迭代法解线性方程组的矩阵分解解释
- 格式:pdf
- 大小:119.39 KB
- 文档页数:2
数值计算与MATLAB1《数值计算与MATLAB 》第6章求解线性代数方程组和计算矩阵特征值的迭代法§1 求解线性代数方程组的迭代法§2 方阵特征值和特征向量的计算§3 矩阵一些特征参数的MATLAB计算《数值计算与MATLAB 》6.1 求解线性代数方程组的迭代法1、迭代法的基本原理如果线性方程组Ax=b的系数矩阵A非奇异,则方程组有唯一解。
把这种方程中的方阵A分解成两个矩阵之差:A=C-D若方阵C是非奇异的,把A它代入方程Ax=b中,得出 (C-D)x=b,两边左乘C-1,并令 M=C-1D,g= C-1b,移项可将方程Ax=b变换成:x=Mx+g据此便可构造出迭代公式: xk+1=Mx k+g,M=C-1D称为迭代矩阵。
《数值计算与MATLAB 》2. 雅可比(Jacobi)迭代法如果方程组Ax=b的系数矩阵A非奇异,aii≠0,若可以把A 分解成: A=D-L-U=D+(-L)+(-U),D=diag(a11,a22,…,a nn);-L是严格下三角阵;-U是严格上三角矩阵;x= D-1((L+U)x +b)=D-1(L+U)x+ D-1bx k+1=D-1((L+U)x k+b)= D-1(L+U)x k + D-1bMM=D-1(L+U)称为雅可比迭代矩阵《数值计算与MATLAB 》⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=67-4121-26-3-115-12A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=61-3-2D⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=74-1-2-1-L⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2-61-51-UM=D-1(L+U)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡7/62/3-1/6-222-1/31/2-5/21/2-《数值计算与MATLAB 》雅可比迭代公式的向量形式x k=[( x k) 1,( x k) 2, …,(x k) n]T, k=0,1,2,……,D-1=diag( , ,… ,),11a122a1nna1))((1)(11∑≠=++-=nijjijijiiikbxaaxk《数值计算与MATLAB》3. 赛德尔(Seidel)迭代法))((1)(11∑≠=++-=nijjijijiiikbxaaxkM= (D-L)-1U称为赛德尔迭代矩阵《数值计算与MATLAB 》4. 迭代法的敛散性方阵的谱半径《数值计算与MATLAB 》向量范数非负性:||x||≥0齐次性:||ax||=|a|||x||;三角不等式:||x||+||y||≥||x+y||。
数值分析第三章线性方程组解法在数值分析中,线性方程组解法是一个重要的主题。
线性方程组是由一组线性方程组成的方程组,其中未知数的次数只为一次。
线性方程组的解法包括直接解法和迭代解法两种方法。
一、直接解法1.1矩阵消元法矩阵消元法是求解线性方程组的一种常用方法。
这种方法将方程组转化为上三角矩阵,然后通过回代求解得到方程组的解。
1.2LU分解法LU分解法是将系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积,然后通过解两个三角方程组求解线性方程组。
这种方法可以减少计算量,提高计算效率。
1.3 Cholesky分解法Cholesky分解法是对称正定矩阵进行分解的一种方法。
它将系数矩阵A分解为一个下三角矩阵L和它的转置的乘积,然后通过解两个三角方程组求解线性方程组。
Cholesky分解法适用于对称正定矩阵的求解,具有较高的精度和稳定性。
二、迭代解法2.1 Jacobi迭代法Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过分解系数矩阵A为一个对角矩阵D和一个余项矩阵R,然后通过迭代更新未知数的值,直至达到一定精度要求为止。
Jacobi迭代法简单易懂,容易实现,但收敛速度较慢。
2.2 Gauss-Seidel迭代法Gauss-Seidel迭代法是一种改进的Jacobi迭代法。
它通过使用新计算出的未知数值代替旧的未知数值,达到加快收敛速度的目的。
Gauss-Seidel迭代法是一种逐步逼近法,每次更新的未知数值都会被用于下一次的计算,因此收敛速度较快。
2.3SOR迭代法SOR迭代法是一种相对于Jacobi和Gauss-Seidel迭代法更加快速的方法。
它引入了一个松弛因子,可以根据迭代的结果动态地调整未知数的值。
SOR迭代法在理论上可以收敛到线性方程组的解,而且收敛速度相对较快。
三、总结线性方程组解法是数值分析中的一个重要内容。
直接解法包括矩阵消元法、LU分解法和Cholesky分解法,可以得到线性方程组的精确解。
数值分析第三章线性方程组迭代法线性方程组是数值分析中的重要问题之一,涉及求解线性方程组的迭代法也是该领域的研究重点之一、本文将对线性方程组迭代法进行深入探讨。
线性方程组的一般形式为AX=b,其中A是一个n×n的系数矩阵,x和b是n维向量。
许多实际问题,如电路分析、结构力学、物理模拟等,都可以归结为求解线性方程组的问题。
然而,当n很大时,直接求解线性方程组的方法计算量很大,效率低下。
因此,我们需要寻找一种更高效的方法来求解线性方程组。
线性方程组迭代法是一种基于迭代思想的求解线性方程组的方法。
其基本思想是通过构造一个序列{xn},使得序列中的每一项都逼近解向量x。
通过不断迭代,可以最终得到解向量x的一个近似解。
常用的线性方程组迭代法有雅可比迭代法、高斯-赛德尔迭代法和逐次超松弛迭代法等。
雅可比迭代法是其中的一种较为简单的迭代法。
其基本思想是通过分解系数矩阵A,将线性方程组AX=b转化为x=Tx+c的形式,其中T是一个与A有关的矩阵,c是一个常向量。
然后,通过不断迭代,生成序列xn,并使序列中的每一项都逼近解向量x。
高斯-赛德尔迭代法是雅可比迭代法的改进方法。
其核心思想是利用当前迭代步骤中已经求得的近似解向量的信息。
具体而言,每次迭代时,将前一次迭代得到的近似解向量中已经计算过的分量纳入计算,以加速收敛速度。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
逐次超松弛迭代法是高斯-赛德尔迭代法的改进方法。
其核心思想在于通过引入一个松弛因子ω,将高斯-赛德尔迭代法中的每次迭代变为x[k+1]=x[k]+ω(d[k+1]-x[k])的形式,其中d[k+1]是每次迭代计算得到的近似解向量的一个更新。
逐次超松弛迭代法可以根据问题的特点调整松弛因子的值,以获得更好的收敛性。
除了以上提到的三种迭代法,还有一些其他的线性方程组迭代法,如SOR迭代法、共轭梯度法等。
这些方法都具有不同的特点和适用范围,可以根据问题的具体情况选择合适的迭代法。
线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。
道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。
迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。
2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。
迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。
Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。
实验题目:用迭代法求解方程及线性方程组。
实验问题:函数的迭代是数学研究中的一个非常重要的思想工具。
哪怕是对一个相当简单的函数进行迭代,都可以产生异常复杂的行为,并由此而衍生了一些崭新的学科分支,如分形和混沌。
同时,迭代在各种数值计算算法以及其他学科领域的诸多算法中处于核心的地位。
首先,我们来探讨利用迭代求解方程的近似解。
实验目的:1. 学会基本Mathematica 语句并用其解决实际问题。
2. 了解Mathematica 系统 。
3. 用Mathematica 解决在求方程解的迭代过程。
1.方程求解给定实数域上光滑的实值函数f(x)以及初值0x 定义数列,,1,0),(1 ==+n x f x n n (1) ,,1,0, =n x n 称为f (x )的一个迭代序列。
给定迭代函数f(x)以及一个初值0x 利用(1)迭代得到数列,,1,0, =n x n 如果数列n x 收敛于一个*x ,则有)(**x f x = (2) 即*x 是方程x=f(x)的解。
由此启发我们用如下的方法球方程g(x)=0的近似解。
将方程g(x)=0改写为等价的方程x=f(x), (3) 然后选取一初值利用(1)做迭代。
迭代数列n x 收敛的极限就是方程g(x)=0的解。
用上述方程求方程的根的一个首要问题是迭代是否收敛?经过试验我们知道,使得迭代序列收敛并尽快收敛到方程g(x)=0的某一解的条件是迭代函数f(x)在解的附近的导数的绝对值近两小。
这启发我们将迭代方程修改成x x f x h x )1()()(λλ-+== (4) 我们需要选取λ使得01)('|)('|=-+=λλx f x h得)('11x f -=λ 于是1)(')()(---=x f xx f x x h特别地,如果f(x)=g(x)+x ,则我们得到迭代公式.,1,0,)(')(1 =-=+n x x n n x g x g n n (5) 2.线性方程组的迭代求解给定一个n 元线性方程组⎪⎩⎪⎨⎧=++=++n n nn nn n n b x a x a b x a x a 111111 (6)或写成距阵的形式Ax=b, (7)其中)(ij a A =是n 阶方程,T n x x x ),,(1 = 及T n b b b ),,(1 =均为n 维列向量。
矩阵迭代法
矩阵迭代法,也称为迭代法求解线性方程组,是一种迭代计算的方法,用于求解线性方程组的近似解。
它基于将线性方程组转化为迭代格式,并通过多次迭代
逐步接近方程组的解。
矩阵迭代法的基本思想是通过不断迭代的方式,使用一个初始猜测的解来逐步逼
近真实的解。
具体步骤如下:
将线性方程组表示为矩阵形式 A * x = b,其中 A 是系数矩阵,x 是未知变
量向量,b 是常数向量。
对于初始猜测的解向量x^(0),将其代入方程组,得到 A * x^(0) = b。
根据迭代公式x^(k+1) = M * x^(k) + N,其中M 和N 是合适选择的矩阵,
k 是迭代次数。
通过多次迭代,计算x(1),x(2),x^(3),…,直到满足收敛条件(如预设的
迭代次数或达到指定的误差范围)。
最终的迭代结果x^(k) 就是线性方程组的近似解。
矩阵迭代法中,选择合适的迭代公式和迭代矩阵M、N 是关键。
常用的矩阵迭代方法包括雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法等。
需要注意的是,矩阵迭代法并不保证在所有情况下都能收敛到精确解,且其收敛速度可能较慢。
因此,在实际应用中,需要根据具体问题和矩阵特性来选择合适
的迭代方法,并进行适当的优化。