2011年广州市高二数学学业水平测试题(附答案)
- 格式:doc
- 大小:948.00 KB
- 文档页数:13
12011年广州市普通高中毕业班综合测试(二)数学(理科)一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i z a b =+(),a b ∈R 的虚部记作()Im z b =,则1Im 2i ⎛⎫=⎪+⎝⎭A .13B .25C .13-D .15-2.已知全集{}1,2,3,4,5,6,7U A B == ,(){}2,4,6U A B = ð,则集合B =A .{}2,4,6B .{}1,3,5C .{}1,3,5,7D .{}1,2,3,4,5,6,7 3.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为A .73B .53C .5D .34.已知函数()()32120f x x ax xa a =++>,则()2f 的最小值为A. B .16 C .288a a++D .1128a a++5.已知()1sin cos f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,n ∈*N ,则()2011f x =A .sin cos x x --B .sin cos x x -C .sin cos x x -+D .sin cos x x + 6.一条光线沿直线220x y -+=入射到直线50x y +-=后反射,则反射光线所在的直线方程为A .260x y +-=B .270x y -+=C .30x y -+=D .290x y +-= 7.三个共面向量a 、b 、c 两两所成的角相等,且1=a ,2=b ,3=c ,则a +b +c 等于AB .6 C. 6D .3或68.正方形A B C D 的边长为2,点E 、F 分别在边A B 、B C 上,且1A E =,12B F =,将此正方形沿D E 、D F 折起,使点A 、C 重合于点P ,则三棱锥P D EF -的体积是A .13B.6C.9D .3二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)29.已知函数()sin 6f x x πω⎛⎫=+⎪⎝⎭()0ω>,若函数()f x 图象上的一个对称中心到对称轴的距离的最小值为3π,则ω的值为 .10.已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()32f x x x =-,则当0x >时,()f x 的解析式为 .11.若1223211C 3C 3C 3C385n n n nn n n---+++++= ,则 n 的值为 . 12.如图1为某质点在4秒钟内作直线运动时,速度函数()v v t =的图象,则该质点运动的总路程s = 厘米.13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯三种,其中34⨯是这三种分解中,两数差的绝对值最小的,我们称34⨯为12的最佳分解.当()*,p q p q p q ⨯≤∈N且是正整数n 的最佳分解时,我们规定函数()p f n q=,例如()3124f =.关于函数()f n 有下列叙述:①()177f =,②()3248f =,③()4287f =,④()914416f =.其中正确的序号为 (填入所有正确的序号).(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)在梯形A B C D 中,AD BC ,2AD =,5B C =,点E 、F 分别在A B 、C D 上,且EF AD ,若34A E E B=,则E F 的长为 .15.(坐标系与参数方程选做题)设点A 的极坐标为2,6π⎛⎫⎪⎝⎭,直线l 过点A 且与极轴所成的角为3π,则直线l 的极坐标...方程为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度; (2)求sin α的值.17.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆图160ABC东南西北 α3能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.力为中等或中等以上的概率为25.(1)试确定a 、b 的值;(2)从40人中任意抽取3人,求其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率;(3)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的数学期望E ξ. 18.(本小题满分14分)一个几何体是由圆柱11AD D A 和三棱锥E A B C -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中EA ABC ⊥平面, AB AC ⊥,A B A C =,2A E =.(1)求证:A C B D ⊥;(2)求二面角A B D C --的平面角的大小.19.(本小题满分14分)已知数列{}n a 的前n 项和()12nn n a S +=,且11a =.(1)求数列{a n }的通项公式;(2)令ln n n b a =,是否存在k (2,k k *≥∈N ),使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由.AODE正(主)视图 E A侧(左)视图A 1 D 1A D 1A 1E BCOD 图3420.(本小题满分14分) 已知双曲线C :()222210x y a b ab-=>>和圆O :222x y b +=(其中原点O 为圆心),过双曲线C 上一点()00,P x y 引圆O 的两条切线,切点分别为A 、B .(1)若双曲线C 上存在点P ,使得90APB ∠= ,求双曲线离心率e 的取值范围; (2)求直线A B 的方程;(3)求三角形O A B 面积的最大值.21.(本小题满分14分)已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线斜率为3. (1)求实数a 的值; (2)若k ∈Z ,且()1f x k x <-对任意1x >恒成立,求k 的最大值;(3)当4n m >≥时,证明()()mnn m m n nm >.参考答案一、选择题:二、填空题: 9.3210.()32f x x x =-- 11.4 12.11 13.①③ 14.23715.sin 13πρθ⎛⎫-=⎪⎝⎭或cos 16πρθ⎛⎫+= ⎪⎝⎭或4sin 13πρθ⎛⎫-= ⎪⎝⎭cos sin 20θρθ--=三、解答题:16.解:(1)依题意,120BAC ∠=,12AB =,10220A C =⨯=,B C A α∠=.在△ABC 中,由余弦定理,得2222cos BC AB AC AB AC BAC =+-⨯⨯∠60ABC东南西北 α522122021220cos120784=+-⨯⨯⨯=. 解得28B C =.所以渔船甲的速度为142B C =海里/小时.答:渔船甲的速度为14海里/小时.(2)方法1:在△ABC 中,因为12AB =,120BAC ∠= ,28B C =,B C A α∠=,由正弦定理,得sin sin 120A B B C α=.即12sin 1202sin 2814AB BCα⨯===. 答:sin α14方法2:在△ABC 中,因为12AB =,20AC =,28B C =,B C A α∠=,由余弦定理,得222cos 2AC BC ABAC BCα+-=⨯.即22220281213c o s 2202814α+-==⨯⨯.因为α为锐角,所以sin α===14. 答:sin α1417.解:(1)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有()10a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==,解得6a =.所以40(32)40382b a =-+=-=.答:a 的值为6,b 的值为2.(2)由表格数据可知,具有听觉记忆能力或视觉记忆能力超常的学生共有8人.方法1:记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B ,则“没有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B ,所以332340C 124123()1()11C247247P B P B =-=-=-=.答:从这40人中任意抽取3人,其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率为123247.方法2:记“至少有一位具有听觉记忆能力或视觉记忆能力超常的学生”为事件B , 所以()122138328328340C C C C C 123C247P B ++==.答:从这40人中任意抽取3人,其中至少有一位具有听觉记忆能力或视觉记忆能力超常的学生的概率为123247.6(3)由于从40位学生中任意抽取3位的结果数为340C ,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为32416C C k k -,所以从40位学生中任意抽取3位,其中恰有k 位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为32416340C C ()Ck kP k ξ-==,()0,1,2,3k =.ξ的可能取值为0,1,2,3,因为032416340C C 14(0)C247P ξ===, 122416340C C 72(1)C247P ξ===,212416340C C 552(2)C 1235P ξ===,32416340C C 253(3)C 1235P ξ===. 所以ξ的分布列为0E ξ=⨯142471+⨯722472+⨯55212353+⨯25312352223912355==.答:随机变量ξ的数学期望为95.18.方法1:(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以E A A C ⊥,即E D A C ⊥. 又因为AC AB ⊥,AB ED A = ,所以A C ⊥平面EBD .因为BD EBD ⊂平面,所以A C B D ⊥. (2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以B C 为圆O 的直径.设圆O 的半径为r ,圆柱高为h ,根据正(主)视图、侧(左)视图的面积可得12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩解得2,2.r h =⎧⎨=⎩所以4B C =,AB AC ==过点C 作C H BD ⊥于点H ,连接A H ,由(1)知,A C B D ⊥,AC CH C = ,所以B D ⊥平面A C H .因为AH ⊂平面A C H ,所以BD AH ⊥.所以A H C ∠为二面角A B D C --的平面角.由(1)知,A C ⊥平面ABD ,AH ⊂平面ABD ,所以A C A H ⊥,即△C A H 为直角三角形.在R t △BAD 中,AB =2AD =,则BD ==AB AD BD AH ⨯=⨯,解得3AH =.因为tan A C AH C A H∠==A H C ∠60=.所以二面角A B D C --的平面角大小AD 1A 1EBCO D7为60 .方法2:(1)证明:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以B C 为圆O 的直径. 设圆O 的半径为r ,圆柱高为h ,根据正(主)视图、侧(左)视图的面积可得, 12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩解得2,2.r h =⎧⎨=⎩所以4B C =,AB AC ==以点D 为原点,1DD 、D E 所在的射线分别为x 轴、z 轴建立如图的空间直角坐标系D xyz -,则()0,0,0D ,()14,0,0D ,()0,0,2A ,()2,2,2B ,()2,2,2C -,()2,2,0AC =- ,()2,2,2DB =.因为()()2,2,02,2,20A CD B =-=,所以A C D B⊥.所以A C B D ⊥.(2)解:设(),,x y z =n 是平面BC D 的法向量,因为()0,4,0BC =-,所以0,0.B C D B ⎧=⎪⎨=⎪⎩n n 即40,2220.y x y z -=⎧⎨++=⎩ 取1z =-,则()1,0,1=-n 是平面B C D 的一个法向量.由(1)知,A C B D ⊥,又AC AB ⊥,AB BD B = ,所以A C ⊥平面ABD .所以()2,2,0AC =-是平面ABD 的一个法向量.因为1cos ,2ACAC AC⋅===⋅ n n n ,所以,60AC =n .而,ACn 等于二面角A B D C --的平面角,所以二面角A B D C --的平面角大小为60 .方法3:(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以E A A C ⊥,即ED AC ⊥.又因为AC AB ⊥,AB ED A = ,所以A C ⊥平面EBD .因为BD EBD ⊂平面,所以A C B D ⊥. (2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以B C 为圆O 的直径. 设圆O 的半径为r ,圆柱高为h ,根据正(主)视图、侧(左)视图的面积可得, 12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩解得2,2.r h =⎧⎨=⎩ 所以4B C =,AB AC ==AD 1A 1E BCODAD 1A 1EBC O D8以点D 为原点,1DD 、D E 所在的射线分别为x 轴、z 轴建立如图的空间直角坐标系D xyz -,则()0,0,0D ,()14,0,0D ,()0,0,2A ,()2,2,2B ,()2,2,2C -,()0,4,0BC =- ,()2,2,2DB =设(),,x y z =n 是平面BC D 的法向量,则0,0.B C D B ⎧=⎪⎨=⎪⎩ n n即40,2220.y x y z -=⎧⎨++=⎩ 取1z =-,则()1,0,1=-n 是平面BC D 的一个法向量.由(1)知,A C B D ⊥,又AC AB ⊥,AB BD B = ,所以A C ⊥平面ABD .所以()2,2,0AC =-是平面ABD 的一个法向量.因为1cos ,2ACAC AC⋅===⋅n n n ,所以,60AC =n .而,ACn 等于二面角A B D C --的平面角,所以二面角A B D C --的平面角大小为60 .19.解:(1)解法1:当2n ≥时,()11122nn n n n n a na a S S --+=-=-,即11n n a a nn -=-()2n ≥. 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =的常数列.所以1n a n =,即n a n =()n ∈*N .所以数列{}na 的通项公式为n a n =()n ∈*N .解法2:当2n ≥时,()11122nn n n n n a na a S S --+=-=-, 即11n n a n a n -=-()2n ≥.所以1321122113211221n n n n n a a a a nn a a n a a a a n n ----=⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=-- .因为11a =,符合n a 的表达式.所以数列{}n a 的通项公式为n a n =()n ∈*N .(2)假设存在k ()2,,k m k ≥∈*N ,使得k b 、1k b +、2k b +成等比数列,则2k k b b +=21k b +.因为ln ln n n b a n ==(n≥2),所以()()2222ln 2ln ln 2ln ln(2)22k k k k k k b b k k +⎡⎤+++⎡⎤⎢⎥=⋅+<=⎢⎥⎢⎥⎣⎦⎣⎦9()()22221ln 1ln 12k k k b +⎡⎤+<=+=⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦.这与2k k b b +=21k b +矛盾. 故不存在k (2,k k *≥∈N ),使得k b 、1k b +、2k b +成等比数列.20.解:(1)因为0a b >>,所以1b a<,所以c e aa===<.由90APB ∠= 及圆的性质,可知四边形P A O B是正方形,所以OP =.因为OP a =≥,所以2b a≥,所以c e aa===2≥.故双曲线离心率e的取值范围为2⎡⎢⎣⎭. (2)方法1:因为22222200PA O P O A x y b =-=+-,所以以点P 为圆心,PA 为半径的圆P 的方程为()()222220000x x y y x y b -+-=+-.因为圆O 与圆P 两圆的公共弦所在的直线即为直线A B , 所以联立方程组()()222222220000,.x y b x x y y x y b ⎧+=⎪⎨-+-=+-⎪⎩消去2x ,2y ,即得直线A B 的方程为200x x y y b +=. 方法2:设()11,A x y ()22,B x y ,已知点()00,P x y ,则P A k =0101y y x x --,11O A y k x =()101,0x x x ≠≠其中.因为P A O A ⊥,所以1PA O A k k =-,即0110111y y y x x x -⨯=--. 整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.因为O A O B =,PA PB =,根据平面几何知识可知,A B O P ⊥.因为00O P y k x =,所以00AB x k y =-.所以直线A B 方程为()0110x y y x x y -=--.即0010x x y y x xy y +=+.所以直线A B 的方程为200x x y y b +=.方法3:设()()1122,,,A x y B x y ,已知点()00,P x y , 则P A k =0101y y x x --,11O A y k x =()101,0x x x ≠≠其中.10因为P A O A ⊥,所以1PA O A k k =-,即0110111y y y x x x -⨯=--.整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.这说明点A 在直线200x x y y b +=上. 同理点B 也在直线200x x y y b +=上.所以200x x y y b +=就是直线A B 的方程.(3)由(2)知,直线A B 的方程为200x x y y b +=,所以点O 到直线A B的距离为2bd =.因为A B ===,所以三角形O A B 的面积20012S AB d x y =⨯⨯=+以下给出求三角形O A B 的面积S 的三种方法: 方法1:因为点()00,P x y 在双曲线22221x y ab-=上,所以2200221x y ab-=,即22222002b x a by a-=()22xa≥.设t ==≥322b t S t b=+.因为()()()3222bt b t b S tb-+-'=+,所以当0t b <<时,0S '>,当t b >时,0S '<.所以322b t S t b=+在()0,b 上单调递增,在(),b +∞上单调递减.当b ≤,即b a <≤时,322212b b S b b b⨯==+最大值,当b >,即a >时,2S ab==+最大值综上可知,当b a <≤时,212S b =最大值;当a >时,S a=最大值.11方法2:设t =33222b t b S b t bt t==++.因为点()00,P x y 在双曲线22221x y ab-=上,即2200221x y ab-=,即22222002b x a by a-=()22xa≥.所以t ==≥令()2b g t t t=+,则()()()2221t b t b b g t tt+-'=-=.所以当0t b <<时,()0g t '<,当t b >时,()0g t '>.所以()2b g t t t=+在()0,b 上单调递减,在(),b +∞上单调递增.当b ≤,即b a <≤时,32212b S b bb b==+最大值,当b >,即a >时,322bbS a==最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,S a=最大值.方法3:设2200t x y =+,则S bt==.因为点()00,P x y 在双曲线22221x y ab-=上,即2200221x y ab-=,即22222002b x a by a-=()22xa≥.所以22222200021b t x y x b a a ⎛⎫=+=+-≥ ⎪⎝⎭.令()2222221124g u b u u b u b b ⎛⎫=-+=--+ ⎪⎝⎭,所以()g u 在21,2b ⎛⎫-∞ ⎪⎝⎭上单调递增,在21,2b ⎛⎫+∞ ⎪⎝⎭上单调递减.因为t a ≥,所以2110,u t a ⎛⎤=∈ ⎥⎝⎦, 当22112b a≤,即b a <≤时,()22max1124g u g b b ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时321122S b b b =⨯=最大值.当22112ba>,即a >时,()2224m ax1a bg u g a a -⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时S a=最大值.12综上可知,当b a <≤时,212S b =最大值;当a >时,2bS a=最大值.21.(1)解:因为()ln f x ax x x =+,所以()ln 1f x a x '=++.因为函数()ln f x ax x x =+的图像在点e x =处的切线斜率为3,所以()e 3f '=,即l n e 13a ++=.所以1a =.(2)解:由(1)知,()ln f x x x x =+,所以()1f x k x <-对任意1x >恒成立,即ln 1x x x k x +<-对任意1x >恒成立.令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,令()ln 2h x x x =--()1x >,则()1110x h x xx-'=-=>,所以函数()h x 在()1,+∞上单调递增.因为()()31ln 30,422ln 20h h =-<=->,所以方程()0h x =在()1,+∞上存在唯一实根0x ,且满足()03,4x ∈.当01()0x x h x <<<时,,即()0g x '<,当0()0x x h x >>时,,即()0g x '>,所以函数()ln 1x x x g x x +=-在()01,x 上单调递减,在()0,x +∞上单调递增.所以()()()()()000000m in001ln 123,411x x x x g x g x x x x ++-====∈⎡⎤⎣⎦--.所以()()0min 3,4k g x x <=∈⎡⎤⎣⎦.故整数k 的最大值是3. (3)证明1:由(2)知,()ln 1x x x g x x +=-是[)4,+∞上的增函数,所以当4n m >≥时,l n l n 11n n n m m m n m ++>--.即()()()()11ln 11ln n m n m n m -+>-+.整理得 ()l n l n l n l n m n n m mm n mn nn m+>++-. 因为n m >, 所以ln ln ln ln m n n m m m n m n n +>+. 即ln ln ln ln mn m mn nn m m n +>+.即()()ln ln mnmmnnn mmn>. 所以()()mnn mm n nm>.证明2:构造函数()ln ln ln ln f x mx x m m mx m x x =+--,则()()1l n 1l n f x m x mm m '=-+--.因为4x m >≥,所以()()1ln 1ln 1ln 0f x m m m m m m m '>-+--=-->.所以函数()f x 在[),m +∞13上单调递增.因为n m >, 所以()()f n f m >.所以ln ln ln ln m n n m m m n m n n +-->22ln ln ln ln 0m m m m m m m m +--=. 即ln ln ln ln m n n m m m n m n n +>+. 即ln ln ln ln mn m mn n n m m n +>+. 即()()ln ln mn m mn n n m m n >.所以()()mnn m m n nm >.。
2011 年广州市普通高中毕业班综合测试(一)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照 评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改 变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部 分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共 10 小题,每小题 5 分,满分 50 分.题号答案1A 2A 3B 4C 5C 6C 7B 8D 9D 10C二、填空题:本大题主要考查基本知识和基本运算.本大题共 5 小题,考生作答 4 小题,每小题5 分,满分 20 分.其中 14~15 题是选做题,考生只能选做一题.11. 300 12. 3 13. 32 14. 15. 2 3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分 12 分) (本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 的数学思想方法和运算求解能力) (1) 解: f x 2sin x cos x cos2xsin2x cos2x2 2 2 sin 2x 22cos2x考查化归与转化…… 2 分 …… 3 分2 sin 2x422 ∴ f x 的最小正周期为(2) 解:∵ f2 3 , ., 最大值为2 . ∴ 2sin 2…… 4 分…… 6 分∴ cos 2 . 3∵ 为锐角,即 0 ,8 12 3 2 . …… 7 分…… 8 分∴ 02 .2∴sin 2 1 cos2∴ tan 2sin 2cos 2 2 2 2 . 3…… 10 分2 .…… 12 分17.(本小题满分 12 分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 以及数据处理能力、运算求解能力和应用意识)1(1) 解: x 107 111111113 114 122 113 甲考查或然与必然的数学思想方法,, …… 1 分…… 2 分x 108 109 110 112 115 124 113 乙661 , S 107 113 111113 111113 113 113 114 113 122 113 2甲 2 2 2 2 261 2S 108 113 109 113 110 113 112 113 115 113 124 113 2乙 2 2 2 22688 3, …… 4 分 =21,1 …… 3 分2∵ x 甲 x 乙 , S 甲S 乙22, ∴甲车间的产品的重量相对较稳定.…… 5 分…… 6 分(2) 解: 从乙车间 6 件样品中随机抽取两件,共有 15 种不同的取法 : 1 08,109,108, ,112 ,108 115, ,108 124, ,109 110, ,109 112, ,109 115, ,109 124, ,110 112, ,108, 110, 115 ,110 124, ,112 115, ,112, 115,124 , 124 . …… 8 分110设 A 表示随机事件"所抽取的两件样品的重量之差不超过 2 克",则 A 的基本事件有 4 种:108,109,108, 故所求概率为 P A18. (本小题满分 14 分)415.110 , 109 110, ,110, 112 .…… 10 分 …… 12 分(本小题主要考查空间线面关系、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)( 1)证明:连接 B 1C ,设 B 1C 与 BC 1 相交于点O ,连接OD ,∵ 四边形 BCC 1B 1 是平行四边形,∴点 O 为 BC 的中点.1∵ D 为 AC 的中点,∴ OD 为△ ABC 的中位线,1∴ OD // AB 1 .A 1AED…… 3 分∵ OD 平面 BC 1D , AB 1 平面 BC 1D ,∴ AB 1 // 平面 BC 1D .…… 6 分B 1BO(2)解法 1: ∵ AA 1 平面 ABC , AA 1 平面 AAC C ,1 1C 1C∴ 平面 ABC 平面 AAC C ,且平面 ABC 平面 AAC C AC . 1 1作 BE AC ,垂足为 E ,则 BE 平面 AAC C ,1 1∵ AB BB 1 2 , BC 3,2 1 1…… 8 分在 Rt △ ABC 中, AC AB BC 4 9 13 , BE 2AB BC AC6 13,…… 10 分…… 12 分∴四棱锥 B AAC D 的体积V AC AD AA BE 1 11 1126∴四棱锥 B AAC D 的体积为3 .1 13 1 3 2 132 6 133 . 1 1…… 14 分解法 2: ∵ AA 1 平面 ABC , AB 平面 ABC ,∴ AA 1 AB .∵ BB 1 // AA 1 ,∴ BB 1 AB .∵ AB BC , BC BB 1 B ,∴ AB 平面 BBCC .1 1…… 8 分A 1ADB 1BOEC 1C1取 BC 的中点 E ,连接 DE ,则 DE // AB , DE AB ,2∴ DE 平面 BB 1C 1C .三棱柱 ABC A B C 的体积为V AB BC AA 6 ,1 111…… 10 分BC CC 1 DE V 1,V 3 26 1 1121 B 1C 1 BB 1 A 1B1 V2 .3 2 3 …… 12 分1 1 1 则V D B CC1A 1B B1C 1而V V D B CC1V A1B B1C 1V ∴ 6 1 2 VB AA 1C1D .B AA1C1D ,∴VB AA 1C 1D3 .∴四棱锥 B AAC D 的体积为3 .1 119.(本小题满分 14 分)(本小题主要考查求曲线的轨迹方程、直线、圆、抛物线等知识, …… 14 分考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识)(1)解法 1: 设动点 P 的坐标为x , y ,依题意,得 PF x 1 ,2 2x 1 y x 1 ,_謀2化简得: y 4x ,2∴曲线 C 1 的方程为 y 4x .解法 2:由于动点 P 与点 F (1,0) 的距离和它到直线l : x 1的距离相等,…… 2 分…… 4 分∴曲线 C 1 的方程为 y 4x .( 2)解: 设点T 的坐标为 (x 0, y 0 ) ,圆 C 2 的半径为 r ,2∵ 点T 是抛物线 C 1 : y 4x 上的动点,2∴ y 0 4x 0 ( x 0 0 ). ∴ AT x a y 0 22根据抛物线的定义可知, 动点 P 的轨迹是以点 F (1,0) 为焦点,直线l 为准线的抛物线.…… 2 分2 …… 4 分…… 6 分x 0 2ax 0 a 4x 02 20 x α 24a 4 .攀椀∵ a 2 ,∴ a 2 0 ,则当 x 0 a 2 时, AT 取得最小值为 2 a 1 ,依题意得 2 a 1 a 1,2两边平方得 a 6a 5 0 ,解得 a 5 或 a 1(不合题意,舍去).2∴ x 0 a 2 3 , y 0 4x 0 12 ,即 y 0 2 3 .∴圆C 2 的圆心T 的坐标为 3, 2 3 .∵ 圆C 2 与 y 轴交于 M , N 两点,且| MN | 4 ,2 2∴ | MN | 2 r x 0 4 .2∴ r 4 x 0 13 .∵点T 到直线 l 的距离 d x 0 1 4 13 , ∴直线 l 与圆 C 2 相离.20.(本小题满分 14 分)2(本小题主要考查数列、不等式等知识,…… 8 分…… 10 分…… 12 分…… 14 分考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) ( 1)解:∵数列Sn是首项为1,公差为1的等差数列,∴ S 1n 1 n . n 2∴ S n n .当 n 1时, a 1 S 11;当 n 2 时, a n S n S又 a 1 1适合上式.∴ a n 2n 1.( 2)解:bnn 1 …… 2 分n n 1 2n 1. 22 …… 4 分a n S2n 1 1an S12n 112n 1 2n 1 2n 1 2n 112n 12n 1 2n 1 2n 12n 1 2n 1 2 2n 12n 11 1 12 2n 1 .2n 1…… 6 分n∴b b b bi12ni 112 12n 1 1 1 1 3 2 3 1 15 1 1 2 2n 1 1 2n 11 故要使不等式 b i i 12n 1 1 2 2n 1 2n 1 2 2n 1 L2n 1 1 . …… 8 分* 对任意 n N 都成立, 2n 1 1 L 2n 1 1即 *对任意 n N 都成立,得L2n 1 12 n2n 1c n . 33,则2n 1 1n 1 2n 1 n 2n 3 n 1c133令cn2n1c n 1 c n n2n 1 *对任意 nN 都成立.2n5n 4n 1 3 2 2n 33n2 …… 10 分1.∴ c n 1 ∴ cn c . …… 12 分∴L. ∴实数 L 的取值范围为 ,[另法]: cn 1 cnn 1 2n 3n 2n 133. n 1 2n 1 n 2n 32n 12n 3…… 14 分3 2 332n 5n 4n 1 2n 3n 2n 12n 3∴ cncn 1c10 .∴ c n 1 c n.33. …… 12 分∴L3 3.∴实数 L 的取值范围为,21.(本小题满分 14 分) 33 .…… 14 分(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵ f 0 0 ,∴ c 0 .∵对于任意 x R 都有 f x f x , 1 2 1 2 ∴函数 f x 又 f x x 1的对称轴为 x ,即 2b 2a ,得 a b . 21 …… 1 分…… 2 分,即 ax b 1 x 0 2对于任意 x R 都成立, ∴ a 0 ,且 b 1 0 . 2∵ b 1 0 ,2 2∴b 1, a 1.∴ f x x x .…… 4 分(2) 解: g x f x x 1x 1 x 1, x ,2 x 1 x 1, x . 21 1…… 5 分① 当 x 时,函数 g x x 1 x 12 若 1 2 1 2 1,即 0 2,函数 g x 1 ,即 2 ,函数 g x在 1 1的对称轴为x12, , 上单调递增;…… 6 分 1 2 若 , 上单调递增,在1 12 , 在 上单调递减. …… 7 分② 当 x 时,函数g x x 1 x 12 则函数g x 在1 1 , 21的对称轴为 x 112 ,上单调递增,在 , 12 上单调递减. …… 8 分 1 2综上所述,当 0 2时,函数 g x , 12 单调递增区间为, ,单调递减区间为 ;…… 9 分 当 2 时,函数 g x,单调递增区间为1 1 1 ,2 和2, ,单调递减区间为 1 1 1, 2 和 2 . …… 10 分(3)解:① 当 0 2时,由(2)知函数g x在区间 0,1 上单调递增,又g 0 1 0, g 1 2 1 0,故函数g x 在区间 0,1 上只有一个零点.…… 11 分② 当 2 时,则 1,而g 0 1 0, g21 (ⅰ)若2 3,由于2且 g 1 1 221 21, 1 11 12 0 , 11 11 4 21 2 1 0 , 此时,函数 g x 在区间 0,1 上只有一个零点;…… 12 分 ,此时,函数 g x 在区间0,1(ⅱ)若 3,由于 1 2 1且 g 1 2 1 0 上有两个不同的零点.综上所述,当 0 3时,函数g x当 3时,函数g x…… 13 分在区间 0,1 上只有一个零点;在区间 0,1 上有两个不同的零点. …… 14 分。
2011年广州市高二学业水平考试英语第一节完形填空(共15小题,每小题2分,满分30分)阅读下面短文,掌握其大意,然后从16~30各题所给的A、B、C、D中,选出最佳选项,并在答题卡上将该项涂黑。
St. Petersburg is a great city to visit all year round. But it is ___16___ beautiful in the summer when you can walk all night long, because, although the sun ___17___, it never gets dark. It‟s a city that couldn‟t be more ___18___ from Moscow.St. Petersburg was originally built as a ___19___ city, modeled on French and German cities, the opposite of Moscow which followed the ___20___ Russian design. Differences can be seen in the architecture, fashion and even___21___. In the 18th century, French was more ___22___ than Russian among rich people in St. Petersburg and many French words are still used by locals today. Just as was ___23___ by the city‟s original designers, St. Petersburg is Russia‟s window to Europe.Life in Moscow is ___24___ than life in the more relaxed St. Petersburg. In Petersburg you never need to ___25___. It‟s much smaller than Moscow so people like walking everywhere, even during t he ___26___ dark winter.People in St. Petersburg are more ___27___ than Moscow locals too. There is an old joke about this difference. One day, a young man ___28___ his seat to an old lady on a crowed Moscow train. The old lady said, “You must be from St.Petersburg.” “Yes. How did you know?” replied the man ___29___. The old lady said, “Moscow locals never give their seats.” The young man then said with a ___30___. “And you must be from Moscow, granny, because you didn‟t say …thanks‟ when I gave your my seat.”16. A finally B naturally C especially D immediately17. A sets B climbs C moves D appears18. A distant B absent C separate D different19. A typical B European C Asian D northern20. A traditional B logical C hopeful D worthy21. A music B art C language D history22. A popular B famous C interesting D beautiful23. A forgotten B supported C invented D planned24. A happier B faster C slower D colder25. A work B walk C think D hurry26. A long B warm C colorful D exciting27. A hardworking B devoted C brave D polite28. A sent B offered C led D allowed29. A in silence B in anger C in surprise D in hope30. A cry B shout C smile D look第二节语法填空(共10小题,每小题1.5分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中间词语的正确形式填空,并将答案填在答题卡标号为31~40的相应位置上。
2011学年度第一学期期末四校联考高二文科数学试卷(共4页)本试卷分选择题和非选择题两部分,满分为150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号填写在答题卡上,用2B 铅笔将自己的考号填涂在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁和平整。
第一部分 选择题 (共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}|23A x x =-≤≤,{}|14B x x =-≤≤,那么集合A B 等于( * )A .{}|24x x -≤≤B .{}|34x x ≤≤C .{}|21x x -≤-≤D .{}|13x x -≤≤2.若函数()y f x =是函数(01)x y a a a =>≠且的反函数,且(4)2f =,则()f x =( * ) A .12log x B . 2log x C .4log x D .3.某程序框图如图所示,该程序运行后输出的值是( * A .63 B .31 C .27 D .4. 在ABC △中,()()()a c a c b b c +-=+,则A =(A .30︒B .60︒C .120︒D .150︒5.到椭圆22184x y +=左焦点的距离与到定直线2x = 距离相等的动点轨迹方程是( * ) A .24y x = B .24y x =- C .28y x = D .28y x =-6.一个锥体的主视图和左视图如图所示,下面选项中,不可能是....该锥体的俯视图的是( * )A .B .C .D . 主视图左视图7.已知等差数列{}n a 中15,652==a a ,若n n a b 2=,则数列{}n b 的前5项和等于( * ) A .186 B .90 C .45 D .30 8. 使“1lg <m ”成立的一个充分不必要条件是 ( * )A . ),0(+∞∈mB . (),10m ∈-∞C .()0,10m ∈D . {}1, 2m ∈9. 设,x y R ∈且满足1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于( * )A .2B .3C .5D .910.若函数()() y f x x R =∈满足()()2f x f x +=且[]1,1x ∈-时,()21f x x =-,函数()()()lg 01 0x x g x x x ⎧>⎪=⎨-<⎪⎩,则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为( * )A .5B .7C .8D .10第二部分 非选择题 (共100分)二、填空题:本大题共4小题,每小题5分,共20分. 11. 命题“2,210x x x ∃∈-+<R ”的否定是:___***_____;12. 平面向量a 、b 的夹角为60︒,()2,0=a ,1=b , 则2+=a b ___***_____;13. 已知圆C 的圆心为(01),-,直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为___***_____;14. 已知双曲线的顶点..与焦点..分别是椭圆()222210x y a b a b+=>>的焦点..与顶点..,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为___***_____ .三、解答题:本大题共6小题,共 80 分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)已知函数()()233sincos cos sin 2cos 12222x x x xf x x x R =++-∈. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 的单调递增区间.16. (本小题满分12分)某车间将10名技工平均分为甲、乙两组加工某种零件,在单位时间内每个技工加工零件(Ⅰ)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此比较两组技工的技术水平;(Ⅱ)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.17.(本小题满分14分)已知直三棱柱111ABC A B C -中,ABC ∆为等腰直角三角形,090BAC ∠=,且12AB AA ==,D E F 、、分别为11B A C C BC 、、的中点. (Ⅰ)求证:DE //平面ABC ;(Ⅱ)求证:1B F ⊥平面AEF ; (Ⅲ)求三棱锥1E AB F -的体积.C 1A CA18. (本小题满分14分)已知椭圆的方程为:)012222>>=+b a by a x (,其中24a c =,直线320l x y -=:与椭圆的交点在x 轴上的射影恰为椭圆的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆在x 轴上方的一个交点为P ,F 是椭圆的右焦点,试探究以PF 为直径的圆与以椭圆长轴为直径的圆的位置关系.19. (本小题满分14分)已知函数()f x 定义域为R 且同时满足: ①()f x 图像向左平移1个单位后所得函数为偶函数;②对于任意大于1的不等实数a b 、,总有()()0f a f b a b>--成立.(Ⅰ)()f x 的图像是否有对称轴?如果有,写出对称轴方程,并说明在区间(,1)-∞上()f x 的单调性; (Ⅱ)设11()()2g x f x x=+-,如果(0)1f =,判断()0g x =是否有负.实根并说明理由; (Ⅲ)如果120,0x x ><且1220x x ++<,比较1()f x -与2()f x -的大小并说明理由.20.(本小题满分14分)已知数列{}n a 的前n 项和()2*24n n S n N +=-∈,函数()f x 对任意的x R ∈都有()(1)1f x f x +-=,数列{}n b 满足12(0)()()n b f f f n n=+++1()(1)n f f n-++. (Ⅰ)分别求数列{}n a 、{}n b 的通项公式;(Ⅱ)若数列{}n c 满足n n n c a b =,n T 是数列{}n c 的前n 项和,是否存在正实数k ,使不等式()29264n n k n n T nc -+>对于一切的*n N ∈恒成立?若存在请指出k 的取值范围,并证明;若不存在请说明理由.2011学年度第一学期期末四校联考高二文科数学参考答案及评分标准(共4页)二、填空题:本大题共4小题,每小题5分,满分20分.11.2,210x x x ∀∈-+≥R 12.13. 22(1)18x y ++= 14三、解答题:本大题共6小题,共 80 分. 解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分) 【解析】(Ⅰ)()233sin cos cos sin 2cos 12222x x x xf x x =++- 3sin cos 2sin 2cos 222x x x x x ⎛⎫=++=+⎪⎝⎭……………………………… 2分24x π⎛⎫=+ ⎪⎝⎭ ……………………………… 4分故()f x 的最小正周期T π= ……………………………… 6分(Ⅱ)由()222242k x k k Z πππππ-≤+≤+∈ ……………………………… 8分解得()388k x k k Z ππππ-≤≤+∈ …………………………… 10分 故函数()f x 的单调递增区间为()3,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ …………… 12分16. (本小题满分12分)【解析】(Ⅰ)依题意,7)109754(51=++++=甲x 1(56789)75x =++++=乙 ……………………………… 2分2.5526])710()79()77()75()74[(51222222==-+-+-+-+-=甲s ……… 3分2])79()78()77()76()75[(51222222=-+-+-+-+-=乙s …………… 4分因为乙甲x x =,22乙甲s s > 所以,两组技工的总体水平相同,甲组技工的技术水平差异比乙组大 …………… 6分 (Ⅱ)记该车间“质量合格”为事件A ,则从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件为:(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共25种 ………… 8分事件A 包含的基本事件为:(4,9),(5,8),(5,9),(7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共17种 ……………………………… 10分所以2517)(=A P ……………………………… 11分 答:该车间“质量合格”的概率为2517 (12)分17.(本小题满分14分)【解析】(Ⅰ)证明:方法一:G 取AB 中点,连结CG , ∵D E 、分别为1B A 、1C C 的中点 ∴DG EC 且DG EC = DGCE ∴DE GC ∴ ……………………………… 2分 DE ⊄平面ABC ,GC ⊂平面ABC DE ∴平面ABC ……………………………… 4分 方法二:G 1取BB 中点 ∵D E 、分别为1B A 、1C C 的中点∴DG AB 且GE BC ……………………………… 1分 DG ⊄平面ABC ,AB ⊂平面ABC DG ∴平面ABCGE ⊄平面ABC ,BC ⊂平面ABCGE ∴平面ABC GE DG G =∴平面DGE 平面ABC ……………………………… 3分∵DE ⊂平面DGE DE ∴平面ABC ……………… 4分(Ⅱ) ∵2AB== 90BAC ︒∠=∴BC = ∴在1B FE中 13B E =1B F EF = ∴22211B E B F EF =+即1B F FE ⊥……………………… 6分 又∵1.AF BC AF BB ⊥⊥ 1BB BC B =∴AF ⊥平面11BB C C ∴AF ⊥1B F ……………………8分AFEF F = ∴1B F ⊥平面AFE …………………… 9分(Ⅲ) 方法一: ∵AF ⊥平面11BB C C ∴AF EF ⊥∵EF B F ⊥ 1AF B F F = ∴EF ⊥平面1B FA∴3EF =1E AB F -的高 …………………… 11分AF ⊥面11BCBC ,AF EF ∴⊥ 111126322AB F S AF B F === ……………………… 12分111133133E ABF AB F V S EF -=== ……………………… 14分C1AA 1A 1方法二: 11E AB F B AEF V V --= ……………………… 10分1B F ⊥平面AFE ∴1B F 为三棱锥1B AEF -的高 ………………… 11分 AF ⊥面11BCBCAF EF ∴⊥ 11623222AEFSAF EF === ……………………………… 12分 11111661332E ABF B AEF AEF V V S B F --==== ………………………… 14分方法三: 11E AB F A B EF V V --=……………………… 10分AF ⊥面11BCBCAF ∴为三棱锥1A B EF -的高 …………………… 11分 1B F ⊥平面AFE 1B F EF ∴⊥11113263222B EFSB F EF ===………………………… 12分 111113221332E AB FA B EF B EF V V S AF --==== ………………………… 14分18. (本小题满分14分)【解析】 (Ⅰ)方法一:设椭圆的左右焦点分别为1(,0)F c -、2(,0)F c ,直线023=-y x 与椭圆的一个交点坐标是)23,cc M (, …………………………2分 根据椭圆的定义得:12||||2MF MF a +=,2a =,即42c a =, ………………… 4分 又4=ca ,222cb a +=,联立三式解得1,3,2===c b a …………………… 6分 所以椭圆的方程为:13422=+y x ……………………………… 7分 方法二:设椭圆的左右焦点分别为1(,0)F c -、2(,0)F c ,直线023=-y x 与椭圆的一个交点坐标是)23,cc M (,……………… 2分将点)23,c c M (坐标代入椭圆的方程得22294144c cc c c +=-化简整理得217160c c -+= ………………………… 4分 解得1c =或16c =244a c == 2a ∴=或8a =(此时a c <,舍去)2,1a b c ∴== ………………………… 6分所以椭圆的方程为:13422=+y x ………………………… 7分 (Ⅱ)由(1)可知,直线与椭圆的一个交点为)23,1(P ,)0,1(F则以PF 为直径的圆方程是2239(1)()416x y -+-=,圆心为⎪⎭⎫ ⎝⎛431,,半径为43 …… 9分 以椭圆长轴为直径的圆的方程是422=+y x ,圆心是()0,0,半径是2 ………… 11分 两圆心距为43-24543122==⎪⎭⎫⎝⎛+,所以两圆内切. …………………………… 14分19、(本小题满分14分) 【解析】(Ⅰ)由条件①得)(x f 的图像关于直线1=x 对称 ……………………… 2分由条件②得1>>b a 时,)()(b f a f >恒成立,1>>a b 时,)()(a f b f >恒成立, ∴)(x f 在),1(+∞上单调递增 …………………………… 4分 又 )(x f 的图像关于直线1=x 对称,∴)(x f 在)1,(-∞上单调递减 ……… 5分 (Ⅱ)方法一:若0)(=x g 有负根0x ,则021)(1)(000=-+=x x f x g , ∴2)(00-=x x f …………………………… 6分()01f =,)(x f 在)1,(-∞上单调递减 ∴1)(0>x f……………… 8分 021x ->,∴30>x 与00<x 矛盾 故0)(=x g 无负实根 ………… 10分方法二:若0)(=x g 有负根0x ,则021)(1)(000=-+=x x f x g∴2)(00-=x x f …………………………… 6分 1)0(=f , )(x f 在)1,(-∞上单调递减结合图像如右图所示………………………… 8分知()y f x =与2y x =-的图象在y 轴左侧无交点,故0)(=x g 无负实根 ……… 10分 (Ⅲ)解:点))(,(11x f x --与点))2(,2(11x f x ++为)(x f 上关于直线1=x 对称的两点…………………………… 11分 1220x x ++<,∴2122x x -<+< …………………………… 12分又 )(x f 在),1(+∞上单调递增,∴)()2()(112x f x f x f -=+>- …… 14分20.(本小题满分14分) 【解析】(Ⅰ) 12111,244n a S +===-= …………………………… 1分()()21112,24242n n n n n n n a S S +++-≥=-=---=1n =时满足上式,故()1*2n n a n N +=∈ ……………………………2分∵()(1)f x f x +-=1∴11()()1n f f nn -+= ……………………………3分 ∵12(0)()()n b f f f n n=+++1()(1)n f f n -++ ① ∴12(1)()()n n n b f f f n n--=+++(1)(0)f f ++ ② ∴①+②,得1212n n n b n b +=+∴= …………………………… 5分(Ⅱ)∵n n n c a b =,∴()12nn c n =+ ………………………………6分∴()12322324212n n T n =+++++, ①()23412223242212n n n T n n +=++++++, ②①-②得()231422212n n n T n +-=++++-+ …………………………8分即12n n T n +=………………………… 9分要使得不等式()29264n n k n n T nc -+>恒成立,()29260n nn T -+>恒成立()24926n nnc k n n T ∴>-+对于一切的n N *∈恒成立, 即()221926n k n n +>-+ ……………………………… 11分 令()()()*221926n g n n N n n +=∈-+,则 ()()()()()())()22122363611113611111111n g n n n n n n +==≤=+-+++-+-++ 当且仅当5n =时等号成立,故()max 2g n = ………………………………分 所以2k >为所求. ……………………………… 14分。
2011年广东省广州市高二数学竞赛试卷一、选择题:1.(2008•福建)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣22.已知数列{a n}的通项公式,设其前n项和为S n,则使S n<﹣4成立的自然数n有()A.最大值15 B.最小值15 C.最大值16 D.最小值163.(2011•广州)如图所示的程序框图,若输入n=5,则输出的n值为()A.3 B.1 C.﹣1 D.﹣34.(2011•广州)设a=sin(sin2011°),b=sin(cos2011°),c=cos(sin2011°),则a,b,c的大小关系是()A.a<b<c B.b<a<c C.c<b<a D.c<a<b二、填空题:5.(2011•广州)若过定点M(﹣1,0)且斜率为k的直线与圆x2+4x+y2﹣5=0在第一象限内的部分有交点,则k 的取值范围是_________.6.(2011•广州)在棱长为1的正方体ABCD﹣A1B1C1D1内任取一点P,则点P到点A的距离不大于1的概率为_________.7.在△ABC中,M是BC的中点,AM=1,点P在AM上且满足=2,则•(+)=_________.8.在△ABC中,若tanAtanB=1,则=_________.9.在R上定义运算△:x△y=x(1﹣y)若不等式(x﹣a)△(x+a)<1,对任意实数x恒成立,则实数a的取值范围是_________.10.设面积为S的平面四边形的第i条边的边长为a i(i=1,2,3,4),P是该四边形内一点,点P到第i条边的距离记为,类比上述结论,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),Q是该三棱锥内的一点,点Q到第i个面的距离记为d i,若等于_________.三、解答题:11.(2011•广州)已知向量=(sinx,cosx),=(6sinx+cosx,7sinx﹣2cosx),设函数f(x)=•﹣2.(1)求函数f(x)的最大值,并求取得最大值时x的值;(2)在A为锐角的△ABC中,A、B、C的对边分别为a、b、c,若f(A)=4且△ABC的面积为3,,求a的值.12.已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2a,AB=a,F为CD的中点.(Ⅰ)求证:AF⊥平面CDE;(Ⅱ)求异面直线AC,BE所成角余弦值;(Ⅲ)求面ACD和面BCE所成二面角的大小.13.已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点.若坐标原点O在以MN为直径的圆上,且,求k的取值范围.14.(2011•广州)设无穷等差数列{a n}的前n项和为S n,求所有的无穷等差数列{a n},使得对于一切正整数k都有成立.15.(2011•广州)定义在R上的函数(a,b∈R且a≠0)是奇函数,当x=1时,f(x)取得最大值.(1)求a、b的值;(2)设曲线y=f(x)在点(x0,f(x0))处的切线l与y轴的交点为(0,t),求实数t的取值范围.2011年广东省广州市高二数学竞赛试卷参考答案与试题解析一、选择题:1.(2008•福建)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣2考点:函数奇偶性的性质。
数学(文科)试题A 第 1 页 共 13 页试卷类型:A2011年广州市普通高中毕业班综合测试(二)数 学(文科)2011.4本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i z a b =+(),a b ∈R 的实部记作()Re z a =,则1Re 2i ⎛⎫= ⎪+⎝⎭A .23 B .25C .15-D .13-2.函数y =A ,函数()ln 21y x =+的定义域为集合B ,则A B =A .11,22⎛⎤-⎥⎝⎦ B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞-⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭3.已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为 A .2 B .4 C .2± D .4±4.已知数列{}n a 的通项公式是()()11nn a n =-+,则12310a a a a ++++=A .55-B .5-C .5D .55 5.在区间()0,1内任取两个实数,则这两个实数的和大于13的概率为 A .1718 B .79 C .29 D .118数学(文科)试题A 第 2 页 共 13 页6.设a ,b 为正实数,则“a b <”是“11a b a b-<-”成立的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.已知()1sin cos f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,n ∈*N ,则()2011f x =A .sin cos x x +B .sin cos x x -C .sin cos x x -+D .sin cos x x -- 8.一条光线沿直线220x y -+=入射到直线50x y +-=后反射,则反射光线所在的直线方程为 A .260x y +-= B .290x y +-= C .30x y -+= D .270x y -+= 9.点P 是棱长为1的正方体1111ABCD A BC D -内一点,且满足1312423AP AB AD AA =++,则点P 到棱AB 的距离为 A .56 B .34 C.4D.1210.如果函数()f x x =+()0a >没有零点,则a 的取值范围为A .()0,1B .()0,1()2,+∞C .()0,1()2,+∞ D.(()2,+∞二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.若1tan 2α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为 . 12.若关于x 的不等式()21m x x x ->-的解集为{}12x x <<,则实数m 的值为 .13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯三种,其中34⨯是这三种分解中,两数差的绝对值最小的,我们称34⨯为12的最佳分解.当()*,p q p q p q ⨯≤∈N 且是正整数n 的最佳分解时,我们规定函数()pf n q=,例如()3124f =.关于函数()f n 有下列叙述:①()177f =,②()3248f =,③()4287f =,④()914416f =.其中正确的序号为 (填入所有正确的序号). (二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)在梯形ABCD 中,ADBC ,2AD =,5BC =,点E 、F 分别在AB 、CD 上,且EF AD ,若34AE EB =,则EF 的长为 .数学(文科)试题A 第 3 页 共 13 页15.(坐标系与参数方程选做题)设点A 的极坐标为2,6π⎛⎫⎪⎝⎭,直线l 过点A 且与极轴所成的角为3π,则直线l 的极坐标...方程为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.力为中等或中等以上的概率为25. (1)试确定a 、b 的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率. 17.(本小题满分12分)如图1,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度;(2)求sin α的值.18.(本小题满分14分)已知等差数列{a n }的前n 项和为n S ,且1055S =,20210S =. (1)求数列{}n a 的通项公式; (2)设1n n n a b a +=,是否存在m 、k ()2,,k m k m >≥∈*N ,使得1b 、m b 、k b 成等比数列.若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.图160ABC东南西 北 α数学(文科)试题A 第 4 页 共 13 页19.(本小题满分14分)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA ABC ⊥平面, AB AC ⊥,AB AC =,2AE =.(1)求证:AC BD ⊥;(2)求三棱锥E BCD -的体积.20.(本小题满分14分)对定义域分别是F 、G 的函数()y f x =、()y g x =,规定:函数()()()()(),,,,,.f x g x x F x G h x f x x F x G g x x F x G +∈∈⎧⎪=∈∉⎨⎪∉∈⎩当且当且当且已知函数()2f x x =,()lng x a x =()a ∈R .(1)求函数()h x 的解析式;(2)对于实数a ,函数()h x 是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.21.(本小题满分14分)已知双曲线C :()222210x y a b a b-=>>和圆O :222x y b +=(其中原点O 为圆心),过双曲线上一点()00,P x y 引圆O 的两条切线,切点分别为A 、B .(1)若双曲线C 上存在点P ,使得90APB ∠=,求双曲线离心率e 的取值范围; (2)求直线AB 的方程;(3)求三角形OAB 面积的最大值.AODE正(主)视图 E A侧(左)视图A 1 D 1 A D 1A 1E BC OD 图2数学(文科)试题A 第 5 页 共 13 页2011年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题. 11.3 12.2 13.①③ 14.23715.sin 13πρθ⎛⎫-=⎪⎝⎭或cos 16πρθ⎛⎫+= ⎪⎝⎭或4sin 13πρθ⎛⎫-= ⎪⎝⎭cos sin 20θρθ--= 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查概率与统计的概念,考查运算求解能力等.)解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人. 记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, …………………………………………………………………………………4分 解得6a =. ………………………………………………………………………………………………5分因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………………………………………………………………………7分 (2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.………………………9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…………………12分数学(文科)试题A 第 6 页 共 13 页(本小题主要考查方位角、正弦定理、余弦定理等基础知识,考查运算求解能力等.)解:(1)依题意,120BAC ∠=,12AB =,10220AC =⨯=,BCA α∠=.………………………2分在△ABC 中,由余弦定理,得2222cos BC AB AC AB AC BAC =+-⨯⨯∠ ……………………4分22122021220cos120784=+-⨯⨯⨯=.解得28BC =.………………………………………………………6分所以渔船甲的速度为142BC=海里/小时. 答:渔船甲的速度为14海里/小时.…………………………………7分(2)方法1:在△ABC 中,因为12AB =,120BAC ∠=,28BC =,BCA α∠=,由正弦定理,得sin sin120AB BCα=.……………………………………………………………………9分即12sin1202sin 2814AB BCα=== 答:sin α12分 方法2:在△ABC 中,因为12AB =,20AC =,28BC =,BCA α∠=,由余弦定理,得222cos 2AC BC AB AC BC α+-=⨯.…………………………………………………………9分即22220281213cos 2202814α+-==⨯⨯. 因为α为锐角,所以sin α===.答:sin α的值为14.………………………………………………………………………………12分60ABC东南西北 α数学(文科)试题A 第 7 页 共 13 页(本小题主要考查等差数列、等比数列、不等式等基础知识,考查方程思想以及运算求解能力.) 解:(1)设等差数列{}n a 的公差为d ,则()112n n n S na d -=+.………………………………………1分 由已知,得111091055,2201920210.2a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩………………………………………………………………………3分 即112911,21921.a d a d +=⎧⎨+=⎩解得11,1.a d =⎧⎨=⎩…………………………………………………………………………5分所以1(1)n a a n d n =+-=(n *∈N ).………………………………………………………………6分 (2)假设存在m 、k ()2,,k m m k >≥∈N ,使得1b 、m b 、k b 成等比数列,则21m k b bb =.……………………………………………………………………………………………7分 因为11n n n a nb a n +==+,…………………………………………………………………………………8分 所以11,,211m k m k b b b m k ===++. 所以21121m k m k ⎛⎫=⨯ ⎪++⎝⎭.……………………………………………………………………………9分 整理,得22221m k m m =-++.…………………………………………………………………………10分 以下给出求m ,k 的三种方法:方法1:因为0k >,所以2210m m -++>.………………………………………………………11分解得11m <<12分 因为2,m m ≥∈*N , 所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………………………………………14分方法2:因为k m >,所以22221m k m m m =>-++.…………………………………………………11分数学(文科)试题A 第 8 页 共 13 页即221021m m m +<--,即221021m m m -<--.解得11m -<<11m <<………………………………………………………………12分 因为2,m m ≥∈*N , 所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………………………………………14分方法3:因为2k m >≥,所以222221m k m m =>-++.……………………………………………11分 即221021m m m +<--,即22221021m m m m --<--.解得1m <<1m <<12分 因为2,m m ≥∈*N , 所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………………………………………14分19.(本小题满分14分)(本小题主要考查锥体体积,空间线线、线面关系,三视图等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.)(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以EA AC ⊥,即ED AC ⊥.又因为AC AB ⊥,AB ED A =,所以AC ⊥平面EBD .因为BD EBD ⊂平面,所以AC BD ⊥.………………………………………………………………4分 (2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以BC 为圆O 的直径.设圆O 的半径为r ,圆柱高为h ,根据正(主)视图、侧(左)视图的面积可得,12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩…………………………………………6分 解得2,2.r h =⎧⎨=⎩所以4BC =,AB AC ==………………………………………………………………………8分AD 1A 1EBCOD数学(文科)试题A 第 9 页 共 13 页以下给出求三棱锥E BCD -体积的两种方法: 方法1:由(1)知,AC ⊥平面EBD ,所以13E BCD C EBD EBD V V S CA --∆==⨯.………………………………………………………………10分 因为EA ABC ⊥平面,AB ABC ⊂平面, 所以EA AB ⊥,即ED AB ⊥.其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422EBD S ED AB ∆=⨯⨯=⨯⨯=.…………………………………………………13分所以11633E BCD V -=⨯=.…………………………………………………………………14分方法2:因为EA ABC ⊥平面,所以111333E BCD E ABC D ABC ABC ABC ABC V V V S EA S DA S ED ---∆∆∆=+=⨯+⨯=⨯.…………………10分其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422ABC S AC AB ∆=⨯⨯=⨯=.…………………………………………………13分 所以1164433E BCDV -=⨯⨯=.…………………………………………………………………………14分20.(本小题满分14分)(本小题主要考查分段函数、导数、函数的单调性和最值等基础知识,考查分类讨论思想,以及运算求解能力和推理论证能力等.) 解:(1)因为函数()2f x x =的定义域(),F =-∞+∞,函数()lng x a x =的定义域()0,G =+∞,所以()22ln ,0,,0.x a x x h x x x ⎧+>⎪=⎨⎪⎩≤……………………………………………………………………4分(2)当0x ≤时,函数()2h x x =单调递减,所以函数()h x 在(],0-∞上的最小值为()00h =.……………………………………………………5分当0x >时,()2ln h x x a x =+.若0a =,函数()2h x x =在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………6分若0a >,因为()2220a x ah x x x x+'=+=>,………………………………………………………7分 所以函数()2ln h x x a x =+在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………8分数学(文科)试题A 第 10 页 共 13 页若0a <,因为()222x x x a h x x x⎛+ +⎝⎭⎝⎭'==,……………………………………9分 所以函数()2ln h x x a x =+在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.此时,函数()h x的最小值为h .…………………………………………………………………………………10分因为ln 1ln 222222a a a a a a h a ⎡⎤⎛⎫⎛⎫=-+=-+-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,………………………11分 所以当2e 0a -<≤时,0h ≥,当2e a <-时,0h <.…………………………13分综上可知,当0a >时,函数()h x 没有最小值;当2e 0a -≤≤时,函数()h x 的最小值为()00h =;当2e a <-时,函数()h x的最小值为1ln 22a a h ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.……………………………14分21.(本小题满分14分)(本小题主要考查圆、双曲线、直线方程和不等式等基础知识,考查运算求解能力和推理论证能力,以及分类讨论思想与创新意识等.)解:(1)因为0a b >>,所以1b a <,所以c e a===<1分 由90APB ∠=及圆的性质,可知四边形PAOB是正方形,所以OP =.因为OP a =≥,所以2b a ≥,所以c e a ===2≥.……………3分故双曲线离心率e的取值范围为⎣.…………………………………………………………4分(2)方法1:因为22222200PA OP OA x y b =-=+-,所以以点P 为圆心,PA 为半径的圆P 的方程为()()222220000x x y y x y b -+-=+-.………5分因为圆O 与圆P 两圆的公共弦所在的直线即为直线AB ,……………………………………………6分所以联立方程组()()222222220000,.x y b x x y y x y b ⎧+=⎪⎨-+-=+-⎪⎩………………………………………………7分数学(文科)试题A 第 11 页 共 13 页消去2x ,2y ,即得直线AB 的方程为200x x y y b +=.………………………………………………8分方法2:设()11,A x y ()22,B x y ,已知点()00,P x y , 则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为PA OA ⊥,所以1PA OA k k =-,即0110111y y y x x x -⨯=--.…………………………………………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.……………………………………………………………6分 因为OA OB =,PA PB =,根据平面几何知识可知,AB OP ⊥. 因为00OP y k x =,所以00AB xk y =-.………………………………………………………………………7分 所以直线AB 方程为()0110x y y x x y -=--. 即000101x x y y x x y y +=+.所以直线AB 的方程为200x x y y b +=.………………………………………………………………8分 方法3:设()()1122,,,A x y B x y ,已知点()00,P x y , 则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为PA OA ⊥,所以1PA OA k k =-,即0110111y y y x x x -⨯=--.…………………………………………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.……6分这说明点A 在直线200x x y y b +=上. …………7分同理点B 也在直线200x x y y b +=上.所以200x x y y b +=就是直线AB 的方程. ……8分 (3)由(2)知,直线AB 的方程为200x x y y b +=,所以点O 到直线AB 的距离为2d =.因为AB===,所以三角形OAB的面积0012S AB d=⨯⨯=……………………………………10分以下给出求三角形OAB的面积S的三种方法:方法1:因为点()00,P x y在双曲线22221x ya b-=上,所以2200221x ya b-=,即22222002b x a bya-=()22x a≥.设t==≥所以322b tSt b=+.………………………………………………………………………………………11分因为()()()3222b t b t bSt b-+-'=+,所以当0t b<<时,0S'>,当t b>时,0S'<.所以322b tSt b=+在()0,b上单调递增,在(),b+∞上单调递减.……………………………………12分b≤,即b a<≤时,322212b bS bb b⨯==+最大值,…………………………………13分b>,即a>时,()3222b bSab==+最大值综上可知,当b a<≤时,212S b=最大值;当a>时,S=最大值.………14分方法2:设t=33222b t bSbt btt==++.…………………………………………11分因为点()00,P x y在双曲线22221x ya b-=上,即2200221x ya b-=,即22222002b x a bya-=()22x a≥.所以t==数学(文科)试题A 第 12 页共 13 页数学(文科)试题A 第 13 页 共 13 页令()2b g t t t =+,则()()()2221t b t b b g t t t +-'=-=. 所以当0t b <<时,()0g t '<,当t b >时,()0g t '>.所以()2b g t t t=+在()0,b 上单调递减,在(),b +∞上单调递增.…………………………………12分b ≤,即b a <≤时,32212b S b b b b==+最大值,……………………………………13分b >,即a >时,32b S ==最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,2b S a=最大值.………14分 方法3:设2200t x y =+,则S b ==11分 因为点()00,P x y 在双曲线22221x y a b -=上,即2200221x y a b-=,即22222002b x a b y a -=()220x a ≥. 所以22222200021b t x y x b a a ⎛⎫=+=+-≥ ⎪⎝⎭.令()2222221124g u b u u b u b b ⎛⎫=-+=--+ ⎪⎝⎭,所以()g u 在21,2b ⎛⎫-∞ ⎪⎝⎭上单调递增,在21,2b ⎛⎫+∞ ⎪⎝⎭上单调递减.………………………………12分 因为t a ≥,所以2110,u t a ⎛⎤=∈ ⎥⎝⎦, 当22112b a ≤,即b a <≤时,()22max 1124g u g b b⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时321122S b b b =⨯=最大值. ………………………………13分当22112b a >,即a >时,()2224max 1a b g u g a a -⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时2b S a =最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,S =最大值.………14分。
广州市第二中学2011学年第二学期期末考试高二数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4} ,则C U (A ∩B )=( )A .{1,4,5} B.{2,3} C.{5} D.φ 2.复数ii-2的实部是( ) A .2 B .2-C .1D .1-3.函数)3sin(π+=x y 的图象( )A.关于点π03⎛⎫ ⎪⎝⎭,对称 B.关于直线3π-=x 对称C.关于点⎪⎭⎫⎝⎛-0,3π对称 D.关于直线π3x =对称 4. 命题“对任意的01,23≤+-∈x x R x ”的否定是( )A. 存在01,23>+-∈x x R x B. 存在01,23≥+-∈x x R x C. 不存在01,23≤+-∈x x R x D. 对任意的01,23>+-∈x x R x5.已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则n =( ) A .1B .1±C .0D .1-6.等差数列{}n a 的前n 项和为n S ,若10,221==S S ,则3S 等于( ) A.12 B.18 C.24 D.427.已知ABC △中,a =b =60B =,那么角A 等于( )A .45B .︒75C .135D .︒1508.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y xC. 2)2()3(22=-++y x D.2)2()3(22=++-y x 9.已知m n ,为两条不同的直线,αβ,为两个不同的平面,则下列命题中正确的是( ) A.m α⊂,n α⊂,m β∥,n βαβ⇒∥∥ B.m α⊥,m n n α⇒⊥∥ C. αβ∥,m α⊂,n m n β⊂⇒∥ D.n m ∥,n m αα⇒⊥⊥ 10.某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为 ( )A. y =[10x ] B. y =[310x +] C. y =[410x +] D.y =[510x +]二、填空题(每小题5分,共20分,其中14与15选做一题,把答案填写在答卷相应地方上)11.设x y ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥10200y x y x则2z x y =+的最大值为 .12. 如果执行右面的框图,输入N=5,则输出的数等于 .13. 为调查学生作业量,某校随机抽查100名学生,统计每个学生平均每天完成各科作业所用时间 (单位:小时),结果如下表所示:时间 1.5~2.5 2.5~3.5 3.5~4.5 频数205030根据上面统计结果,可以估计该校每个学生平均每天完成作业所用时间为_________小时。
xy 12-1-2-312-1-2-3-4-5-6-7-8-9-10-11-12O A B C试卷类型:A2011年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分。
满分40分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.设复数z 满足(1+i)z=2,其中i 为虚数单位,则Z=A .1+iB .1-iC .2+2iD .2-2i .,1)1()1()12(12z :B i i i i i 故选解析-=-+-=+=2.已知集合A={ (x ,y)|x ,y 为实数,且122=+y x },B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为A .0B .1C .2D .3C.,O(0,0),,x y ;1A :22故选故直线与圆有两个交点由于直线经过圆内的点组成的集体上的所有点表示直线集合上的所有点组成的集合表示由圆集合解析==+B y x3.若向量=+⋅⊥)2(,c ,b //,,b a c a a c b a 则且满足 A .4 B .3 C .2 D .0.,00022)2(:D b c a c b c a c b a c 故选解析=+=⋅+⋅=⋅+⋅=+⋅4.设函数()f x 和g(x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()f x +|g(x)|是偶函数 B .()f x -|g(x)|是奇函数 C .|()f x | +g(x)是偶函数 D .|()f x |- g(x)是奇函数解析:因为 g(x )是R 上的奇函数,所以|g(x)|是R 上的偶函数,从而()f x +|g(x)|是偶函数,故选A.5.已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪≤⎨⎪≤⎩给定.若M(x ,y)为D 上动点,点A 的坐标为(2,1).则z OM OA =⋅u u u u r u u u r的最大值为A.42B.32C.4D.3 解:如图,区域D 为四边形OABC 及其内部区域,.,42)2(z,z,)2,2(2y,2yz,2)1,2(),(2maxCBzxzxyxyxz故选从而取到最大值时经过点显然当直线的纵截距为直线则即=+=+-=+-=+=⋅=6甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A.12B.35C.23D.34.,43212121)()A()(,AB,B;i,1,2)i(A:211211iDAAPPBPAA故选则事件表示甲队获得冠军局获胜甲在第表示继续比赛时设解析=⨯+=+=∴+==7如图l—3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A.63B.93C.123D.183解析:由该几何体的三视图可各该几何体是一个平行六面体,底面是以3为边长的正方形,该六面体的高.,3933,31222B故选该几何体的体积为=⨯∴=-闭中每一个关于乘法是封法是封闭中有且只有一个关于乘是封闭中至多有一个关于乘法是封闭中至少有一个关于乘法则下列结论恒成立的是有有且集的两个不相交的非空子是若关于数的乘法是封闭的则称有如果的非空子集是整数集设VD.T,VT,C.VB.T,VT,A.:.,,,,,,,.,,.,,,,.8VxyzVzyxTabcTcbaZVTZVTSSabSbaZS∈∈∀∈∈∀=∈∈∀YA..CB,,VT,,}{V},{T;D,V,T,}{V},{T,;T,,1,1,,,,T,1,VT,1Z,VT:从而本题就选不对故的显然关于乘法都是封闭时偶数奇数当不对故关于乘法不封闭关于乘法封闭时负整数非负整数当另一方面对乘法封闭从而即则由于则不妨设两个集合中的一个中一定在故整数由于解析====∈∈⋅⋅∈∈∀∈=TabTbaTbaTbaY二、填空题:本大题共7小题,考生作答6小题.每小题5分.满分30分.(一)必做题(9—13题)9.不等式130x x+--≥的解集是______.22:130(1)(3),[1,).x x x x+--≥⇔+≥-∴+∞解析原不等式的解集为10.72()x xx-的展开式中,4x的系数是______ (用数字作答).47377172422177722:()()(2)(2),7232,(2)84.r r r r r r r x x x x x xT C x x C x r r x C ---+--=-=--==∴-=解析所求的系数即展开式中项的系数,展开式的通项为由得的系数是 11.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = ..10,02,0,0,:10.k :0)61(31)1(611,61d 3d),2(24d)9(1),(29,24)(29)(,:710479876549415419149=∴==+=∴=++++∴===-⋅++---=∴+=++=∴+=+=k a a a a a a a a a S S k a a a a a a a S S 从而解法二得由即即解法一 12.函数32()31f x x x =-+在x = 处取得极小值..2)(),2,0(),,2(),0,(:)(),2(363x (x)':2处取得极小值在递减区间为的单调递增区间为解析=∴+∞-∞∴-=-=x x f x f x x x f13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 、和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm. :,:数据可列表如下可知父亲与儿子的对应根据题中所提供的信息解析185(cm).31823,y ,1173176,13)3(63)())((,176,1732231231=++=∴=-=-==+-⨯=---=∴==∑∑==身高为从而可预测也他孙子的所以回归直线方程为x x b y a x x y y x xb y x i i i i i(二)选做题(14—15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为(0)sin x y θθπθ⎧=⎪⎨=⎪⎩≤<和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为. 2224222(0):1(01,5sin 554,10,,0),41655541,(1,4455x x y y x y x t y t t t t t y t x t θθπθ⎧=⎪+=≤≤≠⎨=⎪⎩==+-==∴==≥==⋅=∴Q 解析:将≤<化为普通方程得将代入得:解得交点坐标为15.(几何证明选讲选做题)如图4,过圆O 外一点P 分别作圆 的切线和割线交圆于,A B ,且7PB =,C 是圆上一点使得5BC =,则AB = .2:,,,,,7535,35.PA BAP BCA BAC APB AB PBBAP BCA CB ABAB PB CB AB ∴∠=∠∠=∠∴∆∆=∴=⋅=⨯=∴=解析是圆的切线又与相似从而三、解答题:本大题共6小题,满分80分,解答必须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)1()2sin(),36f x x x R π=-∈已知函数5(1)()4f π求的值;106(2),0,,(3),(32),cos()22135f f ππαβαβπαβ⎡⎤∈+=+=+⎢⎥⎣⎦设求的值..651654135531312sin sin cos cos )cos(.54sin ],2[0,,53cos ,56cos 2)2sin(2)23(;1312cos ],2[0,,135sin ,1310sin 2)23()2(.24sin 2)6125sin(2)45()1(:=⋅-⋅=-=+∴=∴∈=∴==+=+=∴∈=∴==+==-=βαβαβαβπβββπβπβαπαααπαππππΘΘf f f 解17.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量;(2)当产品中的微量元素x ,y 满足x ≥175且y ≥75时,该产品为优等品,用上述样本数据估计乙厂生产的优等品的数量; (3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).编号 1 2 3 4 5x 169 178 166 175 180y 75 80 77 70 81H:,101)2P(,106)1P(,103)0P(, 0,1,2:)3(;143552:,2,5,5)2(;3551498:)1(:25222513122523其分布列为故可以取值优等品的数量为故可估计出乙厂生产的的产品是优等品编号为件产品中从乙厂抽取的乙厂的产品数量为解ξξξξξ==========⨯=⨯C C C C C C C ξ0 1 2P103 106 101.5102101100)E(=⨯+⨯+⨯=∴ξξ的数学期望为18. (本小题满分13分)如图5,在椎体P ABCD -中,ABCD 是边长 为1的棱形,且060DAB ∠=,2PA PD ==2,PB =,E F 分别是,BC PC 的中点,(1)证明:AD DEF ⊥平面; (2)求二面角P AD B --的余弦值..,,//,,,,//,//,//,//,,,,,,,,23,60,1,21,,,,,:)1(:2220DEF AD PHB AD PHB DEF E EF DE DEF EF DE PHB DE DE BH PHB EF PB EF BC BC F E PHB AD HB AD HB AH AB BH AH BH DAB AB AH AD PH PD PA BH PH H AD 平面平面平面平面平面又平面又显然平面的中点分别是又平面即从而可得出连接中点为设证明解⊥∴⊥∴=⊂∴∴∴⊥∴⊥⊥∴=+==∠==⊥∴=ΘI Θ.721,7212132212323272443472cos ,2,23,27)21()2(,,,,,,)1()2(22222----=-=-=⨯⨯-+=⋅-+=∠∴===-=--∠∴⊂⊂⊥⊥的余弦值为即二面角的平面角就是二面角面面且知由B AD P BH PH PB BH PH PHB PB BH PH B AD P PHB BAD BH PAD PH AD BH AD PH注: 本题也可以5,,,=PC AP AB AD 先算出为一组向量,继而可证明第(1)问,并可进一步得到AD,DE,DF 两两垂直,从而建立空间直角坐标系,再解决第(2)问.总的说来,本题用传统方法,还更简单.19. (本小题满分14分)设圆C 与两圆222254,54x y x y +=-+=(+)()中的一个内切,另一个外切. (1)求C 的圆心轨迹L 的方程. (2)已知点35455M F ,,(,0),且P 为L 上动点,求MP FP -的最大值及 此时点P 的坐标..14x :1,b ,5,2,,',524,4|)2()2(|||||'||r,),0,5(),0,5(')1(:22=-∴===∴<=--+=--y L C c a F F C r r CF CF C F F 的方程为的圆心轨迹从而且为焦点的双曲线的圆心轨迹是以又则的半径为并设圆设解).56,52(2,||||||,,552,55656,5314531856,5314,0)65)(145(3 :,052y 2x :MF ,MF P ,2|||||||,)2(21---=∴>====--=-+=≤-的坐标为此时点的最大值为综上所述代入得其纵坐标为点的横坐标应取方程中并整理得将直线方程代入双曲线的方程为直线处取得的延长线上的那个交点位于线段与双曲线的为直线等号当且仅当如图P FP MP P x x x x MF MF FP MPxy 1234-1-2-3-412345-1-2-3-4-5-6-7-8-9O MFPP20.(本小题满分12分)设0,b >数列{}n a 满足111=,(2)22n n n nba a b a n a n --=≥+-, (1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n,1112n n n b a ++≤+.1111111211,22111112,,{},,, 2.222212112(),2211122{},,22(2)12n n n n n n n n n n n n n n nba n n a a n a b a bn n n n n b a a a a a a n n b a b b a bn a b a b b b bn a b ------==⋅++--==+=∴==-≠+=+--++=---∴+-解:(1)由可得当时则数列是以为首项为公差的等差数列从而 当时,则数列是以为首项为公比的等比数列12212(2)()(),,(2)222,(2).(2)(0,2)2n n n n n n nn n n nb b a b b b b b b b a nb b b b b--=⋅=⋅∴=---=⎧⎪=⎨->≠⎪-⎩ 综上1111111111232211123122,2,22(2)(2),,22222,22222222n n n n n n n n n n n n n n n n n n n n n n n n nn n n n n n b b a a b nb b b n b b a b b bn b b b b b b b b b +++++++++-----+-----==∴=--≠≤≤≤--≤+++++≤++++L L (2)当b=2时,+1+1,从而原不等式成立;1当b 2时,要证+1,只需证+1即证+1即证+即证n 21223112121123221,22222221)()()()2222,,.n n n n n n n n n n n n b b b b b b b b b bb b b b n-+---+-++++++++++++++≥+=∴≠L L L 而上式左边=(当b 2时原不等式也成立从而原不等式成立;2||),(),,Q(AB :B.y )0)(41,()1(|}.||,max{|),(,0,0,4,.41:L ,)14.(21002002122122p q p q p L p p p A x x q p q px x x x q p q p x y xOy =≠==+-≥-=ϕϕ有上的作一点对线段证明轴于点的切线交作过点记的两根是方程满足实数给定抛物线上在平面直角坐标系分本小题满分 (2)设(,)M a b 是定点,其中,a b 满足240a b a ->0,≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),'(,)44E p p E P P ,12,l l 与y 分别交于,'F F .线段EF上异于两端点的点集记为X .证明:112||(,)(,)2P M a b X P P a b φ∈⇔>⇔=; 2min max 15(,)1,(1),,44,).D x y y x y x p q p q ϕϕϕ⎧⎫=≤-≥+-⎨⎬⎩⎭(3)设当点()取遍D 时,求()的最小值(记为)和最大值(记为 ;2||22|}||,max{|q)(p,,p 0,0,2||,)(4,4121q ,AB q)Q(p,,240,04).0(4121y AB ,0);0(4121y AB ,0,4121y ),(2141:,21,21y',)41,()1(:000210002,1202200222020000200020000200200p p p p p x x p p p p p x p p q p p p p qp p q px x q p x p p x p p p x p x p p p x p p x p p y L A p x L p p A ==-+==≤≤>-±=∴-=--=-±=+-≥-≤≤-=<≤≤-=>-=-=-∴=ϕ则时当从而则上在线段若的两根为则方程又若的方程为则线段若的方程为则线段若即的切线方程为的抛物线过点故切线斜率为上在抛物线显然解.2|||}||,max{|q)(p,q),p,(.2||2|)(|2|||||}||,max{|q)(p,,0p ,00210002100p x x Q AB p p p p p p p x x p p ===--=--==≤≤<ϕϕ上的任一点故对线段则时当(2)由(1)知抛物线L 在2001(,)4p p 处的切线方程为2001124y p x p =-,即200240p p x y -+= ∵切线恒过点(,)M a b ,则200240p ap b -+=,∴21,24p a a b =±-① 当0a >时,(,)M a b X ∈⇔10a p <<⇔214p a a b =-,224p a a b =-⇔12p p >② 当0a <时,(,)M a b X ∈⇔10p a <<⇔214p a a b =-,224p a a b =-⇔12p p >综合①②可得(,)M a b X ∈⇔12p p >∵由(1)可知,若2111(,)4E p p , 点(,)M a b 在线段EF 上,有1(,)2p a b ϕ= ∴(,)M a b X ∈⇒1(,)2p a b ϕ= ③由(1)可知,方程20x ax b -+=的两根11,22p x =或12p a -,21,22p x =或22p a - 若1(,)2p a b ϕ=,即112max{,}2p x x = 则1122p a p -≥、 2122p p ≥、 2122p a p -≥ ∴12p p > ∴1(,)2p a b ϕ=⇒12||||p p >⇒(,)M a b X ∈ ④ 综合③④可得(,)M a b X ∈⇔1(,)2p a b ϕ=综上所述112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)由2115(1)44y x y x =-⎧⎪⎨=+-⎪⎩,求得两个交点(0,1),(2,1)- 则02p ≤≤,过点(,)G p q 作抛物线L 的切线,设切点为N 2001(,)4x x ,切线与y 轴的交点为H 由(2)知200240x px q -+=,解得204x p p q =-① 若204x p p q =+-(,)G p q 在线段NH 上由1y x ≤-,得1q p ≤-,∴022x p p p p =+≥=+-=,∴0m min in )12(x ϕ==. 由215(1)44y x ≥+-,得221511(1)14442q p p p ≥+-=+-∴2442p q p -≤-,∴0x p p =+≤+t =,则2122p t =-+,02t ≤≤ ∴22011552(1)2222x t t t ≤-++=--+≤ ∴0max max 5)24(x ϕ==② 若0x p =(,)G p q 在线段NH 的延长线上方程20x px q -+=的两根为012p p x x --=,022p p x x +-=即01,22x x =或02x p - ∵0x p ≤∴00012(,)max{,}max{,}222x x xp q x x p p ϕ==-=-p ==51(,)4p q ϕ≤≤ 综上所述min 1ϕ=,max 54ϕ=。
广东省高中学业水平合格性考试数学试卷含答案(共3套)第一套试卷选择题1. 以下哪个是二次函数的图像?答案:B2. 若数列 {a} 的通项公式为 $$a_n = 2n$$,则该数列的前五项分别为?- A) 0, 1, 2, 3, 4- B) 1, 2, 3, 4, 5- C) 2, 4, 6, 8, 10- D) 3, 6, 9, 12, 15答案:C解答题3. 求方程 $$2x^2 + 4x + 2 = 0$$ 的解。
解答:首先,将方程化为标准形式 $$ax^2 + bx + c = 0$$,得到$$2x^2 + 4x + 2 = 0$$。
接着,可以使用求根公式 $$x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$$ 来求解方程。
将参数代入公式,得到:$$x = \frac{-4 \pm \sqrt{4^2 - 4(2)(2)}}{2(2)}$$简化计算,得到:$$x = \frac{-4 \pm \sqrt{16 - 16}}{4}$$最终,方程的解为:$$x = -1$$4. 计算 $$\lim_{x \to \infty} \frac{2x^3 + 5x + 1}{3x^2 - 2}$$。
解答:根据极限的定义,当 $$x$$ 趋近于无穷大时,我们可以通过观察函数的最高次项来求解极限。
在这个问题中,最高次项是 $$2x^3$$ 和 $$3x^2$$。
通过比较最高次项的系数,我们得知最高次项的系数相等。
因此,$$\lim_{x \to \infty} \frac{2x^3 + 5x + 1}{3x^2 - 2}$$ 的极限为无穷大。
第二套试卷选择题1. 下列哪个函数是奇函数?- A) $$y = x^2$$- B) $$y = x^3$$- C) $$y = \sin(x)$$- D) $$y = \cos(x)$$答案:B2. 设函数 $$y = f(x)$$ 在区间 $$[a, b]$$ 上连续,并且在该区间上存在唯一的最大值和最小值。
2011-2012学年度第一学期 高二级理科数学期末四校联考试卷本试卷分选择题和非选择题两部分,共4页,满分为150分.考试用时120分钟. 注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B 铅笔将自己的学号填涂在答题卡上。
2、选择题每小题选出答案后,有2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。
3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁和平整。
第一部分选择题(共 40 分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{|1},{|05},A x x B x x =≥=≤<则集合()U C A B ( * )A .{|01}x x <<B .{|01}x x <≤C .{|01}x x ≤<D .{|01}x x ≤≤2.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入人家庭中选出100户调查社会购买力的某项指标;②某中学的15名艺术特长生中选出3人调查学习负担情况。
宜采用的抽样方法依次为( * ) A .①随机抽样法,②系统抽样法 B .①分层抽样法,②随机抽样法C .①系统抽样法,②分层抽样法D .①②都用分层抽样法3.已知,αβ为不重合的两个平面,直线,m α⊂那么“m β⊥”是“αβ⊥”的( * ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.若0b 1a 1<<,则下列不等式:①ab b a <+;②b a >;③b a <;④2baa b >+ 中,正确的不等式有( * )A .1个 B .2个 C .3个 D .4个5.直线l 过点(-4,0)且与圆22(1)(2)25x y ++-=交于A 、B 两点,如果|AB|=8,那么直线l 的方程为 ( * )A .512200x y -+=B .512200x y -+=或40x +=C .512200x y ++=D .512200x y ++=40x +=6.函数)32sin(3)(π-=x x f 的图象为C ,下列结论中正确的是( * ) A .图象C 关于直线6π=x 对称 B .图象C 关于点(0,6π-)对称C .函数)125,12()(ππ-在区间x f 内是增函数D .由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C 7.如图是函数Q(x)的图象的一部分, 设函数f (x) = sinx, g ( x ) =x1, 则Q(x)是( * ) A .)()(x g x f B .f (x)g (x)C .f ( x ) – g ( x )D .f ( x ) +g ( x )8.把数列}12{+n 依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,第六个括号两个数……,循环分为:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第60个括号内各数之和为 ( * ) A .1192 B .1176 C . 1168 D .1112第二部分非选择题 (共 110 分)二.填空题:本大题共6小题, 每小题5分, 共30分. 把答案填在答卷的相应位置. 9.命题:,()p x R f x m ∀∈≥。
数学学业水平测试 第 1 页 (共 13 页)秘密★启用前2011学年度广州市高中二年级学生学业水平测试数 学本试卷共4页. 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和准考证号填写在答题卡指定的位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4. 本次考试不允许使用计算器.5. 考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1. 已知集合{}1,2A =, {}1,0,1B =-, 则AB 等于A .{}1 B. {}1,0,2- C. {}1,0,1,2- D. ∅ 2. cos120︒的值是A . 2-B. 12-C. 12D. 23. 不等式2230x x --<的解集是A . ()3,1- B. ()1,3- C. ()(),13,-∞-+∞ D. ()(),31,-∞-+∞4. 已知直线12:220,:410l x y l ax y +-=++=, 若12//l l , 则a 的值为数学学业水平测试 第 2 页 (共 13 页)A . 8 B. 2 C. 12- D. 2- 5. 函数sin 2y x =是A . 最小正周期为2π的偶函数 B. 最小正周期为2π的奇函数 C. 最小正周期为π的偶函数 D. 最小正周期为π的奇函数 6. 在等比数列{}n a 中, 若362459,27a a a a a ==, 则2a 的值为 A . 2 B. 3 C. 4 D. 97. 如果实数x 、y 满足条件1,210,10.y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩ 则2x y +的最大值为A . 1 B. 53C. 2D. 38. 已知某几何体的三视图如图1所示, 其中俯视图 是腰长为2的等腰梯形, 则该几何体的体积为A . B.C.D.9. 已知向量=a ()1,n , =b (),1n , 其中1n ≠±, 则下列 结论中正确的是A . ()()//-+a b a b B. ()//+a b b C. D. ()+⊥a b b 10. 已知函数()1f x =, 则对任意实数12x x 、,且1202x x <<<, 都有A. B. C. D.二、填空题:本大题共4小题,每小题5分,满分20分. 11. 函数()ln 21y x =-的定义域是 .()()1221x f x x f x <()()1122x f x x f x >()()-⊥+a b a b ()()1221x f x x f x>正视图 侧视图俯视图图1()()1122x f x x f x <数学学业水平测试 第 3 页 (共 13 页)12. 在空间直角坐标系Oxyz 中, 点()1,2,3-关于原点O 的对称点的坐标为 . 13. 某公司生产A 、B 、C 三种不同型号的轿车,产量之比依次为2:3:4,为了检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,样本中A 种型号的轿车 比B 种型号的轿车少8辆,那么n = .14. 已知函数1(0x y a a -=>且1)a ≠的图象恒过点A . 若点A 在直线 上, 则12m n+的最小值为 . 三、解答题:本大题共6小题,满分80分.解答应写出文字说明、演算步骤和推证过程. 15. (本小题满分12分) 编号分别为12312,,,,A A A A 的12名篮球运动员在某次篮球比赛中的得分记录如下:(1)完成如下的频率分布表:(2)从得分在区间[)10,20内的运动员中随机抽取2人 , 求这2人得分之和大于25的概率.()100mx ny mn +-=>数学学业水平测试 第 4 页 (共 13 页)16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知13,2,cos 3a b A ===. (1)求sin B 的值; (2)求c 的值.17.(本小题满分14分)如图2,在三棱锥P ABC -中,5,4,3AB BC AC ===,点D 是线段PB 的中点, 平面PAC ⊥平面ABC .(1)在线段AB 上是否存在点E , 使得的位置,并加以证明;若不存在, (2)求证:PA BC ⊥.数学学业水平测试 第 5 页 (共 13 页)18. (本小题满分14分)已知等差数列{}n a 的前n 项和为n S ,且1310a a +=, 424S =. (1)求数列{}n a 的通项公式; (2)令12111n nT S S S =+++,求证:34n T <.19. (本小题满分14分)已知圆C 的圆心坐标为()1,2, 直线:10l x y +-=与圆C 相交于M 、N 两点,MN =2.(1)求圆C 的方程;(2)若1t ≠, 过点(),0A t 作圆C 的切线, 切点为B ,记1d AB =, 点A 到直线l 的距离为2d , 求 的取值范围.121d d -20. (本小题满分14分)已知113a≤≤, 若函数()22f x ax x=-在[]1,3上的最大值为()M a,最小值为()N a,令()()()g a M a N a=-.(1)求()g a的表达式;(2)若关于a的方程()0g a t-=有解, 求实数t的取值范围.数学学业水平测试第 6 页(共13 页)数学学业水平测试 第 7 页 (共 13 页)2011学年度广州市高中二年级学生学业水平测试数学试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分. 11. 1,2⎛⎫+∞⎪⎝⎭12. ()1,2,3-- 13. 72 14.3+ 三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤和推证过程. 15.本小题主要考查统计与概率等基础知识,考查数据处理能力.满分12分. (1) 解:频率分布表:………4分 (2)解: 得分在区间[)10,20内的运动员的编号为2A ,3A ,4A ,8A ,11A .从中随机抽取2人,所有可能的抽取结果有:{}23,A A , {}24,A A ,{}28,A A ,{}211,A A ,{}34,A A ,{}38,A A ,{}311,A A ,{}48,A A ,{}411,A A ,{}811,A A ,共10种. ………7分“从得分在区间[)10,20内的运动员中随机抽取2人,这2人得分之和大于25”(记为事件B )的所有可能结果有:{}24,A A ,{}211,A A ,{}34,A A ,{}38,A A ,{}311,A A ,{}48,A A ,{}411,A A ,{}811,A A ,共8种. ………10分数学学业水平测试 第 8 页 (共所以()80.810P B ==. 答: 从得分在区间[)10,20内的运动员中随机抽取2人, 这2人得分之和大于25的概率为 0.8. ………12分16.本小题主要考查解三角形、三角恒等变换等基础知识,考查运算求解能力.满分12分.(1)解:∵0A π<<,1cos 3A =, ∴sin 3A ==. ………2分 由正弦定理得:sin sin a bA B=, ………4分 ∴2sin 3sin 39b AB a===. ………6分 (2)解:∵13,2,cos 3a b A ===, ∴222123b c a bc +-=. ………8分 ∴222231223c c +-=⨯, 解得3c =. ………12分17.本小题主要考查直线与平面的位置关系的基础知识,考查空间想象能力、推理论证能力和运算求解能力.满分14分.(1)解:在线段AB 上存在点E , 使得//DE 平面PAC , 点E 是线段AB 的中点. …2分 下面证明//DE 平面PAC :取线段AB 的中点E , 连接DE , ………3 ∵点D 是线段PB 的中点,∴DE 是△PAB 的中位线. ………4 ∴//DE PA . ………6 ∵PA ⊂平面PAC ,DE ⊄平面PAC ,∴//DE 平面PAC . (8)数学学业水平测试 第 9 页 (共 13 页)(2)证明:∵5,4,3AB BC AC ===,∴222AB BC AC =+.∴AC BC ⊥. ………10分 ∵平面PAC ⊥平面ABC ,且平面PAC 平面ABC AC =,BC ⊂平面ABC ,∴BC ⊥平面PAC . ………12分∵PA ⊂平面PAC ,∴PA BC ⊥. ………14分18.本小题主要考查等差数列、数列求和、不等式等基础知识,考查运算求解能力和推理论证能力.满分14分.(1)解:设等差数列{}n a 的公差为d , ∵ 1310a a +=, 424S =,∴112210,43424.2a d a d +=⎧⎪⎨⨯+=⎪⎩ ………2分 解得13a =, 2d =. ………4分 ∴ ()32121n a n n =+⨯-=+. ………6分(2)证明:由(1)得()()()1321222n n n a a n n S n n +++===+, ………8分 ∴ 12111n nT S S S =+++()11111324352n n =++++⨯⨯⨯+=11111111111232435112n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦………10分数学学业水平测试 第 10 页 (共 13 页)111112212n n ⎛⎫=+-- ⎪++⎝⎭=31114212n n ⎛⎫-+ ⎪++⎝⎭………12分 34<. ………14分 19.本小题主要考查直线与圆的方程、不等式等基础知识,考查运算求解能力及推理论证 能力.满分14分.(1)解: 设圆C 的半径为r ,圆C 的圆心()1,2到直线l的距离d ==.………2分 ∵ MN =2,∴2=. ………3分 ∴2=. ………4分解得r = ………5分 ∴ 所求的圆C 的方程为()()22123x y -+-=. ………6分 (2) 解:∵圆C :()()22123x y -+-=的圆心()1,2C,半径r =∴1d AB====.………8分 又点(),0A t 到直线l 的距离2d ==. ………9分∴121d d-()121t t -+==-………10分m =,则1t -=, ………11分∵1t ≠,∴1m >.数学学业水平测试 第 11 页 (共 13 页)∴121d d-21m =-11m m-=+211m =-+. ………12分 ∵1m >, ∴12m +>.∴2011m <<+. ∴20111m <-<+. ………13分 ∴0<2211m -+< ∴121d d -的取值范围是(. ………14分 20.本小题主要考查二次函数的最值、方程等基础知识,考查运算求解能力,以及分类讨论的数学思想方法.满分14分.(1) 解: ()22f x ax x =-211a x a a ⎛⎫=-- ⎪⎝⎭. ………1分∵113a ≤≤, ∴113a ≤≤.① 当112a ≤≤,即112a ≤≤时, 则3x =时, 函数()f x 取得最大值; 1x a=时, 函数()f x 取得最小值.∴()()396M a f a ==-,()11N a f a a ⎛⎫==- ⎪⎝⎭. ∴ ()()()g a M a N a =-=196a a+-. ………3分 ② 当123a <≤,即1132a ≤<时, 则1x =时, 函数()f x 取得最大值; 1x a=时, 函数()f x 取得最小值.∴()()12M a f a ==-,()11N a f a a ⎛⎫==-⎪⎝⎭.数学学业水平测试 第 12 页 (共 13 页)∴ ()()()g a M a N a =-=12a a+-. ………5分 综上,得()g a =1112,,321196, 1.2a a a a a a ⎧+-≤<⎪⎪⎨⎪+-≤≤⎪⎩………6分(2)解:任取1211,,32a a ⎡⎫∈⎪⎢⎣⎭,且12a a <, ()()1212121122g a g a a a a a ⎛⎫⎛⎫-=+--+- ⎪ ⎪⎝⎭⎝⎭()()1212121a a a a a a --=. ………7分∵1211,,32a a ⎡⎫∈⎪⎢⎣⎭,且12a a <, ∴1212120,0,10a a a a a a -<>-<. ∴()()12121210a a a a a a -->,即()()120g a g a ->.∴()()12g a g a >. ∴函数()g a 在11,32⎡⎫⎪⎢⎣⎭上单调递减. ………8分 任取341,,12a a ⎡⎤∈⎢⎥⎣⎦,且34a a <,()()343434119696g a g a a a a a ⎛⎫⎛⎫-=+--+- ⎪ ⎪⎝⎭⎝⎭ ()()34343491a a a a a a --=. ………9分∵341,,12a a ⎡⎤∈⎢⎥⎣⎦,且34a a <,数学学业水平测试 第 13 页 (共 13 页)∴3434340,0,910a a a a a a -<>->. ∴()()343434910a a a a a a --<,即()()340g a g a -<.∴()()34g a g a <.∴函数()g a 在1,12⎡⎤⎢⎥⎣⎦上单调递增. ………10分当12a =时,()g a 取得最小值,其值为12g ⎛⎫= ⎪⎝⎭12, ………11分 又13g ⎛⎫=⎪⎝⎭43, ()1g =4. ∴函数()g a 的值域为1,42⎡⎤⎢⎥⎣⎦. ………12分∵关于a 的方程()0g a t -=有解等价于()t g a =有解,∴实数t 的取值范围为函数()g a 的值域. ………13分 ∴实数t 的取值范围为1,42⎡⎤⎢⎥⎣⎦. ………14分。