天河区天河中学2018届初三一模数学试卷.pdf
- 格式:pdf
- 大小:1.02 MB
- 文档页数:8
2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a34.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930 B.=930 C.x(x+1)=930 D.x(x﹣1)=9309.(3分)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把103000000这个数用科学记数法表示为.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是cm.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A (1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm,CD=(16﹣a)cm,∴cos∠BDC==,∴a=10.∴在Rt△BCD中,CD=6cm,BD=10cm,∴BC=8cm.故选:A.8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930 B.=930 C.x(x+1)=930 D.x(x﹣1)=930【解答】解:设全班有x名同学,则每人写(x﹣1)份留言,根据题意得:x(x﹣1)=930,故选:D.9.(3分)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°【解答】解:连接OB,如图,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,∵OB=OC,∴∠OCB=∠OBC,而∠AOB=∠OCB+∠OBC,∴∠OCB=×130°=65°,即∠ACB=65°.故选:A.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,故③正确;在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是 1.5cm.【解答】解:解得R=1.5cm.故答案为:1.5.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=,BP=,CP=BC﹣BP=3﹣=,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.【解答】解:,①+②得,4x=12,解得x=3,将x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x 1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A (1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(2)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0),∵S=S△ABD﹣S△OBD=•OD•y A﹣•OD•y B,△AOB=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8 ,∴S扇形AOE∴S=4π﹣8.阴影25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E (0,﹣4);当EC=DE 时,(m ﹣8)2+(m ﹣4)2=(m ﹣3)2+(m ﹣4)2解得m 5=5.5, ∴E (,﹣).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P 作y 轴的平行线交x 轴于点F , ∵P 点的横坐标为m ,∴P 点的纵坐标为m 2﹣m ﹣4,∵△PBD 的面积S=S 梯形﹣S △BOD ﹣S △PFD =m [4﹣(m 2﹣m ﹣4)]﹣(m ﹣3)[﹣(m 2﹣m ﹣4)]﹣×3×4 =﹣m 2+m=﹣(m ﹣)2+∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,﹣).。
广州市天河区初中毕业班综合测试(一)数学试题一、选择题(本大题共10小题,每小题3分,共30分.)1.4的算术平方根是().A.-2B.±2C.2D.162.下面的图形中,既是轴对称图形又是中心对称图形的是().3.在平面直角坐标系中,点A(﹣4,﹣3)在().A.第一象限B.第二象限 C.第三象限 D.第四象限4.如果等边三角形的边长为4,那么这个三角形的中位线长为().A.2B.4C.6D.85.4月24日6时到11时某城市空气质量指数PM2.5的1小时均值(单位:μg/m3)如下:70,74,78,80,74,75,这组数据的中位数和众数分别是().A.79和74B.74.5和74C.74和74.5D.74和796.要使式子有意义,则m 的取值范围是().A.m>﹣1 B.m≥﹣1 C.m>﹣1 且m≠1 D.m≥﹣1 且m≠17.△ABC 与△A′B′C′是相似图形,且△ABC 与△A′B′C′的相似比是1︰2,已知△ABC 的面积是3,则△A′B′C′的面积是().A.3 B.6 C.9D.128.如图,PA、PB 是⊙O 的切线,切点分别是A,B,已知∠P=60°,OA=3,那么∠AOB 所对的劣弧的长度为().A.6B.5C.3D.29.函数y=﹣x 的图象与函数y=x+1 的图象的交点在().A.第一象限B.第二象限C. 第三象限D.第四象限10.如图,E 是边长为4 的正方形ABCD 的对角线BD 上一点,且BE=BC,P 为CE 上任意一点,PQ⊥BC 于点Q,PR⊥BE 于点R,则PQ+PR 的值是().第二部分非选择题(共120 分)二、填空题(本大题共6 小题,每小题3 分,共18 分.)11.如图,已知a∥b,∠ 1=45°,则∠ 2= .12.因式分解:a2+2a=.13.计算(12a3-6a2 ) (-2a) =.14.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.15.已知关于的取值范围为.16.如图,在△ABO 中,E 是AB 的中点,双曲线(k>0)经过A、E 两点,若△ABO的面积为12,则k=三、解答题(本大题共9小题,共102 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解分式方程:18.(本小题满分9分)如图,矩形对角线AC,BD相交于点O,,AB=4cm,求矩形对角线AC和边BC的长.某酒家为了解市民对去年销量较好的五仁馅、豆沙馅、红枣馅、双黄馅四种不同口味月饼(以下分别用A,B,C,D表示)的喜爱情况,在节前对人口总数8000人的某社区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据信息回答:(1)将两幅不完整的图补充完整,并估计该社区爱吃D型月饼的人数;(2)若有外型完全相同的A,B,C,D月饼各一个,小王吃了两个.求他第二个吃到的月饼恰好是C型的概率.20.(本小题满分10分)如图,AB是高为60米的铁塔,分别在河边D处测得塔顶A的仰角为60°,在与B.D同一直线上的河对岸C处测得塔顶A的仰角为40°.(1)求D点到铁塔距离DB的长;(结果保留根号)(2)求河岸间CD的宽度.(结果取整数)21.(本小题满分12分)如图,在△ABC中,∠ACB=120°,BC=2AC.(1)利用尺规作等腰△DBC,使点D,A在直线BC的同侧,且DB=BC,∠DBC=∠ACB.(保留作图痕迹,不写画法)(2)设(1)中所作的△DBC的边DC交AB于E点,求证: DE=3CE.市政府建设一项水利工程,某运输公司承担运送总量为m³的土石方任务,该公司有甲、乙两种型号的卡车共100辆,甲型车平均每天可以运送土石方80m³,乙型车平均每天可以运送土石方120m³,计划100天完成运输任务.6 10(1)该公司甲、乙两种型号的卡车各有多少台?(2)如果该公司用原有的100辆卡车工作了40天后,由于工程进度的需要,剩下的所有运输任务必须在50天内完成,在甲型卡车数量不变情况下,公司至少应增加多少辆乙型卡车?23.(本小题满分12分)如图,直线与坐标轴分别交于点M,N.(1)求M,N两点的坐标;(2)若点P在坐标轴上,且P到直线的距离为,求符合条件的P点坐标.24.(本小题满分14分)如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐标;(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.(1)如图1,把△AMN沿直线MN折叠得到△PMN.设AM=NP与梯形BCNM重合的面积为y,试求y关于N为直径作⊙O,并在⊙O内作内接矩形AMQN.试判断直线BC与⊙O的位置关系,并说明理由.参考答案说明:1、本解答给出了一种解法供参考,如果考生的解法与本解答不同,各题组可根据试题的主要考查内容比照评分标准制订相应的评分细则.2、对于计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3、解答右端所注分数,表示考生正确做到这一步应得的累加分数.三、解答题(本题有9个小题, 共102分。
2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B.C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5C.6a﹣5a=1D.a6÷a2=a3 4.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4B.﹣C.0D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC 于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930B.=930C.x(x+1)=930D.x(x﹣1)=9309.(3分)如图,P A和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把103000000这个数用科学记数法表示为.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是cm.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组:.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE =CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标.(2)连接AB,求三角形AOB的面积S.△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B.C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5C.6a﹣5a=1D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4B.﹣C.0D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC 于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm,CD=(16﹣a)cm,∴cos∠BDC==,∴a=10.∴在Rt△BCD中,CD=6cm,BD=10cm,∴BC=8cm.故选:A.8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930B.=930C.x(x+1)=930D.x(x﹣1)=930【解答】解:设全班有x名同学,则每人写(x﹣1)份留言,根据题意得:x(x﹣1)=930,故选:D.9.(3分)如图,P A和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°【解答】解:连接OB,如图,∵P A、PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,∵OB=OC,∴∠OCB=∠OBC,而∠AOB=∠OCB+∠OBC,∴∠OCB=×130°=65°,即∠ACB=65°.故选:A.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,故③正确;在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是3cm.【解答】解:解得R=3cm.故答案为:3.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=,BP=,CP=BC﹣BP=3﹣=,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组:.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE =CF,求证:BE=DF.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y =2x 与反比例函数y =(k ≠0,x >0)的图象交于点A (1,a ),B 是反比例函数图象上一点,直线OB 与x 轴的夹角为α,tan α=.(1)求k 的值及点B 坐标.(2)连接AB ,求三角形AOB 的面积S △AOB .【解答】解:(1)把点A (1,a )代入y =2x ,得a =2,则A (1,2).把A (1,2)代入y =,得k =1×2=2;过B 作BC ⊥x 轴于点C .∵在Rt △BOC 中,tan α=,∴可设B (2h ,h ).∵B (2h ,h )在反比例函数y =的图象上,∴2h 2=2,解得h =±1,∵h >0,∴h =1,∴B (2,1);(2)∵A (1,2),B (2,1),∴直线AB 的解析式为y =﹣x +3,设直线AB 与x 轴交于点D ,则D (3,0),∵S △AOB =S △ABD ﹣S △OBD =•OD •y A ﹣•OD •y B ,=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE =4π,S△AOE=8,∴S阴影=4π﹣8.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E(0,﹣4);当EC=DE时,(m﹣8)2+(m﹣4)2=(m﹣3)2+(m﹣4)2解得m5=5.5,∴E(,﹣).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为m2﹣m﹣4,∵△PBD的面积S=S梯形﹣S△BOD﹣S△PFD=m[4﹣(m2﹣m﹣4)]﹣(m﹣3)[﹣(m2﹣m﹣4)]﹣×3×4=﹣m2+m=﹣(m﹣)2+∴当m=时,△PBD的最大面积为,∴点P的坐标为(,﹣).。
2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a34.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A .=930B .=930C .x (x +1)=930D .x (x ﹣1)=9309.(3分)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P=50°,则∠ACB 的大小是( )A .65°B .60°C .55°D .50°10.(3分)如图,菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,则下列结论:①△ABF ≌△CAE ;②∠AHC=120°;③△AEH ∽△CEA ;④AE•AD=AH•AF ;其中结论正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(共6小题,每小题3分,满分18分) 11.(3分)分解因式:x 2+3x= .12.(3分)在函数y=中,自变量x 的取值范围是 .13.(3分)把103000000这个数用科学记数法表示为 .14.(3分)若a 、b 、c 为三角形的三边,且a 、b 满足+(b ﹣2)2=0,则第三边c 的取值范围是 .15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm ,则这个扇形的半径是 cm .16.(3分)如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标.(2)连接AB,求三角形AOB的面积S.△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm ,CD=(16﹣a )cm ,∴cos ∠BDC==,∴a=10.∴在Rt △BCD 中,CD=6cm ,BD=10cm , ∴BC=8cm . 故选:A .8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A .=930B .=930C .x (x +1)=930D .x (x ﹣1)=930【解答】解:设全班有x 名同学,则每人写(x ﹣1)份留言, 根据题意得:x (x ﹣1)=930, 故选:D .9.(3分)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P=50°,则∠ACB 的大小是( )A .65°B .60°C .55°D .50° 【解答】解:连接OB ,如图, ∵PA 、PB 是⊙O 的切线, ∴OA ⊥PA ,OB ⊥PB , ∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°, ∵OB=OC , ∴∠OCB=∠OBC , 而∠AOB=∠OCB +∠OBC ,∴∠OCB=×130°=65°, 即∠ACB=65°.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵A B=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是 1.5cm.【解答】解:解得R=1.5cm.故答案为:1.5.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P ∽△AE′A′,∴=,即=,BP=,CP=BC ﹣BP=3﹣=,S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP=9﹣AD•DQ ﹣CQ•CP ﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.【解答】解:,①+②得,4x=12, 解得x=3,将x=3代入①得,3+2y=1, 解得y=﹣1,所以,方程组的解是.18.(10分)已知,如图,E 、F 分别为矩形A BCD 的边AD 和BC 上的点,AE=CF ,求证:BE=DF .【解答】证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,AD=BC , 又∵AE=CF , ∴AD ﹣AE=BC ﹣CF , 即ED=BF , 而ED ∥BF ,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(2)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0),=S△ABD﹣S△OBD=•OD•y A﹣•OD•y B,∵S△AOB=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8 ,∴S扇形AOE8.∴S阴影=4π﹣25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m ﹣8)2+(m ﹣4)2=52,解得m 1=8﹣2,m 2=8+2(舍去),∴E (8﹣2,﹣);当DC=DE 时,ED 2=(m ﹣3)2+(m ﹣4)2=CD 2,即(m ﹣3)2+(m ﹣4)2=52,解得m 3=0,m 4=8(舍去), ∴E (0,﹣4);当EC=DE 时,(m ﹣8)2+(m ﹣4)2=(m ﹣3)2+(m ﹣4)2解得m 5=5.5,∴E (,﹣).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P 作y 轴的平行线交x 轴于点F , ∵P 点的横坐标为m ,∴P 点的纵坐标为m 2﹣m ﹣4,∵△PBD 的面积S=S 梯形﹣S △BOD ﹣S △PFD =m [4﹣(m 2﹣m ﹣4)]﹣(m ﹣3)[﹣(m 2﹣m﹣4)]﹣×3×4=﹣m 2+m=﹣(m ﹣)2+∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,﹣).。
2018年天河区中考测试数学试卷本试卷分为第Ⅰ卷 (选择题)和第Ⅱ卷 (非选择题) 两部分,共4页,全卷三大题25小题,满分150分。
考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的考生号、姓名、考场试室号、座位号、以及考试科目用2B 铅笔涂在答题卡上。
2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上。
3.非选择题答案必须写在答卷上各题目指定的位置上;如需改动,先划掉原来的答案,然后写上新的答案,改动后的答案也不能超出指定区域;不准使用铅笔(作图题除外)、涂改液。
涉及作图的题目,用2B 铅笔画图,不按以上要求作答的答案无效。
4.考生必须保持答卷的整洁,考试结束时,将本试卷和答卷一并交回.第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的4个选项中有且只有一项是符合题目要求的)1. 3的平方根是( )(A) 9 (B) ±3 (C) -3 (D) 32.下列等式中,不一定成立的是( )(A)22223m m m =- (B)532m m m =⋅ (C)1)1(22+=+m m (D) 632)(m m = 3.计算2)2(-+⨯-0)31(5所得的结果是( )(A) 4 (B) 9 (C) -1 (D) 1 4. 函数x y -=2中,自变量x 的取值范围是( )(A) 21≤x (B)2≥x (C) 2≤x (D)21≥x 5.新华中学计划在生物园栽72棵树,开工后每天比原计划多栽2棵,结果提前3天完成任务,问原计划每天栽多少棵?设原计划每天栽x 棵,那么下列方程正确的是( )(A)372272+=+x x (B) 372272-=-x x (C)372272+=-x x (D) 372272-=+xx 6.直线x y 2=与抛物线32-=x y 的两个交点坐标分别是( )(A) (3,6), (1,2) (B)(3,6), (-1,-2) (C) (-3,-6) (1,2) (D)(-3,-6),(-1,-2) 7.Rt ΔABC 中,∠C=90°,AC=2, AB=3 ,那么cosB=( )(A)23 (B) 25 (C)32 (D) 358.用8块相同的长方形地砖拼成一个矩形,小明拼成了图1,小红拼成图2, 小红所拼图形中间刚好多出一个边长为1的小正方形,那么这个长方形的边长分别为( )(A) 10,6 (B)15,9 (C) 5,3 (D) 20,129.半径分别为1cm 、5cm 的两个圆有公共点,则圆心距d 的取值范围是( )(A)6<d (B) 6≤d (C)64≤≤d (D) 4≥d 10. 如图3,已知方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,请在方格纸中小方格的顶点上确定一点 C,连结AB 、AC 、BC ,使ΔABC 的面积为1个平方单位,满足条件的点C 的个数有( ).(A)5个 (B)6个 (C)7个 (D)8个第Ⅱ卷 非选择题 ( 共120分)二、填空题(本大题6小题,每小题3分,共18分)11.《广州日报》报道,广州市2004年向广西百色市、梅州市及重庆三峡库区等对口支援地区无偿捐款捐物总值达7900万元(人民币),这个数用科学记数法表示为___________万元. 12.初三(1)班10名同学某次跳绳测试成绩如下表所示(满分30分)那么这10名同学这次跳绳测试成绩的众数是____________ , 平均数是_________ , 中位数是_____________ .13.汽车是大家熟悉的交通工具,一辆载满货物的汽车在爬坡时,大家知道,它的速度很慢,因为汽车发动机的功率P 、牵引力F 和行驶速度V 满足关系式:VPF =, 这里F 和V 成反比例,生活中还有许多这样的例子,试写出一个反比例函数的解析式___________________, 其意义是___________________________. 14.如果二次函数图象的顶点坐标为(2,-3),那么这个二次函数的解析式可以是_______ (只需写出一个符合条件的答案)15. 如图4,⊙O 的弦AB 与CD 相交于点P ,AB=8,PC=2,PD=7,那么22PB PA +=_____;16. 一种天线接受器的外形呈圆锥形状,如图5所示,已知它的轴截面SAB 的顶角为α,底面圆半径为r,那么这种天线接受器的侧面积等于__________________________. (用含有α的三角函数和r 表示).三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分8分)解不等式组:⎪⎩⎪⎨⎧-≥+-<-341232)1(372x x x x18.(本小题满分7分)如图6,已知ΔABC 是等边三角形. (1) 求作⊙O ,使⊙O 与边.AB 、BC 都相切(不写作法,但要求保留作图痕迹);(2) 若⊙O 与BC 相切于点P ,BP=1,求⊙O 的面积(结果用含π的代数式表示).19. (本小题满分9分)如图8,某部门计划在火车站A 和大学城B 之间修一条长为4千米的笔直公路将两地连通,经测量得知,在火车站A 的北偏东60°方向、B 的西偏北45°方向的C 处有一个半径为1.2千米的圆形森林公园,问计划修筑的这条公路是否会穿过森林公园?请通过计算 进行说明.20.(本题满分12分)已知:关于x 的方程022=-+k x x 有两个不相等的实数根. (1) 求k 的取值范围;(2) 若α,β是这个方程的两个实数根, 求证:ββαα+++11的值与k 无关.21. (本题满分12分)如图8,四边形ABCD 为圆的内接四边形,BA 、CD 的延长线交于点P,E 为BC 上一点 , ∠AEC=∠BAD.(1) 求证: AE ∥PC; (2) 求证:PA ·AB=PD ·AE.22. (本题满分12分) 某汽车销售公司购进一批单价为4万元的家用轿车,按每台8万元销售时,每月能卖40台;销售一段时间后,为了减少投入增加利润,公司决定降价促销,按每台6.5万元销售,结果每月能卖70台,如果每月销售台数y 是销售价格x (万元)的一次函数.(1)试求y 关于x 的函数关系式;(2)为了实现月收入180万元的利润,那么销售价格x 应该定为多少万元?23. (本题满分15分) 已知:如图9,直线421+-=x y 与两条坐标轴交于点A 、B ,点P (y x ,)在线段AB 上运动,(不与端点A 、B 重合),点M 的坐标是(6,0).(1)当ΔPOA 的面积等于ΔPMB 的面积的两倍时,求点P 的坐标;(2)是否存在点P ,使得ΔPOM 为直角三角形,这样的点P 有多少个?请说明理由......24. (本题满分12分)如图10,已知Rt △ABC 中,∠ACB=90°,分别在AB 、BC 上取点D 、P ,使得AC=AD=CP, 且∠CDP=90°.求证:(1)AB 与经过C 、D 、P 三点的圆相切;(2)AC:BC:AB=3:4:5.25. (本题满分15分)抛物线c bx ax y ++=2(0>a )交x 轴于A 、B 两点(点B 的左边), 已知024=++c b a ,0=++c b a . (1)求抛物线c bx ax y ++=2的对称轴及点A 、B 的坐标; (2)求抛物线的顶点M 的坐标(可用含有a 的代数式表示); (3) 当∠OMA 为钝角时,求a 的取值范围.2018年天河区中考综合测试(一) 数学试卷参考答案及评分标准1.B2.C3.B4.C5.D6.B7.D8.C9.C 10.B11.3109.7⨯ 12.28, 25.6 ,27, 13. xy 1=,面积为1的长方形的长与宽成反比例. 14.开放题,3)2(2--=x a y ,0≠a15. 36, 16. 2sin2απr ⋅17.解 : (1) (2) 解不等式(1)得: x<2 ……………………3分解不等式(2)得: x ≥-21……………………6分 ∴ 原不等式组的解集为 -21≤x<218.解:(1)(4分)图略(2)OP=BPtan30°=33, ……… 6分所以,⊙O 的面积=2OP ⋅π=π31 ……… 7分19. 解: 过点C 作CD ⊥AB,如图,垂足为D. …… 1分∵ ∠B=45°, ∴ ∠BCD=45°,∴ CD=BD. …… 3分设CD=BD=x, 因为∠A=30°,∴ AC=2x …… 4分根据勾股定理,得x x x CD AC AD 342222=-=-=……5分由AD+BD=4, 得43=+x x ,∴ )13(2-=x . …… 7分 ∵ CD=2(13-)≈1.468>1.2∴ 计划修筑的这条公路不会穿过公园. …… 9分 20. (1) ∵ Δ=4+4k⎪⎩⎪⎨⎧-≥+-<-341232)1(372x xx x∵ 原方程有两个不相等的实数根∴ 4+4k >0 即1->k ……………… 3分 (2) 根据一元二次方程的根与系数的关系,可得2-=+βα, k -=αβ, ……… 7分由(1)知,1->k , ∴ k +1>0∴ββαα+++11=αββααββαβααββαβα+++++=+++++)(12)()1)(1(=kk----2122=2 ……… 11分∴ββαα+++11的值与k 无关. ……… 12分 21. 如图,(1) ∵ 四边形ABCD 为圆的内接四边形∴ ∠BAD+∠C=180°……2分 ∵ ∠AEC=∠BAD∴ ∠AEC+∠C=180°……4分 ∴ AE ∥PC. …… 5分 (2) ∵ AE ∥PC∴ ∠BAE=∠P ∵ ∠B=∠ADP∴ △ABE ∽△PDA ……………… 10分∴PDABPA AE = …………11分 ∴ PA ·AB=PD ·AE. …………12分22. (1)设y 与x 之间的函数关系式为y=kx+b ,根据题意,得 …… 1分⎩⎨⎧=+=+705.6408b k b k …… 3分 解得, k=-20 , b=200 …… 5分∴ y 与x 之间的函数关系式为:y=-20x+200. …… 6分 (2) 设销售价格应该定为x 万元, 根据题意, …… 7分得 (x-4)y =180 …… 9分 ∴ (x-4)(-20x+200)=180 …… 10分解得, ==21x x 7 …… 11分答: 为了实现月收入180万元的利润,销售价格应该定为每台7万元. …… 12分 23. (1) 设点P 的坐标为(x,y),根据ΔPOA 的面积等于ΔPMB 的面积的两倍,∵ ΔPMB 的MB 边上的高为y,ΔAOP 的OA 边上的高为x, 而MB=2,OA=4, ………… 2分依题意,得⎪⎪⎩⎪⎪⎨⎧=+-⨯⨯=⨯y x y x 4212212421解得⎪⎪⎩⎪⎪⎨⎧==3838y x …………4分∴ 点P 的坐标为(38,38). ………… 5分 (2)存在点P ,使得ΔPOM 为直角三角形,这样的点P 有3个. …… 8分理由如下:取OM 的中点C,作CD ⊥AB,垂足为D, 由ΔBCD ∽ΔBAO 可得BABCAO CD = ………… 10分 ∴ CD=5454⨯=⋅BA BC AO =5 ∵ CD=5<3 ………… 12分∴ 以点C 为圆心, CM(=3)为半径的圆必定与AB 有两个不同的交点1P 、2P ,Δ1P OM 、 Δ2P OM 都为直角三角形, ………… 13分 又 过点M 作直线与x 轴垂直,交AB 于点3P ,Δ3P OM 也是直角三角形. ∴ 有3个点P 满足条件. ………… 15分………………… 24. 证明:(1)取PC 的中点O ,连结OD ,则OD=OP=OC以O 为圆心,OP 为半径作圆,则⊙O 经过P 、D 、C 三点 ∵OD=OC ,AD=AC ,∠ACB=90°∴∠1=∠2,∠ADC=∠ACD ………… 2分 ∴∠1+∠ADC=∠2+∠ACD=90°∴OD ⊥AB ………… 4分∴AB 与经过C 、D 、P 三点的圆相切. ………… 5分(2) 方法一连结OA ∵AC ⊥BC∴AC 与⊙O 相切 ………… 6分21OP D CBA∴ OA 平分∠DAC ∵ AD=AC ∴ AO ⊥DC ∴ DP ∥AO ∴2===POPCPO AD BP BD ………… 8分 ∴ BD=2BP∵ AB 与⊙O 相切∴BC BP BD ∙=2………… 9分 ∴4BP 2=BP ·BC∴BC=4BP ………… 10分 ∴AC=AD=PC=BC-BP=3BP∴AB=BD+AD=5BP ………… 11分 ∴AC:BC:AB=3:4:5 ………… 12分 方法二作AE ⊥CD 于E ∵AD=AC ∴DE=EC=CD 21在Rt ΔADE 和Rt ΔCPD 中 AD=PC∠AED=∠CDP=90° ∠ADC=∠ACD=∠DPC ∴ΔADE ≌ΔCPD ∴DP=DE=DC 21∵AB 与经过C 、D 、P 三点的圆相切 ∴∠BDP=∠BCD 又∠B=∠B∴ΔBDP ∽ΔBCD ∴21===CD DP BD BP BC BD 设BP=k ,则BD=2k ,BC=4k ∴ PC=AC=AD=3k ∴ AB=5k∴ AC :BC :AB=3:4:525.解:(1)方法一联立方程组(1) (2) …………1分 ⎩⎨⎧=++=++024c b a c b a PDECBA由(2)得:2a+2b+2c=0 (3) (1)-(3),得: 2a-b=0b=2a …………3分 ∴ 原抛物线的对称轴为12-=-=abx …………4分 当x=1时,c bx ax y ++=2=a+b+c=0而点(1,0)关于直线x=-1的对称点为(-3,0)∴点A 的坐标为(-3,0),点B 的坐标为(1,0) …………6分 (1)方法二联立方程组(1) (2) 把a 看作独立变数,解得:∴原抛物线的对称轴为12-=-=abx ∴c bx ax y ++=2a ax ax 322-+=)32(2-+=x x a ………①令y=0,得:0)32(2=-+x x a∵0≠a ∴ 0322=-+x x∴ x 1=1, X 2=-3∴ 点A 的坐标为(-3,0),点B 的坐标为(1,0)(2) 方法一当x=-1时,y=a-b+c=a-2a-3a=-4a ∴ 抛物线的顶点M 的坐标为(-1,-4a) …………8分 方法二由①得, a x a y 4)1(2-+=∴ 抛物线的顶点M 的坐标为(-1,-4a).(3)设直线x=-1与x 轴交于H 点,则AH=2,OH=1若点P 为原抛物线的顶点,且∠OPA=90°,则可设点P 的坐标为(-1,m) ∵ 原抛物线与x 轴交于A 、B 两点,且开口向上 ∴ 点P 位于x 轴的下方∴ m<0 ………… 9分⎩⎨⎧=++=++024c b a c b a ⎩⎨⎧-==a c ab 32则△POH ∽△APH ∴PHOHAH PH = 即 2212=⨯=∙=OH AH PH…………11分∴PH=2 ∴ m=-2 …………12分 当点M 在线段PH 上时(M 不与P 、H 点重合),连结AM 、OM ,则 ∠AMH >∠APH , ∠OMH >∠OPH ∴∠AMO >∠APO, 即∠AMO>90° 即 ∠AMO 为钝角,此时,有 -4a>-2 …………13分∴ a <42…………14分 ∴ 当0 < a <42时,∠OMA 为钝角. …………15分。
数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前2018届九年级第一次模拟大联考【广东卷】数 学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.–2的相反数是 A .2 B .12C .–2D .以上都不对2.用激光测距仪测量,从一座山峰发出的激光经过4×10–5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为 A .1.2×103米 B .12×103米C .1.2×104米D .1.2×105米3.已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是 A .29°30′ B .30°30′C .31°30′D .59°30′4.下列各数中,是方程2x 2+5x =3的根的是 A .–3 B.–1C .1D .35.一组数据:3,4,5,x ,7的众数是4,则x 的值是 A .3B .4C .5D .66.下图中是中心对称图形而不是轴对称图形的共有A .1个B .2个C .3个D .4个7.下列运算中,正确的是 A .x 3•x 3=x 6B .3x 2+2x 3=5x 5C .(x 2)3=x 5D .(ab )3=a 3b8.方程x 2+3x –1=0的根可视为函数y =x +3的图象与函数y =1x的图象交点的横坐标,那么用此方法可推断出方程x 2+2x –1=0的实数根x 0所在的范围是A .–1<x 0<0B .0<x 0<1C .1<x 0<2D .2<x 0<39.如图,∠DCE 是圆内接四边形ABCD 的一个外角,如果∠DCE =75°,那么∠BAD 的度数是A .65°B .75°C .85°D .105°10.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结H C .则以下四个结论中:①OH ∥BF ,②GH =14BC ,③OD =12BF ,④∠CHF =45°.正确结论的个数为A .4个B .3个C .2个D .1个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:x 2y –xy 2=__________.12.一个多边形的内角和与其外角和加起来是2160°,则这个多边形是__________.13.已知a 、b 两个实数在数轴上的对应点如图所示:a +b __________0(请你用“>”或“<”填空).14.已知袋子中的球除颜色外均相同,其中红球有3个,若从中随机摸得1个红球的概率为17,则袋子中共有__________个球.15.在有理数范围内定义一种运算“*”,其规则为a *b =aba b+,则2*(–3)=__________. 16.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为__________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:021π)6tan 30()|12--︒++.18.(y –z )2+(x –y )2+(z –x )2=(y +z –2x )2+(z +x –2y )2+(x +y –2z )2.求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值.19.某种水果的价格如表:张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图,已知:△ABC ,请按下列要求用尺规作图(保留痕迹,不写作法及证明):(1)作AB 边的垂直平分线l ,垂足为点D ;(2)在(1)中所得直线l 上,求作一点M ,使点M 到BC 边所在直线的距离等于MD .21.如图,已知菱形ABCD 的边AB 长为8,∠ABC =60°.求:(1)对角线BD 的长;(2)菱形的面积.22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有__________人,a +b =__________,m =__________; (2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额在60≤x <120范围的人数.数学试题 第5页(共6页) 数学试题 第6页(共6页)五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy 中,抛物线y =–x 2+bx +c 经过点A (3,0)和点B (2,3),过点A 的直线与y 轴的负半轴相交于点C ,且tan ∠CAO =13. (1)求这条抛物线的表达式及对称轴; (2)连接AB 、BC ,求∠ABC 的正切值.24.已知等边△ABC ,M 是边BC 延长线上一点,连接AM 交△ABC 的外接圆于点D ,延长BD 至N ,使得BN =AM ,连接CN ,MN ,解答下列问题: (1)猜想△CMN 的形状,并证明你的结论; (2)请你证明CN 是⊙O 的切线;(3)若等边△ABC 的边长是2,求AD •AM 的值.25.我们把一直角边是另一直角边2倍的直角三角形称为“倍勾三角形”,如图1,在△ABC 中,AB =3,AC BAC =45°,CD ⊥AB 于D .P 是射线AB 上的一个动点(不与D 重合),E 是线段PC 的中点,将点E 绕点P 顺时针方向旋转90°得到点F ,连接FB ,FC ,FP .(1)下列三角形:①△PCF ,②△BCD ,③△ACD ,其中是“倍勾三角形”的有__________(填序号); (2)求证:CB ⊥BF ;(3)连接FA ,如图2,当F ,E ,A 三点在一直线上时,△BCF 是否为“倍勾三角形”,如果是,请证明;如果不是,求BFBC的值.。