天津市和平区2018-2017届中考《矩形、菱形和正方形》专项练习含答案
- 格式:doc
- 大小:148.41 KB
- 文档页数:8
天津市和平区普通中学2019届初三数学中考复习 图形的相似 专题训练1. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE//BC.若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =122.如图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,点F 为BC 边上一点,连结AF 交DE 于点G ,则下列结论中一定正确的是( C )A.AD AB =AE ECB.AC GF =AE BDC. AG AF =AC BCD. ED AD =CB AB3. 志远要在报纸上刊登广告,一块10 cm ×5 cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A .540元B .1080元C .1620元D .1800元4. 宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形. 黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连结EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作GH⊥AD,交AD 的延长线于点H.则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH5. 在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为3,4,5的三角形按图中的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是( )A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对6. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是( )A .②③B .①②C .③④D .②③④7. 在△ABC 中,已知BD 和CE 分别是边AC ,AB 上的中线,且BD⊥CE,垂足为O ,若OD =2 cm ,OE =4 cm ,则线段AO 的长为____cm8. 如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF =∠GAC.(1)求证:△ADE∽△ABC;(2)若AD =3,AB =5,求AF AG的值. 9. 如图,在△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B ,C 重合),满足∠DEF =∠B ,且点D ,F 分别在边AB ,AC 上.(1)求证:△BDE∽△CEF;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.10. 在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC.(1)求BE 的长.(2)求BC 的长.11. 如图,E ,F 分别为矩形ABCD 的边AD ,BC 的中点,若矩形ABCD ∽矩形EABF ,AB =1.求矩形ABCD 的面积.12. 一块材料的形状是锐角三角形ABC ,边BC =120 mm ,高AD =80 mm ,把它加工成正方形零件如图1,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?13. 测量“望月阁”的高度AB ,用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记为点C ,镜子不动,小亮看着镜面上的标记,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED =1.5米,CD =2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG 的影长FH =2.5米,FG =1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度. 参考答案:1—6 BDCDA A7. 48. 证明:(1)∵AF ⊥DE ,AG ⊥BC ,∴∠AFE =90°,∠AGC =90°,∴∠AEF =90°-∠EAF ,∠C =90°-∠GAC ,又∵∠EAF =∠GAC ,∴∠AEF =∠C ,又∵∠DAE =∠BAC ,∴△ADE ∽△ABC(2)∵△ADE∽△ABC,∴∠ADE =∠B,又∵∠AFD=∠AGB=90°,∴△AFD ∽△AGB ,∴AF AG =AD AB,∵AD =3,AB =5, ∴AF AG =359. 解:(1)∵AB =AC ,∴∠B =∠C ,∵∠DEF +∠CEF =∠B +∠BDE ,∴∠CEF =∠BDE ,∴△BDE ∽△CEF(2)∵△BDE∽△CEF,∴BE CF =DE EF,∵点E 是BC 的中点, ∴BE =CE ,即CE CF =DE EF ,∴CE DE =CF EF,又∠C=∠DEF, 故△CEF∽△EDF,∴∠CFE =∠EFD,即FE 平分∠DFC10. 解:(1)延长EF 和BC ,交于点G.∵矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∴∠ABE =∠AEB=45°,∴AB =AE =9,∴直角三角形ABE 中,BE =92+92=9 2(2)又∵∠BED 的角平分线EF 与DC 交于点F ,∴∠BEG =∠DEF.∵AD∥BC,∴∠G =∠DEF,∴∠BEG =∠G,∴BG =BE =9 2.由∠G=∠DEF,∠EFD =∠GFC,可得△EFD∽△GFC,∴CG DE =CF DF =CF 2CF =12.设CG =x ,DE =2x ,则AD =9+2x =BC. ∵BG=BC +CG ,∴92=9+2x +x ,解得x =32-3,∴BC=9+2(32-3)=62+311. 解:由矩形ABCD∽矩形EABF 可得AE BA =AB BC,设AE =x , 则AD =BC =2x ,又AB =1,∴x 1=12x ,x 2=12,x =22, ∴BC =2x =2×22=2,∴S 矩形ABCD =BC×AB=2×1= 2 12. 解:(1)∵四边形EFGH 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC(2)∵矩形为正方形,∴EF ∥BC ,EG ∥AD ,设EG =EF =x ,则KD =x ,AK =80-x ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即x 120=80-x 80, 解得x =48,则正方形零件的边长是48 mm(3)设EG =KD =x ,则AK =80-x. ∵△AEF∽△ABC,∴EF BC =AK AD ,即EF 120=80-x 80,∴EF =120-32x , ∴矩形面积S =x(120-32x)=-32x 2+120x =-32(x -40)2+2 400, 故当x =40时,此时矩形的面积最大,最大面积为2 400 mm 213. 解:由题意可得∠ABC=∠EDC=∠GFH=90°,∠ACB =∠ECD,∠AFB =∠GHF,故△ABC∽△EDC,△ABF ∽△GFH ,则AB ED =BC DC ,AB GF =BF FH, 即AB 1.5=BC 2,AB 1.65=BC +182.5,解得AB =99, 则“望月阁”的高AB 的长度为99 米。
2018年数学全国中考真题矩形、菱形与正方形(试题一)解析版一、选择题1. (2018四川内江,11,3)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°【答案】D【思路分析】因为∠DFE=∠ADB+∠EBD,要求∠DFE的值,则需分别求∠ADB、∠EBD,而由矩形对边平行,及轴对称的性质可知∠EBD=∠CBD=∠ADB,利用∠ADB与∠BDC互余,即可出∠DFE的度数.【解析】解:∵四边形ABCD为矩形,∴∠ADC=90°,∵∠BDC=62°,∴∠ADB=90°-62°=28°,∵AD∥BC,∴∠ADB=∠CBD,根据题意可知∠EBD=∠CBD,∴∠ADB=∠EBD=28°,∴∠DFE=∠ADB+∠EBD=56°.故选择D.【知识点】矩形性质,等腰三角形性质,平行线性质2.(2018山东滨州,7,3分)下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【答案】D【解析】等腰梯形是一组对边平行,另一组对边相等的四边形,但等腰梯形不是平行四边形,所以A选项是假命题;对角线互相垂直且互相平分的四边形是菱形,对角线互相垂直但不互相平分的四边形不是菱形,所以B选项是假命题;对角线相等且互相平分的四边形是矩形,对角线相等但不互相平分的四边形不是矩形,所以C选项是假命题;只有选项D是真命题.【知识点】平行四边形的判定、菱形的判定、矩形的判定、正方形的判定3.(2018浙江衢州,第8题,3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()第8题图A .112°B .110°C .108°D .106°【答案】D【解析】本题考查了翻折变换(折叠问题);矩形的性质、平行线性质等知识点. 根据折叠前后角相等可知∠DGH=∠EGH ,∵∠AGE=32°,∴∠EGH=74°,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AGH=∠GHC=∠EGH+∠AGE , ∴∠GHC=106°,故选:D .【知识点】翻折变换(折叠问题);矩形的性质、平行线性质;4. (2018甘肃白银,8,3)如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置。
2018届初三数学中考复习矩形、菱形、正方形专项复习练习1.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DACC.∠BAC=∠ABD D.∠BAC=∠ADB2. 如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=( )A.5 B.4 C.3.5 D.33. 如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2 B.3 C. 3 D.2 34. 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC5. 下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )A.4个 B.3个 C.2个 D.1个6. 如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=2,BD=2,则菱形ABCD的面积为( )A.2 2 B. 2 C.6 2 D.8 27. 如图,矩形ABCD的对角线AC与BD相交于点O,C E∥BD,DE∥AC,AD=23,DE =2,则四边形OCED的面积( )A.2 3 B.4 C.4 3 D.88. 如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC 于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 39. 如图,矩形纸片ABCD中,AD=4 cm,把纸片沿直线AC折叠,点B落在点E处,AE 交DC于点O,若AO=5 cm,则AB的长为( )A.6 cm B.7 cm C.8 cm D.9 cm10. 如图,在△ABC中,点D是边BC上的点,(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形11. 如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE,将△ADE沿AE对折至△AFE,延长EF交边BC于G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是( )A.2个B.3个C.4个D.5个12. 在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为_______________________.13. 在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是___________.14. 如图,在菱形ABCD中,对角线AC=6,BD=10,则菱形ABCD的面积为_______.15. 如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是____.16. 如图,在△ABC中,∠ACB=90°,点D,E分别是BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE,AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.参考答案:1---11 CBDCC AAACD D 12. 45°或105° 13. ①③④ 14. 30 15. 2216. 解:(1)在△ABC 中,点D ,E 分别是边BC ,AB 上的中点,∴DE 是△ABC 的中位线, ∴DE ∥AC ,DE =12AC ,∵EF =2DE ,∴EF ∥AC ,EF =AC , ∴四边形ACEF 是平行四边形,∴AF =CE (2)当∠B=30°时,四边形ACEF 为菱形. 理由:在△ABC 中,∠B =30°,∠ACB =90°, ∴∠BAC =60°,AC =12AB =AE ,∴△AEC 为等边三角形,∴AC =CE , 又∵四边形ACEF 为平行四边形.∴四边形ACEF为菱形。
天津市和平区普通中学2018届初三数学中考复习 图形 专题综合练习题1. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2015秒时,点P 的坐标是( )A .(2014,0)B .(2015,-1)C .(2015,1)D .(2016,0) 2. 在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)3. 如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,按照这种移动规律移动下去,第n 次移动到点A n ,如果点A n 与原点的距离不小于20,那么n 的最小值是____.4. 已知菱形A 1B 1C 1D 1的边长为2,∠A 1B 1C 1=60°,对角线A 1C 1,B 1D 1相交于点O ,以点O 为坐标原点,分别以OA 1,OB 1所在直线为x 轴、y 轴,建立如图所示的直角坐标系,以B 1D 1为对角线作菱形B 1C 2D 1A 2∽菱形A 1B 1C 1D 1,再以A 2C 2为对角线作菱形A 2B 2C 2D 2∽菱形B 1C 2D 1A 2,再以B 2D 2为对角线作菱形B 2C 3D 2A 3∽菱形A 2B 2C 2D 2,…,按此规律继续作下去,在x 轴的正半轴上得到点A 1,A 2,A 3,…,A n ,则点A n 的坐标为__________.5. 如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n次操作结束时,被取走的所有线段长度之和为________.6. 如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为_______.7. 如图,△ABC中,∠C=90°,AC=BC=a,在△ABC中截出一个正方形A1B1C1D1,使点A1,D1分别在AC,BC边上,边B1C1在AB边上;在△BC1D1在截出第二个正方形A2B2C2D2,使点A2,D2分别在BC1,D1C1边上,边B2C2在BD1边上;…,依此方法作下去,则第n个正方形的边长为_______.8. 如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015=________.9. 如图,边长为n 的正方形OABC 的边OA ,OC 分别在x 轴和y 轴的正半轴上,A 1,A 2,A 3,…,A n -1为OA 的n 等分点,B 1,B 2,B 3,…,B n -1为CB 的n 等分点,连接A 1B 1,A 2B 2,A 3B 3,…,A n -1B n -1,分别交y =1n x 2(x≥0)于点C 1,C 2,C 3,…,C n -1,当B 25C 25=8C 25A 25时,则n =____.10. 如图,正方形ABCD 的边长为a ,在AB ,BC ,CD ,DA 边上分别取点A 1,B 1,C 1,D 1,使AA 1=BB 1=CC 1=DD 1=13a ,在边A 1B 1,B 1C 1,C 1D 1,D 1A 1上分别取点A 2,B 2,C 2,D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=13A 1B 1,….依此规律继续下去,则正方形A nB nC nD n 的面积为_______.11. 谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是____.12. 如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形I n,则I n的面积是________.13. 如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n-1的面积为_______.14. 在直角坐标系中,直线y=x+1与y轴交于点A1,按如图方式作正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,A1,A2,A3,…在直线y=x+1上,点C1,C2,C3,…在x轴上,图中阴影部分三角形的面积从左依次记为S1,S2,S3,…,S n,则S n 的值为_________.(用含n的代数式表示,n为正整数)15. 如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =12x 的图象上,从左向右第3个正方形中的一个顶点A的坐标为(27,9),阴影三角形部分的面积从左向右依次记为S 1,S 2,S 3,…,S n ,则第4个正方形的边长是______,S 3的值为________.参考答案: 1. B 2. A 3. 13 4. (3n -1,0) 5. 1-2n3n6. (2)n -17. (23)na8. 2(3)2014 9. 75 10. 5n 9n a 211.8125612. (12)2n +1ab13. 5n22n -114. 22n -315. 272 656132。
天津市和平区2018年九年级中考数学综合训练题 二1.下列运算:sin30°,0-2==ππ-,24.其中运算结果正确的个数为( ) A.4 B.3 C.2 D.12.顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A.邻边不等的平行四边形B.矩形C.正方形D.菱形3.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图. 依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人; (2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°; (3)表示“无所谓”的家长人数为40人; (4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是110. 其中正确的结论个数为( ) A.4 B.3C.2D.14.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km,则M ,C 两点间的距离为( )A.0.5kmB.0.6kmC.0.9kmD.1.2km 5.已知不等式组⎩⎨⎧<>a x x 2的解集中共有5个整数,则a 的取值范围为( ) A.7<a ≤8 B.6<a ≤7 C.7≤a <8 D.7≤a ≤8 6.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为( )B.2C.217.如图,在直角∠O 的内部有一滑动杆AB.当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动.如果滑动杆从图中AB 处滑动到A'B'处,那么滑动杆的中点C 所经过的路径是( ) A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分8.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x =-、2y x=的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变9.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成。
25 矩形菱形与正方形(含解析)一、选择题1.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质;LE:正方形的性质.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP=,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理2.(3分)(2017•潍坊)点A、C为半径是3的圆周上两点,点B为»AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.5或22B.5或23C.6或22D.6或23【考点】M4:圆心角、弧、弦的关系;L8:菱形的性质.【分析】过B作直径,连接AC交AO于E,①如图①,根据已知条件得到BD=13×2×3=2,如图②,BD=23×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为»AC的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=13×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=2,连接OD,∵CE=22-OC OE=5,∴边CD=22DE CE+=6;如图②,BD=23×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD ,∵CE=22-OC OE =8=22,∴边CD=22DE CE +=()22222+=23,故选D .【点评】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.3.(4分)(2017•怀化)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB=60°,AC=6cm ,则AB 的长是( )A .3cmB .6cmC .10cmD .12cm【考点】LB :矩形的性质.【分析】根据矩形的对角线相等且互相平分可得OA=OB=OD=OC ,由∠AOB=60°,判断出△AOB 是等边三角形,根据等边三角形的性质求出AB 即可.【解答】解:∵四边形ABCD 是矩形,∴OA=OC=OB=OD=3,∵∠AOB=60°,∴△AOB 是等边三角形,∴AB=OA=3,故选A .【点评】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质并判断出△AOB 是等边三角形是解题的关键.4.(3分)(2017•无锡)如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A .5B .6C .25D .32【考点】切线的性质;菱形的性质.【分析】如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由△AOF ∽△DBH ,可得BD OA =BHOF ,延长即可解决问题.【解答】解:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,AH=22DH AD =12,∴HB=AB ﹣AH=8,在Rt △BDH 中,BD=22BH DH +=85,设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD , ∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH , ∴BHOF BD OA =, ∴85810OF =, ∴OF=25.故选C .【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.5.(3分)(2017•内江)如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO=30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332)B .(2,332)C .(332,32)D .(32,3﹣332) 【考点】PB :翻折变换(折叠问题);D5:坐标与图形性质;LB :矩形的性质.【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D 点坐标.【解答】解:∵四边形AOBC 是矩形,∠ABO=30°,点B 的坐标为(0,33),∴AC=OB=33,∠CAB=30°,∴BC=AC•tan30°=33×33=3,∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=30°,AD=33,过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=30°,∴∠DAM=30°,∴DM=12AD=332,∴AM=33×cos30°=92,∴MO=92﹣3=32,∴点D的坐标为(32,332).故选:A.【点评】此题主要考查了翻折变换以及矩形的性质和锐角三角函数关系,正确得出∠DAM=30°是解题关键.6.(4分)(2017•宁波)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3 B.32C.13 D.4【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形;LE:正方形的性质.【分析】作辅助线,构建全等三角形,证明△EMF ≌△CMD ,则EM=CM ,利用勾股定理得:BD=2266+=62,EC=2264+=213,可得△EBG 是等腰直角三角形,分别求EM=CM 的长,利用勾股定理的逆定理可得△EMC 是等腰直角三角形,根据直角三角形斜边中线的性质得MN 的长.【解答】解:连接FM 、EM 、CM ,∵四边形ABCD 为正方形,∴∠ABC=∠BCD=∠ADC=90°,BC=CD ,∵EF ∥BC ,∴∠GFD=∠BCD=90°,EF=BC ,∴EF=BC=DC ,∵∠BDC=21∠ADC=45°, ∴△GFD 是等腰直角三角形,∵M 是DG 的中点,∴FM=DM=MG ,FM ⊥DG ,∴∠GFM=∠CDM=45°,∴△EMF ≌△CMD ,∴EM=CM ,过M 作MH ⊥CD 于H ,由勾股定理得:BD=2266+=62, EC=2264+=213,∵∠EBG=45°,∴△EBG 是等腰直角三角形,∴EG=BE=4,∴BG=42,∴DM=2∴MH=DH=1,∴CH=6﹣1=5,∴CM=EM=2251 =26,∵CE 2=EM 2+CM 2,∴∠EMC=90°,∵N 是EC 的中点,∴MN=21EC=13; 故选C .【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰直角三角形的性质和判定、直角三角形斜边中线的性质、勾股定理的逆定理,属于基础题,本题的关键是证明△EMC 是直角三角形.7.(3分)(2017•绵阳)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=23,∠AEO=120°,则FC 的长度为( )A .1B .2C .2D .3【考点】LB :矩形的性质;KD :全等三角形的判定与性质;T7:解直角三角形.【分析】先根据矩形的性质,推理得到OF=CF ,再根据Rt △BOF 求得OF 的长,即可得到CF 的长.【解答】解:∵EF ⊥BD ,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD 是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF ,又∵Rt △BOF 中,BO=12BD=12AC=3, ∴OF=tan30°×BO=1,∴CF=1,故选:A .【点评】本题主要考查了矩形的性质以及解直角三角形的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.8.(3分)(2017•南充)已知菱形的周长为45,两条对角线的和为6,则菱形的面积为( )A .2B .5C .3D .4【考点】L8:菱形的性质.【分析】由菱形的性质和勾股定理得出AO+BO=3,AO 2+BO 2=AB 2,(AO+BO )2=9,求出2AO•BO=4,即可得出答案.【解答】解:如图四边形ABCD 是菱形,AC+BD=6,∴AB=5,AC ⊥BD ,AO=21AC ,BO=21BD , ∴AO+BO=3,∴AO 2+BO 2=AB 2,(AO+BO )2=9,即AO 2+BO 2=5,AO 2+2AO•BO+BO 2=9,∴2AO•BO=4,∴菱形的面积=21AC•BD=2AO•BO=4; 故选:D .【点评】本题考查菱形的性质、勾股定理;解题的关键是记住菱形的面积公式,记住菱形的对角线互相垂直,属于中考常考题型.9.(3分)(2017•宜宾)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.245C.5 D.8916【考点】PB:翻折变换(折叠问题);LB:矩形的性质.菁优网版权所有【专题】11 :计算题;552:三角形.【分析】由ABCD为矩形,得到∠BAD为直角,且三角形BEF与三角形BAE全等,利用全等三角形对应角、对应边相等得到EF⊥BD,AE=EF,AB=BF,利用勾股定理求出BD的长,由BD﹣BF求出DF的长,在Rt△EDF中,设EF=x,表示出ED,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出DE的长.【解答】解:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C【点评】此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.10.(3分)(2017•安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为()A .6cmB .7cmC .8cmD .9cm【考点】PB :翻折变换(折叠问题);LB :矩形的性质.【分析】根据折叠前后角相等可证AO=CO ,在直角三角形ADO 中,运用勾股定理求得DO ,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC ,∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠BAC=∠ACD ,∴∠EAC=∠EAC ,∴AO=CO=5cm ,在直角三角形ADO 中,DO=22AO AD -=3cm , AB=CD=DO+CO=3+5=8cm .故选:C .【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.(3分)(2017•毕节市)如图,Rt △ABC 中,∠ACB=90°,斜边AB=9,D 为AB 的中点,F 为CD 上一点,且CF=13CD ,过点B 作BE ∥DC 交AF 的延长线于点E ,则BE 的长为( )A .6B .4C .7D .12【考点】KX :三角形中位线定理;KP :直角三角形斜边上的中线.【分析】先根据直角三角形的性质求出CD 的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt △ABC 中,∠ACB=90°,斜边AB=9,D 为AB 的中点,∴CD=12AB=4.5.∵CF=13 CD,∴DF=23CD=23×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.12.(3分)(2017•毕节市)如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFD D.△AE′F是等腰三角形【考点】R2:旋转的性质;KG:线段垂直平分线的性质;KI:等腰三角形的判定;KW:等腰直角三角形;LE:正方形的性质;S8:相似三角形的判定.【分析】由旋转的性质得到AE′=AE,∠E′AE=90°,于是得到△AEE′是等腰直角三角形,故A正确;由旋转的性质得到∠E′AD=∠BAE,由正方形的性质得到∠DAB=90°,推出∠E′AF=∠EAF,于是得到AF垂直平分EE',故B正确;根据余角的性质得到∠FE′E=∠DAF,于是得到△E′EC∽△AFD,故C正确;由于AD⊥E′F,但∠E′AD不一定等于∠DAE′,于是得到△AE′F不一定是等腰三角形,故D错误.【解答】解:∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴AE′=AE,∠E′AE=90°,∴△AEE′是等腰直角三角形,故A正确;∵将△ABE绕点A顺时针旋转90°,使点E落在点E'处,∴∠E′AD=∠BAE,∵四边形ABCD是正方形,∴∠DAB=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠E′AD+∠FAD=45°,∴∠E′AF=∠EAF,∵AE′=AE,∴AF垂直平分EE',故B正确;∵AF⊥E′E,∠ADF=90°,∴∠FE′E+∠AFD=∠AFD+∠DAF,∴∠FE′E=∠DAF,∴△E′EC∽△AFD,故C正确;∵AD⊥E′F,但∠E′AD不一定等于∠DAE′,∴△AE′F不一定是等腰三角形,故D错误;故选D.【点评】本题考查了旋转的性质,正方形的性质,相似三角形的判定,等腰直角三角形的判定,线段垂直平分线的判定,正确的识别图形是解题的关键.13.(4分)(2017•六盘水)矩形的两边长分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=5+2 B.a=4,b=5﹣2 C.a=2,b=5+1 D.a=2,b=5﹣1【考点】S3:黄金分割;LB:矩形的性质.【分析】根据黄金矩形的定义判断即可.【解答】解:∵宽与长的比是512-的矩形叫做黄金矩形,∴512ab-=,∴a=2,b=5﹣1,故选D.【点评】本题主要考查了黄金矩形,记住定义是解题的关键.14.(4分)(2017•黔东南州)如图,正方形ABCD中,E为AB中点,FE⊥AB,AF=2AE,FC交BD于O,则∠DOC的度数为()A.60°B.67.5°C.75°D.54°【考点】LE:正方形的性质.【分析】如图,连接DF、BF.如图,连接DF、BF.首先证明∠FDB=12∠FAB=30°,再证明△FAD≌△FBC,推出∠ADF=∠FCB=15°,由此即可解决问题.【解答】解:如图,连接DF、BF.∵FE⊥AB,AE=EB,∴FA=FB,∵AF=2AE,∴AF=AB=FB,∴△AFB是等边三角形,∵AF=AD=AB,∴点A是△DBF的外接圆的圆心,∴∠FDB=12∠FAB=30°,∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∠ADB=∠DBC=45°,∴∠FAD=∠FBC,∴△FAD≌△FBC,∴∠ADF=∠FCB=15°,∴∠DOC=∠OBC+∠OCB=60°.故选A.【点评】本题考查正方形的性质、全等三角形的判定和性质、圆等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助圆解决问题,属于中考选择题中的压轴题.15.(3分)(2017•海南)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是()A.14 B.16 C.18 D.20【考点】L8:菱形的性质.【分析】利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【解答】解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,4+3=5,∴BC=AB=22∴△ABC的周长=AB+BC+AC=5+5+8=18.故选:C.【点评】此题主要考查了菱形的性质、勾股定理,正确把握菱形的性质,由勾股定理求出AB是解题关键.16.(3分)(2017•河南)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【考点】L9:菱形的判定;L5:平行四边形的性质.【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A 、正确.对角线垂直的平行四边形是菱形.B 、正确.邻边相等的平行四边形是菱形.C 、错误.对角线相等的平行四边形是矩形,不一定是菱形.D 、正确.可以证明平行四边形ABCD 的邻边相等,即可判定是菱形.故选C .【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.17.(3分)(2017•河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D′处,则点C 的对应点C′的坐标为( )A .(3,1)B .(2,1)C .(1,3)D .(2,3)【考点】LE :正方形的性质;D5:坐标与图形性质;L1:多边形.【分析】由已知条件得到AD′=AD=2,AO=12AB=1,根据勾股定理得到OD ′='22AD OA -=3,于是得到结论.【解答】解:∵AD′=AD=2, AO=12AB=1, ∴OD′='22AD OA -=3,∵C′D′=2,C′D′∥AB ,∴C (2,3),故选D .【点评】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.18.(3分)(2017•东营)如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【考点】S9:相似三角形的判定与性质;KK:等边三角形的性质;LE:正方形的性质.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理19.(3分)(2017•十堰)下列命题错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.一条对角线平分一组对角的四边形是菱形D.对角线互相垂直的矩形是正方形【考点】O1:命题与定理.【分析】利用平行四边形、矩形、菱形及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:A、对角线互相平分的四边形是平行四边形,正确,不符合题意;B、对角线相等的平行四边形是矩形,正确,不符合题意;C、一条对角线平分一组对角的四边形可能是菱形或者正方形,错误,符合题意;D、对角线互相垂直的矩形是正方形,正确,不符合题意,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解平行四边形、矩形、菱形及正方形的判定定理,难度不大.20.(3分)(2017•随州10)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE 绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个B.2个C.3个D.4个【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LB:矩形的性质;MA:三角形的外接圆与外心;R2:旋转的性质.【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据当AB=BC时,四边形ABCD为正方形进行判断,即可得出当AB<BC时,AM=DE+BM 不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.【解答】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,则AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=(4﹣a)2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,MN BMAN AD<1,∴N不是AM的中点,∴点N 不是△ABM 的外心,故④错误.综上所述,正确的结论有2个,故选:B .【点评】本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.21.(3分)(2017•天门10)如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD ;②∠DBC=30°;③AE=554;④AF=25,其中正确结论的个数有( )A .1个B .2个C .3个D .4个【考点】S9:相似三角形的判定与性质;LB :矩形的性质.【分析】根据余角的性质得到∠BAE=∠ADB ,等量代换得到∠BAE=∠CAD ,故①正确;根据三角函数的定义得到tan ∠DBC=BC CD =21,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD=22CD BC =25,根据相似三角形的性质得到AE=554;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°﹣∠ACB ,推出∠EAC=2∠ACF ,根据外角的性质得到∠EAC=∠ACF+∠F ,得到∠ACF=∠F ,根据等腰三角形的判定得到AF=AC ,于是得到AF=25,故④正确.【解答】解:在矩形ABCD 中,∵∠BAD=90°,∵AE ⊥BD ,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB ,∵∠CAD=∠ADB ,∴∠BAE=∠CAD ,故①正确;∵BC=4,CD=2,∴tan ∠DBC=BC CD =21, ∴∠DBC≠30°,故②错误;∵BD=22CD BC +=25,∵AB=CD=2,AD=BC=4,∵△ABE ∽△DBA , ∴BDAB AD AE =, 即5224AE =, ∴AE=554;故③正确; ∵CF 平分∠BCD ,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB ,∵AD ∥BC ,∴∠DAC=∠BAE=∠ACB ,∴∠EAC=90°﹣2∠ACB ,∴∠EAC=2∠ACF ,∵∠EAC=∠ACF+∠F ,∴∠ACF=∠F ,∴AF=AC,∵AC=BD=25,∴AF=25,故④正确;故选C.【点评】本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.22.(3分)(2017•张家界5)如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE 的周长是6,则△ABC的周长是()A.6 B.12 C.18 D.24【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】根据线段中点的性质求出AD=A 12B、AE=12AC的长,根据三角形中位线定理求出DE=12AB,根据三角形周长公式计算即可.【解答】解:∵D、E分别是AB、AC的中点,∴AD=12AB,AE=12AC,DE=12BC,∴△ABC的周长=AB+AC+BC=2AD+2AE+2DE=2(AD+AE+DE)=2×6=12.故选B.【点评】本题考查的是三角形的中点的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.23.(3分)(2017•江西)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【考点】LN:中点四边形.【分析】连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.【解答】解:A.当E,F,G,H是各边中点,且AC=BD时,EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是各边中点,且AC⊥BD时,∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.当E,F,G,H不是各边中点时,EF∥HG,EF=HG,故四边形EFGH为平行四边形,故C正确;D.当E,F,G,H不是各边中点时,四边形EFGH可能为菱形,故D错误;故选:D.【点评】本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线之间的关系有关.24.(3分)(2017•西宁)如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD 于点M,若OM=3,BC=10,则OB的长为()A .5B .4C .342D .34 【考点】LB :矩形的性质.【分析】已知OM 是△ADC 的中位线,再结合已知条件则DC 的长可求出,所以利用勾股定理可求出AC 的长,由直角三角形斜边上中线的性质则BO 的长即可求出.【解答】解:∵四边形ABCD 是矩形,∴∠D=90°,∵O 是矩形ABCD 的对角线AC 的中点,OM ∥AB ,∴OM 是△ADC 的中位线,∴OM=3,∴DC=6,∵AD=BC=10,∴AC=22AD CD =234,∴BO=12AC=34, 故选D .【点评】本题考查了矩形的性质,勾股定理的运用,直角三角形斜边上中线的性质以及三角形的中位线的应用,解此题的关键是求出AC 的长.25. (3分)(2017•衢州)如图,矩形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .53B .35C .37D .45 【考点】PB :翻折变换(折叠问题);LB :矩形的性质.【分析】根据折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6﹣x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6﹣x )2,解方程求出x .【解答】解:∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CD AE DE CFD AFE , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6﹣x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6﹣x )2,解得x=313, 则FD=6﹣x=35. 故选:B .【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.26.(4分)(2017•台州)如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE=BF ,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的1 16时,则AEEB为()A.53B.2 C.52D.4【考点】PB:翻折变换(折叠问题);L8:菱形的性质;LB:矩形的性质.【分析】设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,得出EN=BE=y,EM=x+y,由相似的性质得出AB=4MN=4x,求出AE=AB﹣BE=4x﹣y,得出方程4x﹣y=x+y,得出x=23y,AE=53y,即可得出结论.【解答】解:设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,∴AE=EM,EN=BE=y,EM=x+y,∵当重叠部分为菱形且面积是菱形ABCD面积的116,且两个菱形相似,∴AB=4MN=4x,∴AE=AB﹣BE=4x﹣y,∴4x﹣y=x+y,解得:x=23y,∴AE=53 y,∴AEEB=53yy=53;故选:A.【点评】本题考查了折叠的性质、菱形的判定与性质、矩形的性质、相似多边形的性质等知识;熟练掌握菱形的判定与性质是解决问题的关键.27.(3分)(2017•贵港)如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB=2,则S △OMN 的最小值是21,其中正确结论的个数是( )A .2B .3C .4D .5【考点】S9:相似三角形的判定与性质;KD :全等三角形的判定与性质;LE :正方形的性质.【分析】根据正方形的性质,依次判定△CNB ≌△DMC ,△OCM ≌△OBN ,△CON ≌△DOM ,△OMN ∽△OAD ,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD 中,CD=BC ,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN ⊥DM ,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM ,又∵∠CBN=∠DCM=90°,∴△CNB ≌△DMC (ASA ),故①正确;根据△CNB ≌△DMC ,可得CM=BN ,又∵∠OCM=∠OBN=45°,OC=OB ,∴△OCM ≌△OBN (SAS ),∴OM=ON ,∠COM=∠BON ,∴∠DOC+∠COM=∠COB+∠BPN ,即∠DOM=∠CON ,又∵DO=CO ,∴△CON ≌△DOM (SAS ),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON 是等腰直角三角形,又∵△AOD 是等腰直角三角形,∴△OMN ∽△OAD ,故③正确;∵AB=BC ,CM=BN ,∴BM=AN ,又∵Rt △BMN 中,BM 2+BN 2=MN 2,∴AN 2+CM 2=MN 2,故④正确;∵△OCM ≌△OBN ,∴四边形BMON 的面积=△BOC 的面积=1,即四边形BMON 的面积是定值1,∴当△MNB 的面积最大时,△MNO 的面积最小,设BN=x=CM ,则BM=2﹣x ,∴△MNB 的面积=21x (2﹣x )=﹣21x 2+x , ∴当x=1时,△MNB 的面积有最大值21, 此时S △OMN 的最小值是1﹣21=21,故⑤正确; 综上所述,正确结论的个数是5个,故选:D .【点评】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定与性质,相似三角形的判定以及勾股定理的综合应用,解题时注意二次函数的最值的运用.28.(3分)(2017•株洲)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形【考点】LN:中点四边形;L6:平行四边形的判定;LC:矩形的判定;P3:轴对称图形.【分析】先连接AC,BD,根据EF=HG=12AC,EH=FG=12BD,可得四边形EFGH是平行四边形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形;当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,据此进行判断即可.【解答】解:连接AC,BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,∴四边形EFGH一定是中心对称图形,当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,∴四边形EFGH可能是轴对称图形,故选:C.【点评】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.29.(3分)(2017•赤峰)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB 为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.12B.14C.13D.18【考点】X5:几何概率.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=12S△BEC=14S正方形ABCD,故小明投掷飞镖一次,则飞镖落在阴影部分的概率为:14.故选:B.【点评】此题主要考查了几何概率,正确利用正方形性质得出阴影部分面积=S△CEB是解题关键.30.(2017•赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O 处,若折痕EF=23,则∠A=( )A .120°B .100°C .60°D .30°【考点】PB :翻折变换(折叠问题);L8:菱形的性质.【分析】连接AC ,根据菱形的性质得出AC ⊥BD ,根据折叠得出EF ⊥AC ,EF 平分AO ,得出EF ∥BD ,得出EF 为△ABD 的中位线,根据三角形中位线定理求出BD 的长,进而可得到BO 的长,由勾股定理可求出AO 的长,则∠ABO 可求出,继而∠BAO 的度数也可求出,再由菱形的性质可得∠A=2∠BAO .【解答】解:连接AC ,∵四边形ABCD 是菱形,∴AC ⊥BD ,∵A 沿EF 折叠与O 重合,∴EF ⊥AC ,EF 平分AO ,∵AC ⊥BD ,∴EF ∥BD ,∴E 、F 分别为AB 、AD 的中点,∴EF 为△ABD 的中位线,∴EF=BD ,∴BD=2EF=43,∴BO=23,∴AO=22AB BO =2,∴AO=12AB ,∴∠ABO=30°, ∴∠BAO=60°,∴∠BAD=120°.故选A .【点评】本题考查了折叠的性质、菱形的性质、三角形中位线定理以及勾股定理的运用;熟练掌握菱形的性质和翻折变换的性质,并能进行推理论证与计算是解决问题的关键.31.(4分)(2017•乌鲁木齐)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为43且∠AFG=60°,GE=2BG ,则折痕EF 的长为( )。
天津市2017年中考一轮《矩形》复习试卷及答案2017年中考数学一轮复习专题矩形综合复习一选择题:1.下列命题是假命题的是()A.矩形的对角线相等B.矩形的对边相等C.矩形的对角线互相平分D.矩形的对角线互相垂直2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个 C.3个D.4个3.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°4.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3B.4C.5D.75.如图,在矩形ABCD中,AB=2,BC=4,对角线AC垂直平分线分别交AD、AC于点E、O,连接CE,则CE长为()A.3B.3.5C.2.5D.2.86.如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是()A.30°B.60°C.90°D.120°7.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cmB.6cmC.8cmD.10cm8.如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少9.如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B 交线段CD于H,且BH=DH,则DH的值是()A.B.8-2 C.D.610.如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是-1,则对角线AC、BD的交点表示的数是()A.5.5B.5C.6D.6.511.如图在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=3,BC=8,则△EFM的周长是()A.21B.15C.13D.1112.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF 的长不改变D.线段EF 的长不能确定13.如图,在矩形ABCD 中,AB=2,BC=1,动点P 从点A 出发,沿路线A→B→C 做匀速运动,那么△CDP 的面积S 与点P 运动的路程x 之间的函数图象大致是()A. B. C. D.14.如图,四边形ABCD 和四边形AEFC 是两个矩形,点B 在EF 边上,若矩形ABCD 和矩形AEFC 的面积分别是S 1、S 2的大小关系是()A.S 1>S 2B.S 1=S 2C.S 1<S 2D.3S 1=2S 215.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是()A.12B.24C.12D.1616.如图,矩形ABCD 中,AE 平分∠BAD 交BC 于E,∠CAE=15°,则下列结论:△ODC 是等边三角形;②BC=2AB;③∠AOE=135°;④S △AOE =S △COE ,其中正确的结论的个数有()A.1B.2C.3D.417.如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B、C 重合),PE⊥AB 于E,PF ⊥AC 于F.则EF 的最小值为()A.4B.4.8C.5.2D.618.如图4,正方形ABCD 中,点E 在BC 的延长线上,AE 平分∠DAC,则下列结论:(1)∠E=22.50.(2)∠AFC=112.50.(3)∠ACE=1350.(4)AC=CE.(5)AD∶CE=1:.其中正确的有()A.5个B.4个C.3个D.2个19.如图,在△ABC 中,AB=6,AC=8,BC=10,P 为边BC 上一动点(且点P 不与点B、C 重合),PE⊥AB 于E,PF⊥AC 于F,M 为EF 中点.设AM 的长为x,则x 的取值范围是()A.4≥x>2.4B.4≥x≥2.4C.4>x>2.4D.4>x≥2.420.如图,矩形ABCD 中,AB=6,AD=8,顺次连结各边中点得到四边形A 1B 1C 1D 1,再顺次连结四边形A 1B 1C 1D 1各边中点得到四边形A 2B 2C 2D 2…,依此类推,则四边形A 7B 7C 7D 7的周长为()A.14B.10C.5D.2.5二填空题:21.如图,矩形A BCD 中,点E 在线段AD 延长线上,AD=DE,连接BE 与DC 相交于点F,连接AF,请从图中找出一个等腰三角形.22.如图,在矩形ABCD 中,AB=5cm,且∠BOC=120°,则AC 的长为____________;23.如图矩形ABCD中,AB=8㎝,CB=4㎝,E是DC的中点,BF=BC,则四边形DBFE的面积为______________。24.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA、PR的中点.如果DR=3,AD=4,则EF的长为________.25.如图,O为矩形ABCD的中心,将直角三角板的直角顶点与O点重合,转动三角板使两直角边始终与BC、AB相交,交点分别为M、N.如果AB=4,AD=6,OM=x,ON=y,则y与x的函数关系式是.26.如图,矩形ABCD的边长AB=8,AD=4,若将△DCB沿BD所在直线翻折,点C落在点F处,DF与AB交于点E.则cos∠ADE=.27.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4cm,则四边形CODE的周长为28.如图,将矩形纸片ABC(D)折叠,使点(D)与点B重合,点C落在点处,折痕为EF,若,那么的度数为度.29.如图,矩形ABCD中,AD=4,∠CAB=30o,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是30.小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为.三简答题:31.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.32.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.33.长为1,宽为a的矩形纸片(<a<1),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作终止.(I)第二次操作时,剪下的正方形的边长为;(Ⅱ)当n=3时,a的值为.(用含a的式子表示)34.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.35.如图,在矩形OABC 中,点A、C 的坐标分别为(10,0),(0,2),点D 是线段BC 上的动点(与端点B、C 不重合),过点D 作直线交线段OA 于点E.(1)矩形OABC 的周长是;(2)连结OD,当OD=DE 时,求的值;(3)若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 重叠部分的面积是否会随着E 点位置的变化而变化,若不变,求出该重叠部分的面积;若改变,请说明理由.36.如图,长方形ABCD,AB=9,AD=4.E 为CD 边上一点,CE=6.(1)求AE 的长.(2)点P 从点B 出发,以每秒1个单位的速度沿着边BA 向终点A 运动,连接PE.设点P 运动的时间为t 秒,则当t 为何值时,△PAE 为等腰三角形?37.长方形ABCD中,AD=10,AB=8,将长方形ABCD折叠,折痕为EF(1)当A′与B重合时(如图1),EF=;(2)当直线EF过点D时(如图2),点A的对应点A′落在线段BC上,求线段EF的长;(3)如图3,点A的对应点A′落在线段BC上,E点在线段AB上,同时F点也在线段AD上,则A′在BC上的运动距离是;38.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.39.如图1,矩形ABCD中,AB=6,BC=8,点E、F分别是BC、CD边上的点,且AE⊥EF,BE=2,(1)求证:AE=EF;(2)延长EF交矩形∠BCD的外角平分线C P于点P(图2),试求AE与EP的数量关系;40.如图,把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为10cm,求长方形ABCD的面积.参考答案1、D2、A3、A4、A5、C6、C7、A8、C9、C10、A11、D12、C13、A14、B15、D16、C17、B18、A.19、D;20、D21、△AFB或△AFE,22、10cm;23、10㎝2;24、2.5;25、26、27、8cm28、125º29、30、31、证明:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB.又∵AD=AE,∴△ADF≌△EAB(AAS).∴DF=AB.又∵AB=DC,∴DF=DC.32、【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,∵在△DMO和△BNO中,,∴△DMO≌△BNO(AAS),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,所以MD长为5.33、【解答】解:由题意,可知当<a<1时,第一次操作后剩下的矩形的长为a,宽为1﹣a,所以第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1.故答案为:1﹣a;此时,分两种情况:①如果1﹣a>2a﹣1,即a<,那么第三次操作时正方形的边长为2a﹣1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1﹣a,即2a﹣1=(1﹣a)﹣(2a﹣1),解得a=;②如果1﹣a<2a﹣1,即a>,那么第三次操作时正方形的边长为1﹣a.则1﹣a=(2a﹣1)﹣(1﹣a),解得a=.故答案为:或.34、(1)证明:∵CF平分∠ACD,且MN∥BD,∴∠ACF=∠FCD=∠CFO.∴OF=OC.同理:OC=OE.∴OE=OF.(2)由(1)知:OF=OC,OC=OE,∴∠OCF=∠OFC,∠OCE=∠OEC.∴∠OCF+∠OCE=∠OFC+∠OEC.而∠OCF+∠OCE+∠OFC+∠OEC=180°,∴∠ECF=∠OCF+∠OCE=90°.∴EF===13.∴OC=EF=.(3)连接AE、AF.当点O移动到AC中点时,四边形AECF为矩形.理由如下:由(1)知OE=OF,当点O 移动到AC 中点时,有OA=OC,∴四边形AECF 为平行四边形.又∵∠ECF=90°,∴四边形AECF 为矩形.35、(1)24(2)∵OC=2OA=10∴D(2-4,2),E(2,0)∵OD=DE ∴OE=2CD 2=2(2-4)∴=4(3)设O 1A 1与CB 相交于点M,OA 与C 1B 1相交于点N,则矩形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积即为四边形DNEM 的面积.由题意知,DM∥NE,DN∥ME,∴四边形DNEM 为平行四边形根据轴对称知,∠MED=∠NED∵DM∥NE ∴∠MDE=∠NED∴∠MED=∠MDE ∴MD=ME ∴平行四边形DNEM 为菱形过点D 作DH⊥OA,垂足为H,∴DH=2设菱形DNEM 的边长为,∴HN=HE-NE=OE-OH-NE=4-,在RT△DHN 中,解得∴菱形DNEM 的面积=NE·DH=5∴矩形O 1A 1B 1C 1与矩形OABC 重叠部分的面积不会随着点E 位置的变化而变化,面积始终为5.36、(1)在长方形ABCD 中,∠D =90°,CD =AB =9在Rt△ADE 中,DE =9-6=3,AD =4,∴AE =5(2)若△PAE 为等腰三角形,则有三种可能.当EP =EA 时,AP =6,∴t =BP =3当AP =AE 时,则9-t =5,∴t =4当PE =PA 时,则(6-t )2+42=(9-t )2,∴t =综上所述,符合要求的t 值为3或4或.37、1)EF =10(2)5(3)438、【解答】解:(1)△AED≌△CEB′证明:∵四边形ABCD 为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE 中,AD===4,延长HP 交AB 于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.39、(1)∵AE⊥EF,∴∠BEA+∠CEF=90°。
2017年全国中考数学真题分类矩形、菱形与正方形选择题一、选择题1. (2017四川广安,8,3分)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形 定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分 A .4B .3C .2D .1答案:C ,解析:根据菱形的判定定理,四边相等的四边形一定是菱形,故①正确;由于矩形的对角线相等,根据三角形的中位线定理,可得顺次连接矩形各边中点所得四边形的四边都相等,由此可判定所得四边形是菱形,故②错误;对角线相等的平行四边形是矩形,故选项③错误;平行四边形是中心对称图形,根据中心对称图形的性质,经过对称中心的任意一条直线都把它分成两个全等形,面积当然相等,所以经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,故④正确;综上所述,正确的说法有2个.故选C .2. (2017浙江丽水·7·3分)如图,在□ABCD 中,连结AC ,∠ABC =∠CAD =450,AB =2,则BC的长是( ) A .2B .2C .22D .4答案:C .解析:∵□ABCD ,∴AD ∥BC ,∴∠DAC =∠ACB =45°=∠ABC ,∴∠BAC =90°,AB =AC =2,由勾股定理得BC =2282222==+,选C .3. (2017山东枣庄7,3分)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,抓痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为A.2B . 3C .2D .1FMND CA BE答案:B ,解析:∵四边形ABCD 为正方形,AB =2,过点B 折叠纸片,使点A 落在MN 上的点F 处,∴FB =AB =2,BM =1,在Rt △BMF 中,FM =2222213BF BM -=-=,故选B .4. (2017四川泸州,10,3分)如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23答案:A ,解析:∵AD ∥BC ,BE =CE , ∴BE :AD =BF :FD =EF :AF =1:2. 设EF =a ,则AF =2a . ∵△BEF ∽△AEB , ∴BE :AE =EF :BE , ∴BE 2=EF ·AE =3x 2,∴BE = 3 错误!未找到引用源。
天津市和平区普通中学2018届初三数学中考复习矩形、菱形和正方形专项复习练习1.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC 于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 32.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④3. 关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形4. 如图,在菱形ABCD中,过点D做DE⊥AB于点E,做DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.5. 如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500 m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100 m,求小聪行走的路程.6. 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.7. 如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB,外角∠ACD的平分线于点E,F.(1)若CE=8,CF=6,求OC的长;(2)连结AE,AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.8. 如图,在▱ABCD中,BC=2AB=4,点E,F分别是BC,AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.9. 已知菱形的周长为45,两条对角线的和为6,求菱形的面积.10. 如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6 cm,∠ABC=60°.(1)试判断四边形EFGH的类型,并证明你的结论;(2)求四边形EFGH的面积.11. 如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G 为CD 的中点,求HGGF 的值.12. 已知正方形的对角线AC ,BD 相交于点O .(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH ,交CE 于点F ,交OC 于点G .若OE =OG . ①求证:∠ODG =∠OCE ; ②当AB =1时,求HC 的长.答案与解析: 1. A 2. B【解析】当▱ABCD 的面积最大时,四边形ABCD 为矩形,得出∠A =∠B =∠C =∠D =90°,AC =BD ,根据勾股定理求出AC =32+42=5,①正确,②正确,④正确;③不正确;故选B. 3. C4. 解:(1) ∵四边形ABCD 是菱形,∴AD =CD ,∠A =∠C ,∵DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =90°,∴△ADE ≌△CDF(2) ∵四边形ABCD 是菱形,∴AB =CB ,∵△ADE ≌△CDF ,∴AE =CF ,∴BE =BF ,∴∠BEF =∠BFE5. 解:小敏走的路程为AB +AG +GE =1500+(AG +GE)=3100,则AG +GE =1600 m , 小聪走的路程为BA +AD +DE +EF =3000+(DE +EF).连结CG ,在正方形ABCD 中,∠ADG =∠CDG=45°,AD =CD ,在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG,DG =DG ,∴△ADG ≌△CDG ,∴AG =CG.又∵GE⊥CD,GF⊥BC,∠BCD =90°,∴四边形GECF 是矩形,∴CG =EF.又∵∠CDG=45°,∴DE =GE ,∴小聪走的路程为BA +AD +DE +EF =3000+(GE +AG)=3000+1600=4600 m 6. 解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD=180°,∵∠ABC ∶∠BAD =1∶2,∴∠ABC =60°,∴∠DBC =12∠ABC=30°,则tan ∠DBC =tan30°=33(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形 【解析】(1)由四边形ABCD 是菱形,得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠DBC 的度数;(2)由四边形ABCD 是菱形,得到对角线互相垂直,即∠BOC =90°,利用有一个角为直角的平行四边形是矩形即可得证. 7. 解:(1)∵EF 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠OCE =∠BCE,∠OCF =∠DCF,∵EF ∥BC ,∴∠OEC =∠BCE,∠OFC =∠DCF,∴∠OEC =∠OCE,∠OFC =∠OCF,∴OE =OC ,OF =OC ,∴OE =OF ;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF =90°,在Rt △CEF 中,由勾股定理得:EF =CE 2+CF 2=10,∴OC =OE =12EF =5(2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下: 连结AE ,AF ,当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形【解析】(1)根据平行线的性质以及角平分线的性质得出∠OEC =∠OCE ,∠OFC =∠OCF ,证出OE =OC =OF ,∠ECF =90°,由勾股定理求出EF ,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.8. 解:(1)∵▱ABCD ,∴AB =CD ,BC =AD ,∠ABC =∠CDA.又∵BE=EC =12BC ,AF =DF =12AD ,∴BE =DF.∴△ABE ≌△CDF (2)∵四边形AECF 为菱形,∴AE =EC.又∵点E 是边BC 的中点,∴BE =EC ,即BE =AE.又BC =2AB =4,∴AB =12BC =BE ,∴AB =BE =AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为2×sin60°=3,∴菱形AECF 的面积为2 39. 解:四边形ABCD 是菱形,AC +BD =6,∴AB =5,AC ⊥BD ,AO =12AC ,BO =12BD ,∴AO +BO =3,∴AO 2+BO 2=AB 2,(AO +BO)2=9,即AO 2+BO 2=5,AO 2+2AO·BO+BO 2=9,∴2AO ·BO =4,∴菱形的面积是12AC·BD=2AO·BO=4【解析】根据菱形对角线互相垂直,利用勾股定理转化为两条对角线的关系式求解. 10. 解:(1)连结AC ,BD ,相交于点O ,∵E ,F ,G ,H 分别是菱形四边上的中点,∴EH =12BD =FG ,EH ∥BD ∥FG ,EF =12AC =HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形 (2)∵四边形ABCD 是菱形,∠ABC =60°,∴∠ABO =30°,∵AC ⊥BD ,∴∠AOB =90°,∴AO =12AB =3,∴AC=6,在Rt △AOB 中,由勾股定理得OB =AB 2-OA 2=33,∴BD =63,∵EH =12BD ,EF =12AC ,∴EH =33,EF =3,∴矩形EFGH 的面积=EF·FG=9 3 cm 211. 解:(1)∵BF⊥DE,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF,∴∠CBG =∠CDE,在△BCG 与△DCE 中,∵∠CBG =∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA),∴BG =DE(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG≌△DCE(ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH HG =21,∴BH =253,GH =53,∴HG GF =53【解析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG =5,易证△ABH∽△CGH,所以BHHG=2,从而可求出HG 的长度,进而求出HGGF 的值.12. 解:(1) ∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°.∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE.∴△ODG ≌△OCE(ASA),∴OE =OG(2)①∵OD =OC ,∠DOG =∠COE=90°,又OE =OG ,∴DOG ≌COE(SAS),∴∠ODG =∠OCE②设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC=∠ACB =45°,∵EH⊥BC,∴∠BEH =∠EBH=45°.∴EH =BH =1-x.∵∠ODG=∠OCE,∴∠BDC -∠ODG=∠ACB-∠OCE.∴∠HDC=∠ECH.∵EH⊥BC,∴∠EHC =∠HCD=90°.∴△CHE ∽△DCH.∴EH HC =HC CD . ∴HC 2=EH·CD,得x 2+x -1=0.解得x 1=5-12,x 2=-5-12(舍去).∴HC=5-12。
天津市和平区普通中学2018届初三数学中考复习矩形、菱形和正方形专项复习练习1.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC 于E,F两点.若AC=23,∠AEO=120°,则FC的长度为( )A.1 B.2 C. 2 D. 32.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有( )①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④3. 关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形4. 如图,在菱形ABCD中,过点D做DE⊥AB于点E,做DF⊥BC于点F,连结EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.5. 如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500 m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100 m,求小聪行走的路程.6. 如图,菱形ABCD的对角线AC与BD交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.7. 如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB,外角∠ACD的平分线于点E,F.(1)若CE=8,CF=6,求OC的长;(2)连结AE,AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.8. 如图,在▱ABCD中,BC=2AB=4,点E,F分别是BC,AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.9. 已知菱形的周长为45,两条对角线的和为6,求菱形的面积.10. 如图,已知E,F,G,H分别为菱形ABCD四边的中点,AB=6 cm,∠ABC=60°.(1)试判断四边形EFGH的类型,并证明你的结论;(2)求四边形EFGH的面积.11. 如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.(1)求证:BG=DE;(2)若点G 为CD 的中点,求HGGF 的值.12. 已知正方形的对角线AC ,BD 相交于点O .(1)如图1,E ,G 分别是OB ,OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH ,交CE 于点F ,交OC 于点G .若OE =OG . ①求证:∠ODG =∠OCE ; ②当AB =1时,求HC 的长.答案与解析: 1. A 2. B【解析】当▱ABCD 的面积最大时,四边形ABCD 为矩形,得出∠A =∠B =∠C =∠D =90°,AC =BD ,根据勾股定理求出AC =32+42=5,①正确,②正确,④正确;③不正确;故选B. 3. C4. 解:(1) ∵四边形ABCD 是菱形,∴AD =CD ,∠A =∠C ,∵DE ⊥AB ,DF ⊥BC ,∴∠AED =∠CFD =90°,∴△ADE ≌△CDF(2) ∵四边形ABCD 是菱形,∴AB =CB ,∵△ADE ≌△CDF ,∴AE =CF ,∴BE =BF ,∴∠BEF =∠BFE5. 解:小敏走的路程为AB +AG +GE =1500+(AG +GE)=3100,则AG +GE =1600 m , 小聪走的路程为BA +AD +DE +EF =3000+(DE +EF).连结CG ,在正方形ABCD 中,∠ADG =∠CDG=45°,AD =CD ,在△ADG 和△CDG 中,∵AD =CD ,∠ADG =∠CDG,DG =DG ,∴△ADG ≌△CDG ,∴AG =CG.又∵GE⊥CD,GF⊥BC,∠BCD =90°,∴四边形GECF 是矩形,∴CG =EF.又∵∠CDG=45°,∴DE =GE ,∴小聪走的路程为BA +AD +DE +EF =3000+(GE +AG)=3000+1600=4600 m 6. 解:(1)∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC,∴∠ABC +∠BAD=180°,∵∠ABC ∶∠BAD =1∶2,∴∠ABC =60°,∴∠DBC =12∠ABC=30°,则tan ∠DBC =tan30°=33(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形 【解析】(1)由四边形ABCD 是菱形,得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠DBC 的度数;(2)由四边形ABCD 是菱形,得到对角线互相垂直,即∠BOC =90°,利用有一个角为直角的平行四边形是矩形即可得证. 7. 解:(1)∵EF 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠OCE =∠BCE,∠OCF =∠DCF,∵EF ∥BC ,∴∠OEC =∠BCE,∠OFC =∠DCF,∴∠OEC =∠OCE,∠OFC =∠OCF,∴OE =OC ,OF =OC ,∴OE =OF ;∵∠OCE+∠BCE+∠OCF+∠DCF=180°,∴∠ECF =90°,在Rt △CEF 中,由勾股定理得:EF =CE 2+CF 2=10,∴OC =OE =12EF =5(2)当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形.理由如下: 连结AE ,AF ,当O 为AC 的中点时,AO =CO ,∵EO =FO ,∴四边形AECF 是平行四边形,∵∠ECF =90°,∴平行四边形AECF 是矩形【解析】(1)根据平行线的性质以及角平分线的性质得出∠OEC =∠OCE ,∠OFC =∠OCF ,证出OE =OC =OF ,∠ECF =90°,由勾股定理求出EF ,即可得出答案;(2)根据平行四边形的判定以及矩形的判定得出即可.8. 解:(1)∵▱ABCD ,∴AB =CD ,BC =AD ,∠ABC =∠CDA.又∵BE=EC =12BC ,AF =DF =12AD ,∴BE =DF.∴△ABE ≌△CDF (2)∵四边形AECF 为菱形,∴AE =EC.又∵点E 是边BC 的中点,∴BE =EC ,即BE =AE.又BC =2AB =4,∴AB =12BC =BE ,∴AB =BE =AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高为2×sin60°=3,∴菱形AECF 的面积为2 39. 解:四边形ABCD 是菱形,AC +BD =6,∴AB =5,AC ⊥BD ,AO =12AC ,BO =12BD ,∴AO +BO =3,∴AO 2+BO 2=AB 2,(AO +BO)2=9,即AO 2+BO 2=5,AO 2+2AO·BO+BO 2=9,∴2AO ·BO =4,∴菱形的面积是12AC·BD=2AO·BO=4【解析】根据菱形对角线互相垂直,利用勾股定理转化为两条对角线的关系式求解. 10. 解:(1)连结AC ,BD ,相交于点O ,∵E ,F ,G ,H 分别是菱形四边上的中点,∴EH =12BD =FG ,EH ∥BD ∥FG ,EF =12AC =HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形 (2)∵四边形ABCD 是菱形,∠ABC =60°,∴∠ABO =30°,∵AC ⊥BD ,∴∠AOB =90°,∴AO =12AB =3,∴AC=6,在Rt △AOB 中,由勾股定理得OB =AB 2-OA 2=33,∴BD =63,∵EH =12BD ,EF =12AC ,∴EH =33,EF =3,∴矩形EFGH 的面积=EF·FG=9 3 cm 211. 解:(1)∵BF⊥DE,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF,∴∠CBG =∠CDE,在△BCG 与△DCE 中,∵∠CBG =∠CDE,BC =CD ,∠BCG =∠DCE,∴△BCG ≌△DCE(ASA),∴BG =DE(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG≌△DCE(ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH HG =21,∴BH =253,GH =53,∴HG GF =53【解析】(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG =DE ;(2)设CG =1,从而知CG =CE =1,由勾股定理可知:DE =BG =5,易证△ABH∽△CGH,所以BHHG=2,从而可求出HG 的长度,进而求出HGGF 的值.12. 解:(1) ∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°.∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE.∴△ODG ≌△OCE(ASA),∴OE =OG(2)①∵OD =OC ,∠DOG =∠COE=90°,又OE =OG ,∴DOG ≌COE(SAS),∴∠ODG =∠OCE②设CH =x ,∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC=∠ACB =45°,∵EH⊥BC,∴∠BEH =∠EBH=45°.∴EH =BH =1-x.∵∠ODG=∠OCE,∴∠BDC -∠ODG=∠ACB-∠OCE.∴∠HDC=∠ECH.∵EH⊥BC,∴∠EHC =∠HCD=90°.∴△CHE ∽△DCH.∴EH HC =HC CD . ∴HC 2=EH·CD,得x 2+x -1=0.解得x 1=5-12,x 2=-5-12(舍去).∴HC=5-12。