
3、A/D转换器ADC0809接口ADC0809由8路模拟开关、地址锁存与译码器、比较器、256电阻阶梯、树状开关、逐次逼近式寄存器SAR、控制电路和三态输出锁存器等组成,其逻辑框图如图6所示:图 7 ADC0809逻辑框图ADC0809主要信号引脚的功能说明如下: 1、IN 7~IN 0——模拟量输入通道2、ALE ——地址锁存允许信号。
对应ALE 上跳沿,A 、B 、C 地址状态送入地址锁存器中。
3、START ——转换启动信号。
START 上升沿时,复位ADC0809;START 下降沿时启动芯片,开始进行A/D转换;在A/D 转换期间,START 应保持 低电平。
本信号有时简写为ST.4、A 、B 、C ——地址线。
通道端口选择线,A 为低地址,C 为高地址,引脚图中为ADDA ,ADDB 和ADDC5、CLK ——时钟信号。
ADC0809的内部没有时钟电路,所需时钟信号由外界提供,因此有时钟信号引脚。
通常使用频率为500KHz 的时钟信号6、EOC ——转换结束信号。
EOC=0,正在进行转换;EOC=1,转换结束。
使用中该状态信号即可作为查询的状态标志,又可作为中断请求信号使用。
7、D 7~D 0——数据输出线。
为三态缓冲输出形式,可以和单片机的数据线直接相连。
D 0为最低位,D 7为最高8、OE ——输出允许信号。
用于控制三态输出锁存器向单片机输出转换得到的数据。
OE=0,输出数据线呈高阻;OE=1,输出转换得到的数据。
9、Vcc —— +5V 电源。
10、Vref ——参考电源参考电压用来与输入的模拟信号进行比较,作为逐次逼近的基准。
其典型值为+5V(Vref (+)=+5V, Vref (-)=-5V).电路说明:ADC0809内部有一个8位“三态输出锁存器”可以锁存A/D 转换后的数字量,故本身既可以看做一种输入设备,也可以认为是并行I/O 接口芯片。
因此ADC0809可以直接和AT89s52相连。
由图可见START 和ALE 互连可使ADC0809在接收模拟量路数地址时启动工作。
START 启动信号由AT89s52单片机WR 和译码器输出端经过或门产生。
平时START 因译码器输出高电平而封锁,当单片机执行指令adc0809= P0(adc0809为译码器输出0x0000地址)时, START上产生一个正脉冲,如图CS和WR均为低电平,启动ADC0809工作。
EOC经过反相器和INT0相连,这说明AT89s52是采用中断方式和ADC0809传送A/D转换后的数字量。
ADC0809的采用频率是采用单片机ALE端产生的固定频率经D触犯器二分频所得的频率对模拟信号进行采样。
4、恒流源模块(1)负反馈电路的分析与设计D/A输出电压作为恒流源的参考电压,运算放大器U4与晶体管Q1,Q2组成的达林顿电路构成电压跟随器。
利用晶体管平坦的输出特性即可得到横流输出。
由于跟随器是一种深度的电压负反馈,因此电流源具有较好的稳定性。
本电流源的稳定度由于0.5%。
为了提高稳定度,D/A部分的参考电压采用+5V参考电压。
R S采用大线径康铜丝制作,康铜丝温度系数很小(拼了精度为5X10-6/℃),大线径可使其温度影响减至最小。