2015-2016学年福建师大附中高一下学期期末数学试题(解析版)
- 格式:doc
- 大小:1.54 MB
- 文档页数:14
福建省师大附中2015—2016学年度下学期期末考试高一数学试题(满分:150分,时间:120分钟)说明:试卷分第I 卷和第II 卷两部分,请将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 角的终边过点,则的值是(******* ) A . B . C . D .- 2. sin20°cos10°﹣cos160°sin10°=(******* )A .B .C .D .3.设向量=(m ,1), =(1,2),且|+|2=||2+||2,则m =(******* )A .B .1C .D . 4. 下列函数中,最小正周期为π且图象关于原点对称的函数是(******* )A .y=sin (2x+)B .y=cos (2x+)C .y=sin2x+cos2xD .y=sinx+cosx 5.如图,在△OAB 中,P 为线段AB 上的一点, =x+y ,且=3,则(******* ) A .x=,y= B .x=,y= C .x=,y= D .x=,y=6. 若,则 (******* )A .B .C .D .7.将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为(******* )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x –π4)D .y =2sin(2x –π3)8. 函数的部分图像如图所示,则(******) A . B . C . D .9. ()()001tan181tan 27++的值是(******* )A .B .C .2D . 10.在中,若,则一定是(******* )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定 11.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为,且,则(******* )A .在单调递减B .在单调递减C .在单调递增D .在单调递增12.定义在R 上的偶函数满足,且在[-3,-2]上是减函数,若是 锐角三角形的两个内角,则(******* )A .B .C .D .第Ⅱ卷 共90分二、填空题:(每小题4分,共28分.请把答案填在答卷上) 13. 设向量a =(x ,x +1),b =(1,2),且a b ,则x = ******** .14.已知向量()()(),12,4,5,,10OA k OB OC k ===-,且三点共线, 则******** .15.已知,,,则的值为 ******** .16.函数()sin(2)sin()()66f x x x x ππ=++-∈R 的值域为 ******** .17.已知△ABC 是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为 ******** .18.已知函数5()),6f x x π=+方程在区间上有两个不同的实数根,则实数的取值范围是 ******** .19.已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为的零点, 为图像的对称轴,且在单调,则的最大值为 ******** .三、解答题:(本大题共5题,满分62分)20.(本题满分12分)已知||=2,||=3,(2﹣3)•(2+)=3. (1)求与的夹角的余弦值; (2)求|+|;(3)求在+方向上的投影. 21.(本题满分16分) (1)已知,求的值.(2) 已知3177cos(),,45124x x πππ+=<<求的值. 22.(本题满分为10分)如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD 上划出一片三角形地块CMN 建设美丽乡村生态公园,给村民休闲健身提供去处.点M ,N 分别在边AB ,AD 上.由于村建规划及保护生态环境的需要,要求△AMN 的周长为2千米,请探究∠MC N是否为定值,若是,求出此定值,若不是,请说明理由.23.(本题满分为12分)已知函数f (x )=2sinωxcosωx+2sin 2ωx ﹣(ω>0)的最小正周期为π. (1)求函数f (x )的单调增区间;(2)将函数f (x )的图象向左平移个单位,再向上平移1个单位,得到函数y=g (x )的图象,若y=g (x )在[0,b](b >0)上至少含有10个零点,求b 的最小值.24.(本题满分为12分)已知函数x c x b a x f sin cos )(++=的图像经过点及 (1)已知时,恒成立,求实数的取值范围;(2)当取上述范围内的最大整数....值时,若有实数,使得对于恒成立,求的值.福建师大附中2015-2016学年第二学期模块考试卷解答一、选择题:BDCBD ; BDACC ; AC 二、填空题:13. 14. 15. 16. 17. 18. 19.9三、解答题:(本大题共5题,满分62分) 20.(本小题满分12分)解:(1)∵||=2,||=3,(2﹣3)•(2+)=3, ∴4||2﹣3||2﹣4•=3, ∴•=﹣,∴cos <•>===﹣;(2)|+|===;(3)在+方向上的投影为===.21.(本小题满分16分) 21.解: (1)由,,∴.原式==,由以上知cosx ﹣sinx≠0, 所以上式== ==.22sin 22sin 2sin cos 2sin 2sin cos (sin cos )(2)sin 1tan cos sin 1cos 1tan 17753sin 2sin 2tan(),,2,cos()1tan 4124344544sin(),tan().4543cos cos[()]44x x x x x x x x x x x x x xx x x x x x x x x x x x πππππππππππ+++==---+==⋅+<<∴<+<+=-∴+=-+=-=+-由又7282,=-10102575x x =-=-=原式 22. (本小题满分10分)解:设∠BCM=α,∠DCN=β,AM=x,AN=y,则BM=1﹣x,DN=1﹣y,在△CBM中,tanα=1﹣x,在△CDN中,tanβ=1﹣y,所以:tan(α+β)===,(5分)△AMN的周长为2千米,所以x+y+=2,化简得xy=2(x+y)﹣2,代入(*)式,可得tan(α+β)====1,由于α+β,所以α+β=,所以∠MCN是定值,且∠MCN=.﹣﹣﹣(10分)23.(本小题满分12分)23.解:(1)由题意得f(x)=2sinωxcosωx+2sin2ωx﹣=sin2ωx﹣cos2ωx=2sin(2ωx﹣),由最小正周期为π,得ω=1,所以,由,整理得,所以函数f(x)的单调增区间是.(2)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到y=2sin2x+1的图象,所以g (x)=2sin2x+1,令g(x)=0,得或,所以在[0,π]上恰好有两个零点,若y=g(x)在[0,b]上有10个零点,则b不小于第10个零点的横坐标即可,即b的最小值为4π+=.24.(本题满分为12分)(0)1,()11,112()(1)(sin cos ))sin ()4(1)sin (),)43(0,)(,)(,1]2444210())]|()|2)2,[f f a b ac b c afx a x x aa x ax t y at ax x tI a f x a a f x a a a πππππππ==+=+=∴==-∴=-++=-+++==-+∈∴+∈∴∈->∈-+≤-+≤∈-解:由可得设则、当时,此时可得10()110()),1)|()|2)2,(1,4[4(2)8,()8()4()()18()sin ()sin (144II a f x III a f x a a f x a a a a a f x x mf x nf x m n x x πππφφ-==-<∈-+≤-+≥-∈+-+==-++-=+-+-+-=、当时,,此时满足题意、当时,此时可得综上所述,的取值范围是可得则由得)令,8()cos )sin sin cos 148()1sin 0cos 0cos 1sin 011611,,2,1616x X m n m n X X m n X m n n m n m n k k Zπφφφφφφφππ+=+-++=⎧⎪+==⎧⎪⎪+==-⎨⎨⎪⎪=⎩⎪==⎩∴===+∈得要使上式对任意恒成立,则有解得。
福建师大附中2014-2015学年第二学期模块考试卷高一数学必修4(满分:150分,时间:120分钟) 试卷说明一、考查内容:必修四 二、试卷特点 1、覆盖面较广,侧重于“三基”的考查,试卷的考查重点比较突出。
2、纵观整份试卷,难度适中,试卷注重对基础知识的考查,注重考查学生的对概念和规律的理解,注重考查学生的分析问题和解决问题、逻辑思维能力。
3、绝大部分的试题都需要一定的计算。
因此,对学生解题的熟练程度及计算能力有较高层次的要求。
4、注意试题的层次性,兼顾思想方法的考查,以区分不同思维层次的学生。
说明:试卷分第I 卷和第II 卷两部分,请将答案填写在答卷纸上,考试结束后只交答案卷. 第I 卷 共100分一、选择题:本大题有10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若点(tan ,cos )P θθ位于第三象限,则角θ所在象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知扇形的圆心角为2弧度,对应的弧长为4,则此扇形的面积为 A .1 B .2 C .4 D. 8 3.已知6,3,12,a b a b ==⋅=- 则向量a 在b 方向上的投影为A .4-B .2-C .2 D. 44.下列函数中,在区间(0,2π)上为增函数,且以π为周期的函数是A .2sinxy = B .x y sin = C .x y 2cos -= D. x y tan -= 5.已知tan()2πα-=-,则222sin cos sin 2cos αααα-+的值为 A .3- B .1- C .35D .1 6.设a 、b 都是非零向量,下列四个选项中,一定能使0||||a ba b +=成立的是A .2a b =B .13a b =-C .//a bD .a b ⊥7.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象 如图所示,则该函数的解析式是A .5()2sin(2)6f x x π=- B .5()2sin(2)6f x x π=+C .()2sin(2)6f x x π=-D .()2sin(26f x x π=+8.执行如图所示的程序框图,输出的i 值为A .5B .6C .7D . 8 9.函数lg(sin )tan 2y x x =-+的定义域为 A .))(652,62(Z k k k ∈++ππππ B .))(652,22()22,62(Z k k k k k ∈++++ππππππππ C .))(322,32(Z k k k ∈++ππππ D. ))(322,22()22,32(Z k k k k k ∈++++ππππππππ10.若函数()sin()1f x A x ωϕ=++(0,)ωϕπ><对任意实数t ,都有()()33f t f t ππ+=-+,记()cos()1g x A x ωϕ=+-,则(3g π= A .1- B .12-C .12D .1二、填空题:本大题有3小题,每小题5分,共15分.把答案填在答案卷的相应位置. 11.已知a 、b 均为单位向量,它们的夹角为60,则||a b +的值为 . 12.计算tan 20tan 25tan 20tan 25++的值为 . 13.若02πα-<<,且3sin()45πα+=-,则sin α的值为 . 三、解答题:本大题有3小题,共35分.解答应写出文字说明、证明过程或演算步骤. 14.(本小题满分10分)已知a 、、是同一平面内的三个向量,其中(1,2)a =.命题人:周裕燕审核人:江 泽(Ⅰ)若||52=,且//,求的坐标; (Ⅱ)若||=,25与的夹角3πθ=,且ba 2+与ka b-垂直,求实数k 的值.15.(本小题满分12分)已知223(sin ,cos sin ),(cos ,)2a x x xb x =-=,函数()f x a b =⋅. (Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的值域. 16.(本小题13分)在平面直角坐标系中,点O 为坐标原点,角βα,的始边为x 轴的非负半轴,点)cos 2,1(2θP 在角α的终边上,点Q )1,(sin 2-θ在角β的终边上,且1-=⋅OP .(Ⅰ)求θ2cos ;(Ⅱ)求点,P Q 的坐标,并求)sin(βα+的值.第II 卷 共50分一、填空题:本大题有2小题,每小题5分,共10分.把答案填在答案卷的相应位置. 17.设(0,10]ω∈,则函数sin y x ω=在区间(,)36ππ-上是增函数的概率是 .18.如图,正方形ABCD 的边长为2,点P 是线段BC 上的动点,则()PB PD PC +的最小值为 .二、选择题: 本大题有2小题,每小题5分,共10分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 19.若函数)0)(2cos()(>+=A x A x f ϕπ,满足0)1(=f ,则A. )(x f 在]1,0[上单调递增B.)(x f 在]1,0[上单调递减C. )3(+x f 一定是偶函数D. )3(+x f 一定是奇函数 20.在△ABC 中,点N 是边AC 上一点,且12AN NC =,点P 是线段BN 上的一点,若29AP mAB AC =+,则实数m 的值为 A .19 B .13C .1D .3三、解答题:本大题共3小题,共30分. 解答应写出文字说明、证明过程或演算步骤. 21.(本小题满分8分)已知下列三个等式:①22sin 60sin 30sin 45sin 15=-;②22sin 22sin16sin 19sin 3oooo=-;③22sin5sin1sin 3sin 2=-.根据以上三个等式,写出一个一般的三角恒等式,并加以证明. 22.(本小题满分10分)如图,某污水处理厂要在一个正方形污水处理池ABCD 内修建一个三角形隔离区以投放净化物质,其形状为三角形APQ ,点P 位于边BC上,点Q 位于边CD 上.已知20AB =米,PAQ ∠=PAB θ=,记()f θ=()f θ越大,则污水净化效果越好.(Ⅰ)求()f θ关于θ的函数解析式,并求定义域;(Ⅱ)求()f θ的最大值,并指出()f θ取最大值时θ的值. 23.(本小题满分12分)已知函数()sin cos f x a x b x ωω=+,其中0ab ≠. (Ⅰ)已知2ω=,且函数()y f x =的图象经过点(,2)4π和点(,2)2π-.①求()y f x =的解析式;②将函数()y f x =的图象上各点的横坐标保持不变,纵坐标缩短为原来的2倍,再把所得图象向右平移4π个单位,得到函数()y g x =的图象.若方程(第20题)(||)g x m=在区间,22ππ⎡⎤-⎢⎥⎣⎦上有且只有2个不同的实根,求实数m 的取值范围. (Ⅱ)已知1ω=,且函数()y f x =在0x x =处取到最大值.当实数a b 、满足2(1)1a b -=2+(时,求0tan()4x π-的取值范围.高一数学必修4参考答案第I 卷一、选择题:二、填空题:11.12.1 13.10-三、解答题:14.解:(I )设22(,),||20c x y c x y ===∴+=r u rQ//,(1,2),20,2c a ax y y x =∴-=∴=r r rQ由⎩⎨⎧=+=02222y x x y∴⎩⎨⎧==42y x 或 ⎩⎨⎧-=-=42y x ∴)4,2(),4,2(--==或(II )∵||a =r ,|b |=,25a 与b 的夹角3πθ=,∴5cos 234a b π⋅==r r (2)(),(2)()0a b ka b a b ka b +⊥-∴+⋅-=r r r r r r r rQ∴22(21)20,ka k a b b +-⋅-= ∴555(21)042k k +--= ∴12k =15. 解:(I )())22sin cos cos sin 2f x x x x x =+-= 12sin2x+2cos2x =sin(2x+3π)由22k ππ-+≤2x+3π22k ππ≤+,k Z ∈得512π+k πx ≤≤12π+ k π,所以()f x 单调递增区间[-512π+k π,12π+ k π],kZ ∈.(II )∵x ∈,44ππ⎡⎤-⎢⎥⎣⎦∴2x+3π∈5[,]66ππ-,∴当232x ππ+=,即12x π=时,max ()1f x =∴当236x ππ+=-,即4x π=-时,min 1()2f x =-∴()f x 的值域为1[,1]2-16.(Ⅰ) 1OP OQ ⋅=- 22sin 2cos 1θθ∴-=- 1cos 2(1cos 2)12θθ-∴-+=- 1cos 23θ∴=(Ⅱ)由(Ⅰ)可知221cos 221cos 21cos ,sin 2323θθθθ+-====41(1,),(,1)33P Q ∴- 310||,35||==∴OQ OP 1010cos ,10103sin ,53cos ,54sin =-===∴ββαα ∴1010)sin(-=+βα 第II 卷 共50分一、填空题:17.320 18. 12- 二、选择题:三、解答题:21. 解: 三角恒等式:22sin sin sin sin 22αβαβαβ+-=-证明:右边1cos()1cos()22αβαβ-+--=-1[cos()cos()]2αβαβ=--+ 1(cos cos sin sin cos cos sin sin )2αβαβαβαβ=+-+sin sin αβ= ∴原等式成立.22.23.解:(Ⅰ)∵2ω=∴()sin 2cos 2f x a x b x =+ ∵函数()y f x =的图象经过点(,2)4π和点(,2)2π- ∴()24f a π==,()22f b π=-=-,2b =①()2sin 22cos2)4f x x x x π=+=+2B②依题意得())4g x x π=- 当02x π≤≤时3244xππ-≤≤列表∵(||)g x 是偶函数,其图象关于y 轴对称 ∴(||)g x在区间,22ππ⎡⎤-⎢⎥⎣⎦的大致图象为 ∴m(Ⅱ)∵ω其中sin ∵函数y ∴0x ϕ+∵实数a 0tan a x b =设0tan x =∴tan(4π∴tan(4π-高一数学(必修Ⅰ)共6页 第2页附中高一数学 共6页 第2页16.(本题满分13分)第II卷(共50分)一、填空题:(本题共2小题,每小题5分,共10分)17. . 18. .二、选择题:(本题共2小题,每小题5分,共10分)三、解答题:(本大题共3题,满分30分)21.(本题8分)得分附中高一数学共6页第4页附中高一数学共7页第5页密封线22.(本题10分)。
绝密★启用前【全国百强校】福建省师大附中2016-2017学年高一下学期期末考试数学试题试卷副标题考试范围:xxx ;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图,在同一平面内,点位于两平行直线同侧,且到的距离分别为.点分别在上,,则的最大值为( )A .15B .12C .10D .92、已知函数,若函数在区间内单调递减,则的取值范围为( )A .B .C .D .3、已知函数 ①函数关于对称 ②函数关于对称 ③函数最小正周期为 ④函数向左平移个单位后的新函数为偶函数以上四个命题中,正确的命题的序号是:( )A .①②③B .①③C .②③D .①③④4、若方程在区间上有两个实根,则实数取值范围为( )A .B .C .D .5、已知,,则( )A .B .C .D .6、飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得目标C 的俯角为75°,这时飞机与地面目标的距离为 A .5000米 B .5000米 C .4000米 D .米7、设函数,其中.若且 的最小正周期大于,则的值分别为( )A .B .C .D .8、若为平面内一点,且满足,则形状为( )A .钝角三角形B .等腰三角形C .直角三角形D .锐角三角形9、( )A .1B .2C .4D .810、如图,已知表示,则等于( )A .B .C .D .11、若=(2,1),=(3,4),则向量在向量方向上的投影为( )A .B .2C .D .1012、已知三角形的角的三边为,满足以下条件的三角形的解个数为1的是( ) A . B .C .D .13、角的终边与单位圆交于,则( )A .B .C .D .第II卷(非选择题)二、填空题(题型注释)14、如图,在中,时,点在边上,,,为垂足,若,则__________15、在中,,,则_________16、已知,,那么________.17、已知单位向量,的夹角为,那么.18、函数的定义域为____________.三、解答题(题型注释)19、已知函数,将函数的图像向左平移个单位,再向上平移1个单位,得到函数的图像.(Ⅰ)求函数的解析式(Ⅱ)若对任何实数,不等式恒成立,求实数的取值范围.(Ⅲ)若区间(且)满足:在上至少含有30个零点,在所有满足上述条件的中,求的最小值.20、如图,锐角三角形中,角所对的边分别为,若(Ⅰ)求角B 的大小; (Ⅱ)若线段上存在一点使得,且,,求的面积.21、如图所示,等腰梯形的点,为半圆上的动点,∥,底边为圆的直径,,. 设等腰梯形的周长为.(Ⅰ)请写出与之间的函数关系;(Ⅱ)当取何值时,等腰梯形的周长最大?22、已知向量,,记(Ⅰ)求的单调增区间;(Ⅱ)若,求的值域.23、知为两个不共线向量,,(Ⅰ)若∥,求实数; (Ⅱ)若且⊥,求与的夹角.参考答案1、A2、C3、D4、B5、A6、B7、A8、B9、A10、D11、A12、D13、D14、15、16、17、18、19、(Ⅰ);(Ⅱ);(Ⅲ) .20、(1),(2)21、(Ⅰ)(Ⅱ)时,22、(Ⅰ)的增区间为(Ⅱ)23、(Ⅰ)(Ⅱ)【解析】1、如下图,过点P作的垂线为y轴,以为x轴,建立平面直角坐标系,:y=0, ,P(0,-1),设,所以由,可知,或,而当时,当时,,可知两种情况最大值均为15,选A.【点睛】向量是衔接代数和几何的桥梁,所以用坐标法解决向量问题是,是代数在几何中的何中的体现,对于规矩,等腰,垂直的图形,更多的会采用坐标法。
福建师大附中2016-2017学年下学期期末考试卷高一数学·必修4一、选择题(每小题5分,共65分;在给出的A,B,C,D 四个选项中,只有一项符合题目要求) 1. 角θ的终边与单位圆交于1(,)2P y ,则sin θ=( )(A )(B ) (C )2 (D )2±2.已知三角形的角,,A B C 的三边为,,a b c ,满足以下条件的三角形的解个数为1的是( ) A. 22,25,120a b A === B. 9,10,30a c A ===C. 06,8,60a b A === D. 011,6,45a b A ===3.若a =(2,1),b =(3,4),则向量b 在向量a 方向上的投影为( )A .52B.2C.5D.104.如图,已知3,AB a AC b BD DC a b ===, , 用、 表示AD ,则AD 等于( )A .34a b + B . 3144a b +C .1144a b +D . 1344a b +5.0000tan 21tan 24tan 21tan 24++=( )(A) 1 (B) 2 (C) 4 (D) 86.若O 为ABC ∆平面内一点,且满足()(2)0OB OC OB OC OA -⋅+-=, 则ABC ∆形状为 ( )A .钝角三角形 B.等腰三角形 C.直角三角形 D.锐角三角形 7.设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则,ωϕ的值分别为( )(A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ==8.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10000米,到达B 处,此时测得正前下方目标C 的俯角为75°,这时飞机与地面目标的距离为( )A .5000米B .米C .4000米D .米 9. 已知1sin()63πα-=,,则2cos(2)3πα+=( ) ACD BDCAEB(A )79-(B )13- (C ) 13 (D )7910.若方程cos(2)4x m π+=在区间[0,]2π上有两个实根,则实数m 取值范围为( )(A )2[1,2--(B )2(1,2-- (C )22(D) 2,1)2 11. 已知函数2()2cos 2sin cos 1f x x x x =+-①函数()f x 关于3(,0)8π对称 ②函数()f x 关于34x π=对称 ③函数()f x 最小正周期为π ④函数()f x 向左平移8π个单位后的新函数()g x 为偶函数以上四个命题中,正确的命题的序号是:( )A. ①②③B. ①③C. ②③D. ①③④ 12.已知函数()cos(),(0,)4f x x x R πωω=+>∈,若函数()f x 在区间(,)2ππ内单调递减,则ω的取值范围为( )(A )15[,]24 (B )13[,]24 (C )3(0,]4 (D) 3[,2)413.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的距离分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,则PM PN 的最大值为( ) A.15 B.12 C.10 D. 9二、填空题(每小题5分,共25分) 14. 函数1cos 2y x =-的定义域为 . 15. 已知单位向量,a b 的夹角为3π,那么2a b -= 16. 已知[0,]2πθ∈,11cos()313πθ+=-,那么cos θ= .17. 在ABC ∆CD BD AD ==3AB =,则=⋅AD AB _________18. 如图,在ABC ∆中,3π=C ,4=BC 时,点D 在边AC 上,DB AD =,AB DE ⊥,E 为垂足,若22=DE ,则=A cos __________三、解答题(要求写出过程,共60分) 19. (本小题满分10分)已知,a b 为两个不共线向量,2,1a b ==,2,c a b d a kb =-=+ (Ⅰ)若c ∥d ,求实数k ;(Ⅱ)若7,k =-且c ⊥d ,求a 与b 的夹角. 20.(本小题满分12分)已知向量(cos ,sin )a x x =,(3,3)b =- ,记()f x a b =⋅ (Ⅰ)求()f x 的单调增区间; (Ⅱ)若[0,]x π∈,求()f x 的值域. 21. (本小题满分12分)如图所示,等腰梯形ABCD 的点C ,D 为半圆上的动点,CD ∥AB ,底边AB 为圆O 的直径,BOC θ∠=,1OB =. 设等腰梯形ABCD 的周长为y .(Ⅰ)请写出y 与θ之间的函数关系;(Ⅱ)当θ取何值时,等腰梯形ABCD 的周长最大? 22.(本小题满分12分)如图,锐角三角形ABC 中,角,,A B C 所对的边分别为,,a b c ,若2cos bcosB a cosC c A =⋅+⋅(Ⅰ)求角B 的大小;(Ⅱ)若线段BC 上存在一点D 使得2AD =,且6AC =,13-=CD ,求ABC ∆的面积.23. (本小题满分14分)已知函数()2sin 2f x x =,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像. (Ⅰ)求函数()y g x =的解析式(Ⅱ)若对任何实数x ,不等式()2()mg x m g x +≥恒成立,求实数m 的取值范围. (Ⅲ)若区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.福建师大附中2016-2017学年下学期期末考试卷高一数学·必修4参考答案DDADA BABAB DCA [2,2],33k k k Z ππππ-++∈126,29,4619.(Ⅰ)c ∥d(Ⅱ)7k =- 7d a b ∴=-又c d ⊥又2,1a b ==1a b ∴=,1cos 2a b a bθ∴== 又[0,]θπ∈20、(Ⅰ)()3cos f x a b x x ==(Ⅰ)322,232k x k k Z πππππ+≤-≤+∈∴()f x 的增区间为511[2,2],66k k k Z ππππ++∈(Ⅱ)0x π≤≤()f x ∴的值域为[-21.解:(Ⅰ)∵2cos bcosB a cosC c A =⋅+⋅由正弦定理知: 2sin sin sin cos sin()sin BcosB A cosC C A A C B =⋅+⋅=+=……2分4分 ∴在ADC 中,由C CD AC CD AC AD cos 2222⋅⋅-+=,6分 又)90,0(∈∠C , 45=∠∴C ,75180=∠-∠-=∠∴C B BAC ………8分ABC ∆ AB=2,…………………………………10分12分22.(Ⅰ)2cos 2(0)2y πθθ=+<<(Ⅱ)222sin2(12sin )222y θθ=+-+当1sin 22θ=时,即3πθ=时,max 5y =23.(Ⅰ)()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++(Ⅱ)()2()mg x m g x +≥令()g x t =,2()12u t t =-+ 1()3g x -≤≤,即13t -≤≤,()u t ∴在[-1,3]为增函数,max 23(3)155u ∴=-= 故35m ≥(Ⅲ)1()0sin(2)324g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈, 即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=.。
2015-2016学年福建省厦门市高一(下)期末数学试卷一、选择题(共12小题,每小题5分,满分60分)1.=()A.B.C.D.2.已知向量=(1,2),向量=(x,﹣2),且⊥(﹣),则实数x等于()A.﹣4 B.4 C.0 D.93.已知圆C1:x2+y2=1,圆C2:x2+y2+4x﹣6y+4=0,则圆C1与圆C2的位置关系是()A.外离 B.相切 C.相交 D.内含4.函数y=tan(﹣)在一个周期内的图象大致是()A.B.C.D.5.已知O为坐标原点,点A的坐标为(3,﹣4),将线段OA绕点O逆时针旋转至OB,则点B的纵坐标为()A.﹣4 B.﹣3 C.3 D.46.为了得到函数y=2cos2x的图象,可以将函数y=1+cosx图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变7.已知直线l⊥平面α,直线m⊂平面β,下列命题中正确的是()A.α∥β⇒l∥m B.α⊥β⇒l∥m C.l∥m⇒α⊥βD.l⊥m⇒α⊥β8.在△ABC中,||=1,||=3,∠BAC=60°,则||=()A.1 B.C.3 D.9.如图,长方体ABCD﹣A′B′C′D′中,AA′=3,AB=4,AD=5,E、F分别是线段AA′和AC 的中点,则异面直线EF与CD′所成的角是()A.30°B.45°C.60°D.90°10.直线l:3x+4y+4=0与圆C:(x﹣2)2+y2=9交于A,B两点,则cos∠ACB=()A.﹣ B.C.﹣D.11.如图,等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,BE平分∠ABC,AD 与BE交于点P,若=λ+μ,则λ等于()A.B.﹣1 C.D.12.如图,一个无盖圆台形容器的上、下底面半径分别为1和2,高为,AD,BC是圆台的两条母线(四边形ABCD是经过轴的截面).一只蚂蚁从A处沿容器侧面(含边沿线)爬到C处,最短路程等于()A.2 B.π+2 C. +2D. +2二、填空题(共4小题,每小题5分,满分20分)13.已知sinθ+cosθ=,则sin2θ的值为.14.已知斜率为2的直线l过点P(1,3),将直线l沿x轴向右平移m个单位得到直线l′,若点A(2,1)在直线l′上,则实数m=.15.已知||=1,|+|=,||=2,则在方向上的投影等于.16.如图,在三棱锥A﹣BCD中,AB⊥底面BCD,BC⊥CD,AB=BC=CD=2.该三棱锥外接球的表面积等于.三、解答题(共6小题,满分70分)17.已知O(0,0),A(2,﹣1),B(1,2).(1)求△OAB的面积;(2)若点C满足直线BC⊥AB,且AC∥OB,求点C的坐标.18.长方体截去一个三棱锥后的直观图和部分三视图如图所示.(1)画出这个几何体的俯视图,并求截面AEF的面积;(2)若M为EF的中点,求直线AM与平面ABCD所成角的正切值.19.已知函数f(x)=Asinx+cosx,A>0.(1)若A=1,求f(x)的单调递增区间;(2)函数f(x)在x=x0处取得最大值,求cosx0的值.20.在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为平行四边形,AB=1,AC=,AD=2,M、N分别为棱PA、BC的中点.(1)求证:MN∥平面PCD;(2)若二面角P﹣CD﹣B等于30°,求四棱锥P﹣ABCD的体积.21.如图,已知函数f(x)=msin(x+)(m>0)的图象在y轴右侧的最高点从左到右依次为B1、B2、B3、…,与x轴正半轴的交点从左到右依次为C1、C2、C3、….(1)若m=1,求•;,(i=1,2,3,…)中,有且只有三(2)在△OB1C1,△OB2C3,△OB3C5,…,△OB i C2i﹣1个锐角三角形,求实数m的取值范围.22.已知动点M与两点P1(,0),P2(2r,0)的距离之比为,r>0.(1)求动点M的轨迹Γ的方程;(2)已知菱形ABCD的一个内角为60°,顶点A,B在直线l:y=2x+3上,顶点C,D在Γ上,当直线l与Γ无公共点时,求菱形ABCD的面积S的取值范围.2015-2016学年福建省厦门市高一(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.=()A.B.C.D.【考点】运用诱导公式化简求值.【分析】根据诱导公式可知cos=cos(π+),进而求得答案.【解答】解:cos=cos(π+)=﹣cos=﹣故选D.2.已知向量=(1,2),向量=(x,﹣2),且⊥(﹣),则实数x等于()A.﹣4 B.4 C.0 D.9【考点】平面向量数量积的运算.【分析】①把转化为②用坐标运算公式=x1x2+y1y2【解答】解:∵∴,∴,∴1+2×2﹣(1×x﹣2×2)═0,∴x=9.故选D.3.已知圆C1:x2+y2=1,圆C2:x2+y2+4x﹣6y+4=0,则圆C1与圆C2的位置关系是()A.外离 B.相切 C.相交 D.内含【考点】圆与圆的位置关系及其判定.【分析】把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距,大于半径之差,而小于半径之和,可得两个圆关系.【解答】解:圆C1:x2+y2=1,表示以C1(0,0)为圆心,半径等于1的圆.圆C2:x2+y2+4x﹣6y+4=0,即(x+2)2+(y﹣3)2=9,表示以C2(﹣2,3)为圆心,半径等于3的圆.∴两圆的圆心距d==,∵3﹣1<<3+1,故两个圆相交.故选:C.4.函数y=tan(﹣)在一个周期内的图象大致是()A.B.C.D.【考点】正切函数的图象.【分析】根据函数y=tan(﹣)在包含原点的一个周期内是增函数,故排除C、D;令﹣<﹣<,求得x的范围,从而得出结论.【解答】解:根据函数y=tan(﹣)在包含原点的一个周期内是增函数,故排除C、D;令﹣<﹣<,求得﹣<x<,结合所给的选项,故选:A.5.已知O为坐标原点,点A的坐标为(3,﹣4),将线段OA绕点O逆时针旋转至OB,则点B的纵坐标为()A.﹣4 B.﹣3 C.3 D.4【考点】简单曲线的极坐标方程.【分析】设B(m,n),(m,n>0),由OA⊥OB,且|OA|=|OB|,运用两直线垂直的条件:斜率之积为﹣1,及两点的距离公式计算即可得到所求.【解答】解:设B(m,n),(m,n>0),由OA⊥OB,且|OA|=|OB|,可得﹣•=﹣1,=,解得m=4,n=3.即B的纵坐标为3.故选:C.6.为了得到函数y=2cos2x的图象,可以将函数y=1+cosx图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变【考点】函数y=Asin(ωx+φ)的图象变换;二倍角的余弦.【分析】利用二倍角公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:由于函数y=2cos2x=2•=cos2x+1,∴要得到得函数y=2cos2x的图象,可以将函数y=1+cosx图象上所有的点横坐标缩短到原来的倍,纵坐标不变,故选:B.7.已知直线l⊥平面α,直线m⊂平面β,下列命题中正确的是()A.α∥β⇒l∥m B.α⊥β⇒l∥m C.l∥m⇒α⊥βD.l⊥m⇒α⊥β【考点】空间中直线与平面之间的位置关系.【分析】直线l⊥平面α,直线m⊂平面β,当α∥β有l⊥m,当α⊥β有l∥m或l与m异面或相交,当l∥m有α⊥β,当l⊥m有α∥β或α∩β,得到结论【解答】解:直线l⊥平面α,直线m⊂平面β,当α∥β有l⊥β,进而可得l⊥m,故A不正确当α⊥β有l∥m或l与m异面或相交,故B不正确当l∥m有直线m⊥平面α,因为直线m⊂平面β,α⊥β,故C正确,当l⊥m有α∥β或α∩β,故D不正确,故选:C.8.在△ABC中,||=1,||=3,∠BAC=60°,则||=()A.1 B.C.3 D.【考点】平面向量数量积的运算.【分析】可知,,根据条件对上式两边平方进行数量积的运算即可得出,从而得出的值.【解答】解:===7;∴.故选:B.9.如图,长方体ABCD﹣A′B′C′D′中,AA′=3,AB=4,AD=5,E、F分别是线段AA′和AC 的中点,则异面直线EF与CD′所成的角是()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【分析】以A为原点,AB为x轴,AD为y轴,AA′为z轴,建立空间直角坐标系,利用向量法能求出异面直线EF与CD′所成的角.【解答】解:以A为原点,AB为x轴,AD为y轴,AA′为z轴,建立空间直角坐标系,则E(0,0,),F(2,,0),C(4,5,0),D′(0,5,3),=(2,,﹣),=(﹣4,0,3),∴cos<>===﹣,∴异面直线EF与CD′所成的角45°.故选:C.10.直线l:3x+4y+4=0与圆C:(x﹣2)2+y2=9交于A,B两点,则cos∠ACB=()A.﹣ B.C.﹣D.【考点】圆与圆的位置关系及其判定.【分析】求出圆心、半径,圆心到直线的距离,利用三角函数进行求解.【解答】解:圆C:(x﹣2)2+y2=9的圆心坐标为(2,0),半径为3,圆心到直线的距离为=2,∴cos∠ACB=,∴cos∠ACB=2cos2∠ACB﹣1=﹣1=﹣,故选:A.11.如图,等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,BE平分∠ABC,AD 与BE交于点P,若=λ+μ,则λ等于()A.B.﹣1 C.D.【考点】平面向量的基本定理及其意义.【分析】可以BC,DA所在直线为x,y轴,建立平面直角坐标系,并设,从而可根据条件求出A,B,C三点的坐标,并可求出,可写出直线BE的方程,从而求出点P的坐标,进而得出向量的坐标,带入即可建立关于λ,μ的方程,解出λ即可.【解答】解:以BC,DA所在直线为x,y轴,建立如图所示平面直角坐标系,设AB=,则:A(0,1),B(﹣1,0),C(1,0);根据正切的二倍角公式:设tan22.5=x,则,且x>0;∴解得x=;∴直线BE的方程为;∴令x=0,y=,即;∴,;∴;∴;解得.故选D.12.如图,一个无盖圆台形容器的上、下底面半径分别为1和2,高为,AD,BC是圆台的两条母线(四边形ABCD是经过轴的截面).一只蚂蚁从A处沿容器侧面(含边沿线)爬到C处,最短路程等于()A.2 B.π+2 C. +2D. +2【考点】多面体和旋转体表面上的最短距离问题.【分析】由题意求出圆台所在圆锥的母线长,利用弧长公式求出圆心角,把最短路程转化为三角形的边长求解.【解答】解:沿母线AD剪开并展开如图,∵圆台形容器的上、下底面半径分别为1和2,高为,∴OB=4,OE=2.设展开图的圆心角为α,则2π•1=2α,∴α=π,∴∠AOE=90°,∴AE==2.∴经过的最短路程为2.故选:A.二、填空题(共4小题,每小题5分,满分20分)13.已知sinθ+cosθ=,则sin2θ的值为﹣.【考点】二倍角的正弦;同角三角函数间的基本关系.【分析】将已知的等式左右两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,整理后即可求出sin2θ的值.【解答】解:将sinθ+cosθ=左右两边平方得:(sinθ+cosθ)2=,整理得:sin2θ+2sinθcosθ+cos2θ=1+sin2θ=,则sin2θ=﹣1=﹣.故答案为:﹣14.已知斜率为2的直线l过点P(1,3),将直线l沿x轴向右平移m个单位得到直线l′,若点A(2,1)在直线l′上,则实数m=2.【考点】直线的一般式方程.【分析】由已知直线l的斜率且过点P,根据直线方程的点斜式求出其解析式,然后根据平移的性质:左加右减,上加下减,得到直线l′,再根据点A在直线l′上,代入直线l′方程计算即可得答案.【解答】解:由直线l斜率为2且过点P(1,3),得y﹣3=2(x﹣1),即y=2x+1,将直线l沿x轴向右平移m个单位得到直线l′,则直线l′即y=2(x﹣m)+1,又点A(2,1)在直线l′上,∴2×(2﹣m)+1=1,解得m=2.故答案为:2.15.已知||=1,|+|=,||=2,则在方向上的投影等于.【考点】平面向量数量积的运算.【分析】根据条件对的两边平方即可求出的值,这样根据一个向量在另一个向量方向上的投影的计算公式便可得出所要求的投影的值.【解答】解:根据条件,==3;∴;在方向上的投影为:===;∴在方向上的投影等于.故答案为:.16.如图,在三棱锥A﹣BCD中,AB⊥底面BCD,BC⊥CD,AB=BC=CD=2.该三棱锥外接球的表面积等于12π.【考点】球的体积和表面积;球内接多面体.【分析】由题意将三棱锥补全为正方体,且正方体的对角线为该三棱锥外接球的直径,即2R=2,得到三棱锥A﹣BCD外接球的半径大小,即可求出三棱锥外接球的表面积.【解答】解:由题意将三棱锥补全为正方体,且正方体的对角线为该三棱锥外接球的直径,即2R=2,∴R=∴三棱锥外接球的表面积为4πR2=12π.故答案为:12π.三、解答题(共6小题,满分70分)17.已知O(0,0),A(2,﹣1),B(1,2).(1)求△OAB的面积;(2)若点C满足直线BC⊥AB,且AC∥OB,求点C的坐标.【考点】正弦定理;两点间距离公式的应用.【分析】(1)由两点之间的距离公式求出|OA、|OB|,由向量的坐标运算、数量积运算得到=0,判断出OA⊥OB,由三角形的面积公式求出△OAB的面积;(2)点C的坐标为(x,y),由向量的坐标运算求出、、,根据条件、向量垂直和平行的坐标条件列出方程组,求出x,y的值,可得点C的坐标.【解答】解:(1)由题意得,|OA|=|OB|=,∵=(2,﹣1),=(1,2),=0,∴OA⊥OB,则△OAB的面积S=;(2)设点C的坐标为(x,y),则=(x﹣1,y﹣2),=(x﹣2,y+1),且=(﹣1,3),∵直线BC⊥AB,且AC∥OB,∴=0,,则,解得,∴点C的坐标为(4,3).18.长方体截去一个三棱锥后的直观图和部分三视图如图所示.(1)画出这个几何体的俯视图,并求截面AEF的面积;(2)若M为EF的中点,求直线AM与平面ABCD所成角的正切值.【考点】直线与平面所成的角;棱柱、棱锥、棱台的体积.【分析】(1)根据直观图,可得俯视图,根据三角形的三条边,即可求截面AEF的面积;(2)将几何体补充为长方体,则∠AMG为直线AM与平面ABCD所成角,即可求直线AM 与平面ABCD所成角的正切值.【解答】解:(1)俯视图如图所示,截面AEF中AF=EF=2,AE=2,面积为=6;(2)将几何体补充为长方体,则∠AMG为直线AM与平面ABCD所成角.∵GM=,GA=2,∴tan∠AMG=.19.已知函数f(x)=Asinx+cosx,A>0.(1)若A=1,求f(x)的单调递增区间;(2)函数f(x)在x=x0处取得最大值,求cosx0的值.【考点】两角和与差的余弦函数;正弦函数的图象.【分析】(1)由题意利用两角和的正弦函数公式可得f(x)=sin(x+),由2kπ﹣≤x+≤2kπ+,k∈Z,即可解得f(x)的单调递增区间.(2)由两角和的正弦函数公式可得f(x)=sin(x+φ),其中tanφ=,由题意可求sin(x0+φ)=1,其中tanφ=,=,进而解得A,sinφ的值,解得x0=2kπ+﹣φ,k∈Z,利用诱导公式即可解得cosx0的值.【解答】解:(1)∵由题意可得:f(x)=sinx+cosx=sin(x+),∴由2kπ﹣≤x+≤2kπ+,k∈Z,解得:2kπ﹣≤x≤2kπ+,k∈Z,可得单调递增区间为:[2kπ﹣,2kπ+],k∈Z.(2)∵f(x)=Asinx+cosx=sin(x+φ),其中tanφ=,且函数f(x)在x=x0处取得最大值,∴sin(x0+φ)=1,其中tanφ=,=,∴由A>0,解得:A=2,sinφ==,x0+φ=2kπ+,k∈Z,∴x0=2kπ+﹣φ,k∈Z,∴cosx0=cos(2kπ+﹣φ)=sinφ=.20.在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为平行四边形,AB=1,AC=,AD=2,M、N分别为棱PA、BC的中点.(1)求证:MN∥平面PCD;(2)若二面角P﹣CD﹣B等于30°,求四棱锥P﹣ABCD的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取PD中点E,连结NE,CE,可证MNEC为平行四边形,由MN∥CE即可判定MN∥平面PCD;(2)证明AC⊥CD,确定∠PCA是二面角P﹣CD﹣B的平面角,求出PA,即可求四棱锥P ﹣ABCD的体积.【解答】(1)证明:取PD中点E,连结NE,CE.∵N为PA中点,∴NE∥AD,NE=AD,又M为BC中点,底面ABCD为平行四边形,∴MC∥AD,MC=AD.∴NE∥MC,NE=MC,即MNEC为平行四边形,∴MN∥CE.∵EC⊂平面PCD,且MN⊄平面PCD,∴MN∥平面PCD.(2)解:∵AB=1,AC=,AD=2,∴AB2+AC2=AD2,∴AC⊥CD,∵PA⊥平面ABCD,∴PC⊥CD,∴∠PCA是二面角P﹣CD﹣B的平面角,即∠PCA=30°,∴PA=tan30°=1,∴四棱锥P﹣ABCD的体积=×=.21.如图,已知函数f(x)=msin(x+)(m>0)的图象在y轴右侧的最高点从左到右依次为B1、B2、B3、…,与x轴正半轴的交点从左到右依次为C1、C2、C3、….(1)若m=1,求•;,(i=1,2,3,…)中,有且只有三(2)在△OB1C1,△OB2C3,△OB3C5,…,△OB i C2i﹣1个锐角三角形,求实数m的取值范围.【考点】正弦函数的图象.【分析】(1)利用正弦函数的图象的特征求得B1、B2、B3、…,与C1、C2、C3、…的坐标,利用两个向量的数量积公式求得•的值.(2)由题意可得∠OB3C5为锐角,且∠OB4C7为钝角,故有+﹣OC5>0,且+﹣OC7<0,从而求得m的范围.【解答】解:(1)若m=1,则令x+分别等于,,…,可得B1(,1)、B2(,1)、B3(,1)…,令x+分别等于π,2π,3π,…,C1(,0)、C(,0)、C3(,0)…,∴•=(,1)•(1,﹣1)=﹣1=﹣.(2)由题意可得函数f(x)=msin(x+)(m>0)的周期为=4,△OB3C5为锐角三角形,且△OB4C7为钝角角三角形,即∠OB3C5为锐角,且∠OB4C7为钝角,∴+﹣OC5>0,且+﹣OC7<0,即+m2++m2﹣>0,且+m2++m2﹣<0,求得<m<,即<m<.22.已知动点M与两点P1(,0),P2(2r,0)的距离之比为,r>0.(1)求动点M的轨迹Γ的方程;(2)已知菱形ABCD的一个内角为60°,顶点A,B在直线l:y=2x+3上,顶点C,D在Γ上,当直线l与Γ无公共点时,求菱形ABCD的面积S的取值范围.【考点】轨迹方程.【分析】(1)利用直接法,求动点M的轨迹Γ的方程;(2)求出0<r<,可得得0<b<3,求出a的范围,即可求菱形ABCD的面积S的取值范围.【解答】解:(1)设M(x,y),则∵动点M与两点P1(,0),P2(2r,0)的距离之比为,∴=,化简可得x2+y2=r2;(2)∵直线l与Γ无公共点,∴圆心到直线的距离>r,∴0<r<设AB=a,直线CD的方程为y=2x+b,则圆心到直线的距离为d=<r,∴0<b<3,∵=,∴b=3﹣a,∴0<a<,∴菱形ABCD的面积S=2=∈(0,).。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.角α的终边过点(4,3),(0)P k k k -<,则cos α的值是( ) A .35B .45C .35-D .-45【答案】B 【解析】 试题分析:()()()0553422<-==+-=k k k k k r ,而5454cos =--==k k r x α,故选B. 考点:三角函数的定义2.sin20°cos10°﹣cos160°sin10°=( ) A .23-B .23C .21-D .21【答案】D 【解析】试题分析:原式等于()2130sin 1020sin 10sin 20cos 10cos 20sin 000000==+=+,故选D. 考点:两角和与差的三角函数3.设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =( )A . 1-B .1C .2-D .2 【答案】C考点:向量数量积4.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y=sin (2x+2π) B .y=cos (2x+2π) C .y=sin2x+cos2x D .y=sinx+cosx【答案】B考点:三角函数的性质5.如图,在△OAB 中,P 为线段AB 上的一点, =x+y,且=3,则( )A .x=,y=B .x=,y=C .x=,y=D .x=,y=【答案】D 【解析】试题分析:()OP OA OB OP PA BP -=-⇔=33,整理为OP OB OA OP 34+=⇔+=所以43=x ,41=y ,故选D. 考点:平面向量基本定理6.若3cos()45πα-=,则sin 2α=( ) A .725 B .725- C .15- D .15【答案】B【解析】 试题分析:()53sin cos 224cos =+=⎪⎭⎫⎝⎛-αααπ,两边平方后得:()2518sin cos 2=+αα25182sin 1=+⇔α,解得2572sin -=α,故选B. 考点:三角函数恒等变形 7.将函数y=2sin (2x+6π)的图像向右平移4π个周期后,所得图像对应的函数为( )A .y=2sin(2x+4π) B .y=2sin(2x+3π) C .y=2sin(2x –4π) D .y=2sin(2x –3π)【答案】D考点:三角函数的变换【易错点睛】本题考查了三角函数的变换,属于基础题型,在三角函数的变换中,容易出错在两个地方,举例,①函数x y 2sin =向左平移6π个单位得到哪个函数,很多同学会写成⎪⎭⎫⎝⎛+=62sin πx y ,谨记“左+右-”指的是x ,所以应是⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+=32sin 62sin ππx x y ,②⎪⎭⎫ ⎝⎛+=62sin πx y 上所有点的横坐标伸长到原来的2倍,很多同学会写成⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=12sin 6221sinππx x y ,谨记,横坐标伸长或缩短到原来的ω1倍,仅仅是x 前面的系数变了,与ϕ无关,所以应是⎪⎭⎫⎝⎛+=6sin πx y . 8.函数=sin()y A x ωϕ+的部分图像如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(2+)6y x π=D .2sin(2+)3y x π=【答案】A考点:()ϕω+=x A y sin 的图像 9.()()01tan181tan 27++的值是( )A B .1.2 D .()002tan18tan 27+【答案】C 【解析】试题分析:根据公式()127tan 18tan 127tan 18tan 2718tan 000000=-+=+,所以000027tan 18tan 127tan 18tan -=+,原式等于227tan 18tan 27tan 18tan 10000=+++,故选C.考点:两角和的正切函数10.在ABC ∆+ABC ∆一定是( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定 【答案】C 【解析】-+BABA⋅-+=⋅++222222,化简为0=⋅,即BC BA ⊥,角B 为直角,所以是直角三角形,故选C. 考点:向量数量积11.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( ) A .()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A考点:三角函数的图像和性质【方法点睛】本题考查了()ϕω+=x A y sin ⎪⎭⎫⎝⎛<>>200πϕω,,A 的性质,本题考查了两个问题,一是如何求函数解析式,二是如何判断三角函数的性质,A 是振幅,一般根据函数的最值求解,ωπ2=T ,ω一般根据周期求解,ϕ一般根据“五点法”求解,而象本题给出三角函数后,如何判断所给区间是否具有单调性,首先由x 的区间,代入求ϕω+=x u 的区间,然后判断ϕω+=x u 是否落在u y sin =的单调区间内. 12.定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[-3,-2]上是减函数,若,αβ是锐角三角形的两个内角,则( )A .()()sin sin f f αβ>B .()()sin cos f f αβ<C .()()sin cos f f αβ>D .()()cos cos f f αβ< 【答案】C考点:函数的性质【思路点睛】本题考查了函数性质与解三角形的综合考察,属于中档题型,本题的难点是如何转化锐角三角形这个条件,即若是锐角三角形,需满足⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<<<<22020πβαπβπα,这样βπα->2,这样根据函数的单调性,两边取三角函数,ββπαcos 2sin sin =⎪⎭⎫⎝⎛->,或是⎪⎭⎫⎝⎛-<βπα2cos cos βsin =,这个难点克服后,就容易想到根据函数的性质,转化为求函数()x f 在区间()1,0的单调性.第Ⅱ卷(共90分)二、填空题(每题4分,满分28分,将答案填在答题纸上) 13.设向量a =(x ,x+1),b =(1,2),且a ⊥b ,则x= . 【答案】23- 【解析】试题分析:根据两向量垂直,可得()0211=⨯++⨯x x ,解得32-=x ,故填:32-.考点:向量数量积14.已知向量()()(),12,4,5,,10OA k OB OC k ===-,且,,A B C 三点共线,则k = . 【答案】23-考点:向量共线的充要条件 15.已知,022ππαπβ<<<<,3tan 4α=-,()5cos 13βα-=, 则sin β的值为 . 【答案】6365【解析】试题分析:0-<<-αβπ,又因为()0135cos >=-αβ,所以02<-<-αβπ,()1312sin -=-αβ, 因为43tan -=α,所以53sin =α,54cos -=α,而()[]()()6563131********sin cos cos sin sin sin =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-+⨯=-+-=-+=αβααβααβαβ,故填:6563. 考点:三角函数恒等变形16.函数()sin(2)sin()()66f x x x x ππ=++-∈R 的值域为 .【答案】928⎡⎤-⎢⎥⎣⎦,【解析】 试题分析:设t x =-6π,那么()8941sin 2sin sin 21sin 2cos sin 22sin 22+⎪⎭⎫ ⎝⎛--=+-=+=+⎪⎭⎫ ⎝⎛+=t t t t t t t t f π,因为[]1,1sin -∈t ,所以当41sin =t 时,函数取得最大值89,当1sin -=t 时,函数取得最小值-2,所以函数的值域为⎥⎦⎤⎢⎣⎡-89,2,故填:⎥⎦⎤⎢⎣⎡-89,2.考点:三角函数的性质17.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为 .【答案】81考点:向量数量积18.已知函数5()),6f x x π=+方程()f x m =在区间[0,]2π上有两个不同的实数根,则实数m 的取值范围是 .【答案】( 【解析】试题分析:如图,画出函数u y sin 3=的图像,当⎥⎦⎤⎢⎣⎡∈2,0πx 时,⎥⎦⎤⎢⎣⎡∈+=611,65652πππx u ,此时()⎥⎦⎤⎢⎣⎡-∈23,3x f ,当2π=x 时,23-=y 根据图像可得若有两个不同的实根,那么⎥⎦⎤ ⎝⎛-∈23,3m ,故填:⎥⎦⎤⎝⎛23-3-,.考点:三角函数图像的应用【方法点睛】本题考查了三角函数图像的应用,属于基础题型,以复合函数的观点解决函数零点问题,首先设π652+=x u ,并且求出u 的取值范围,然后画出函数u y sin 3=的图像,这问题转化为m y =与三角函数图像交点的问题,通过图像很容易求出没有交点,一个交点,以及两个交点的m 的取值范围问题,切记,最好不要画⎪⎭⎫ ⎝⎛+=π652sin 3x y 的图像,因为画这个图像对很多同学来说比较浪费时间得不偿失,一定画换元后的图像.19.已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 . 【答案】9考点:三角函数的性质【思路点睛】本题考查了三角函数的性质,属于中档题型,本题的难点是如何将这两个条件结合在一起,ω是与周期有关的量,对称轴与零点间的距离也与周期有关,这样根据图像得到244--4kTT +=⎪⎭⎫⎝⎛ππ,即ωππ24124122⋅+=+=k T k ,第二个条件⎪⎭⎫⎝⎛36518ππ,是单调区间的子集,所以其长度小于等于半个周期,这样就得到了ω的一个范围与形式,最后求最大值,只能通过从最大的逐个代起,找到ω的最大值. 三、解答题 (本大题共5小题,共62分.解答应写出文字说明、证明过程或演算步骤.) 20.(本题满分12分)已知||=2,||=3,(2﹣3)•(2+)=3. (1)求与的夹角的余弦值; (2)求|+|;(3)求在+方向上的投影.【答案】(1)127-;(2)6;(3)126.∴cos <•>===﹣;(2)|+|===;(3)在+方向上的投影为===.考点:向量数量积【方法点睛】本题考查了向量数量积,属于基础题型,所涉及的公式包括(1)θcos b a b a=⋅,(2)ba b a⋅=θcos ,(3)22a a =,以及()2ba b a+=+,(4)0=⋅⇔⊥b a b a,(5)投影公式:向量a在b 方向上的投影为θcos a或是bb a ⋅,对于这类型的向量问题,要谨记公式,并且熟练运用公式避免计算错误.21.(本题满分16分) (1)已知,求的值.(2) 已知3177cos(),,45124x x πππ+=<<求2sin 22sin 1tan x x x +-的值.【答案】(1)41;(2)7528. ∴.原式==,由以上知cosx ﹣sinx≠0,考点:三角函数的恒等变形求值 22.(本题满分为10分)如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD 上划出一片三角形地块CMN 建设美丽乡村生态公园,给村民休闲健身提供去处.点M ,N 分别在边AB ,AD 上.由于村建规划及保护生态环境的需要,要求△AMN 的周长为2千米,请探究∠MCN 是否为定值,若是,求出此定值,若不是,请说明理由.【答案】∠MCN 是定值,且∠MCN=4π. 【解析】试题分析:设∠BCM=α,∠DCN=β,AM=x ,AN=y ,则BM=1﹣x ,DN=1﹣y ,若MCN ∠为定值,那么βα+为定值,即()βα+tan 为定值,根据所设条件,得到()βα+tan ()xyy x y x -++-=2,因为AMN ∆的周长等于222=+++y x y x ,将此式进行化简为()y x y x +-=+222,两边平方得到()22-+=y x xy ,代入正切公式得到定值.试题解析:设∠BCM=α,∠DCN=β,AM=x ,AN=y ,则BM=1﹣x ,DN=1﹣y ,在△CBM 中,tan α=1﹣x ,在△CDN 中,tan β=1﹣y ,所以:tan (α+β)=()()()xyy x y x y x y x -++-=----+-=-+211111tan tan 1tan tan βαβα,(5分) △AMN 的周长为2千米,所以222=+++y x y x ,化简得()22-+=y x xy ,代入(*)式,可得tan (α+β)=()()()[]()()1222222=+-+-=-+-++-=-++-y x y x y x y x y x xy y x y x , 由于α+β(0,)2π∈,所以α+β=4π,所以∠MCN 是定值,且∠MCN=4π.﹣﹣﹣(10分)考点:三角函数的实际应用 23.(本题满分为12分)已知函数f (x )=2sin ωxcos ωx+23sin 2ωx ﹣3(ω>0)的最小正周期为π. (1)求函数f (x )的单调增区间; (2)将函数f (x )的图象向左平移6π个单位,再向上平移1个单位,得到函数y=g (x )的图象,若y=g(x )在[0,b](b >0)上至少含有10个零点,求b 的最小值.【答案】(1)Z k k k ∈⎥⎦⎤⎢⎣⎡+-,125,12ππππ;(2)1259π.试题解析:(1)由题意得f (x )=2sin ωxcos ωx+23sin 2ωx ﹣3=sin2ωx ﹣3cos2ωx=2sin (2ωx ﹣3π),由最小正周期为π,得ω=1,所以()⎪⎭⎫⎝⎛-=32sin 2πx x f , 由Z k k x k ∈+≤-≤-,223222πππππ,整理得k k x k ,12512ππππ+≤≤-Z ∈, 所以函数f (x )的单调增区间是Z k k k ∈⎥⎦⎤⎢⎣⎡+-,125,12ππππ.【方法点睛】本题考查了三角函数的恒等变换以及三角函数图像的问题,属于基础题型,重点说说对于(1)所考查到的三角恒等变换的问题,比较常见,所使用的公式包括ααα2sin 21cos sin =,22cos 1sin 2αα-=,22cos 1cos 2αα+=,降幂后采用辅助角公式化简,()ϕ++=+x b a x b x a sin cos sin 22,其中ab=ϕtan ,这样函数就可以化简为()ϕω+=x A y sin .24.(本题满分为12分)已知函数x c x b a x f sin cos )(++=的图像经过点)1,0(A 及)1,2(πB(1)已知)2,0(π∈x 时,2|)(|≤x f 恒成立,求实数a 的取值范围;(2)当a 取上述范围内的最大整数....值时,若有实数φ,,n m ,使得1)()(=-+φx nf x mf 对于 R x ∈恒成立,求φ,,n m 的值.【答案】(1)[]234,2-+;(2)161=m ,161=n ,Z k k ∈+=,2ππφ. 【解析】试题分析:(1)首先根据条件可得a c b -==1,将函数转化为()()a x a x f +⎪⎭⎫ ⎝⎛+-=4sin 12π,根据条件可得⎪⎭⎫⎝⎛+4sin πx 的范围,最终讨论a -1的取值范围后,得到函数的值域,根据条件()2≤x f 得到a 的取值范围;(2)由(1)的结论可得8=a ,代入()()1=-+ϕx nf x mf ,要使上式对R x ∈∀恒成立,则需满足()⎪⎩⎪⎨⎧==+=+0sin 0cos 18φφn n m n m ,得到参数的取值范围.试题解析:由12,1)0(=⎪⎭⎫⎝⎛=πf f ,可得,1,1=+=+c a b a , 所以a c b -==1,所以()()a x a a x x a x f +⎪⎭⎫ ⎝⎛+-=++-=4sin 12)cos )(sin 1(π,(1)设t x =⎪⎭⎫⎝⎛+4sin π,()a t a y +-=12, 因为⎪⎭⎫ ⎝⎛∈2,0πx ,所以⎪⎭⎫ ⎝⎛∈+πππ43,44x ,即⎥⎦⎤ ⎝⎛∈1,22t ,(2)可得8=a ,则()⎪⎭⎫⎝⎛+-=4sin 278πx x f 由()()1=-+φx nf x mf ,可得()14sin 274sin 278=⎪⎭⎫⎝⎛-+-⎪⎭⎫ ⎝⎛+-+φππx x m n m ,令X x =+4π得,考点:1.三角函数的性质;2.恒成立问题.。
2015-2016学年某某师大附中高一(上)期末数学试卷(实验班)一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.若直线l的斜率为,则直线l的倾斜角为()A.115°B.120°C.135°D.150°2.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的3.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.1 B.2 C.D.4.一束光线自点P(﹣1,1,1)发出,被yOz平面反射到达点Q(﹣6,3,3)被吸收,那么光线所走的距离是()A. B. C. D.5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的母线与底面所称的角为()A.30° B.45° C.60° D.75°6.下列命题正确的是()A.若直线l不平行于平面α,则α内不存在直线平行于直线lB.若直线l不垂直于平面α,则α内不存在直线垂直于直线lC.若平面α不平行于平面β,则β内不存在直线平行于平面αD.若平面α不垂直于平面β,则β内不存在直线垂直于平面α7.已知BC是圆x2+y2=25的动弦,且|BC|=6,则BC的中点的轨迹方程是()A.x2+y2=1 B.x2+y2=9 C.x2+y2=16 D.x2+y2=48.若直线l1:(2m+1)x﹣4y+3m=0与直线l2:x+(m+5)y﹣3m=0平行,则m的值为()A.B.C.D.﹣19.直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,则实数k的取值X围是()A. B. C.D.10.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.411.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为()A.B.4 C.D.12.若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为()A.24 B.48 C.72 D.78二、填空题:(本大题共6小题,每小题5分,共30分,把答案填在答卷上)13.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为.14.函数f(x)=的最小值为.15.设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0,y0),且x0+y0>4,则的取值X围为.16.如右图,三棱锥A﹣BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=2,AD=,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是.17.若直线m被两平行线l1:x+y=0与l2:x+y+=0所截得的线段的长为2,则m的倾斜角可以是①15° ②45° ③60° ④105°⑤120° ⑥165°其中正确答案的序号是.(写出所有正确答案的序号)18.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为.三、解答题:(本大题共5小题,满分60分)19.已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).(Ⅰ)求点A和点B的坐标;(Ⅱ)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.20.如图(1),在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1、G2、G3三点重合于点G.证明:(1)G在平面SEF上的射影为△SEF的垂心;(2)求二面角G﹣SE﹣F的正弦值.21.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,)22.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(I)证明:BE∥平面ADP;(II)求直线BE与平面PDB所成角的正弦值.23.如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.(1)证明:不论点M如何选取,直线MN都通过一定点S;(2)当时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使=求点K的轨迹.2015-2016学年某某师大附中高一(上)期末数学试卷(实验班)参考答案与试题解析一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求)1.若直线l的斜率为,则直线l的倾斜角为()A.115°B.120°C.135°D.150°【考点】直线的倾斜角.【分析】由倾斜角与斜率的关系和倾斜角的X围,结合题意即可算出直线倾斜角的大小.【解答】解:∵直线的斜率为﹣,∴直线倾斜角α满足tanα=﹣,结合α∈[0°,180°),可得α=150°故选:D.2.已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的【考点】棱锥的结构特征.【分析】正三棱锥的棱长都相等,三棱锥的四个面到球心的距离应相等,所以圆心不可能在三棱锥的面上【解答】解:(1)当平行于三棱锥一底面,过球心的截面如(1)图所示;(2)过三棱锥的一条棱和圆心所得截面如(2)图所示;(3)过三棱锥的一个顶点(不过棱)和球心所得截面如(3)图所示;(4)棱长都相等的正三棱锥和球心不可能在同一个面上,所以(4)是错误的.故答案选C.3.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为()A.1 B.2 C.D.【考点】平面图形的直观图.【分析】将直观图还原成平面图形,根据斜二侧画法原理求出平面图形的边长,计算面积.【解答】解:作出△ABC的平面图形,则∠ACB=2∠A′C′B′=90°,BC=B′C′=2,AC=2A′C′=2,∴△ABC的面积为=2.故选:B.4.一束光线自点P(﹣1,1,1)发出,被yOz平面反射到达点Q(﹣6,3,3)被吸收,那么光线所走的距离是()A. B. C. D.【考点】空间两点间的距离公式;空间中的点的坐标.【分析】求出P关于平面xoy的对称点的M坐标,然后求出MQ的距离即可.【解答】解:点P(﹣1,1,1)平面xoy的对称点的M坐标(﹣1,1,﹣1),一束光线自点P(﹣1,1,1)发出,遇到平面xoy被反射,到达点Q(﹣6,3,3)被吸收,那么光所走的路程是: =.故选D.5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的母线与底面所称的角为()A.30° B.45° C.60° D.75°【考点】旋转体(圆柱、圆锥、圆台).【分析】设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出圆锥的母线与底面所成角的余弦值,也就求出了夹角的度数.【解答】解:设圆锥的母线长为R,底面半径为r,则:πR=2πr,∴R=2r,设母线与底面所成角为θ,则母线与底面所成角的余弦值cosθ==,∴母线与底面所成角是60°.故选:C.6.下列命题正确的是()A.若直线l不平行于平面α,则α内不存在直线平行于直线lB.若直线l不垂直于平面α,则α内不存在直线垂直于直线lC.若平面α不平行于平面β,则β内不存在直线平行于平面αD.若平面α不垂直于平面β,则β内不存在直线垂直于平面α【考点】空间中直线与平面之间的位置关系.【分析】逐个分析选项,举出反例即可.【解答】解:对于A,若l⊂α,则α内存在无数条直线与l平行,故A错误.对于B,若l⊂α,则α内存在无数条直线与l垂直,故B错误.对于C,若α∩β=l,则在α存在无数条直线与l平行,故这无数条直线都与平面β平行,故C错误.对于D,若β内存在直线l垂直于平面α,则α⊥β,即命题D的逆否命题成立,故命题D成立,故D正确.7.已知BC是圆x2+y2=25的动弦,且|BC|=6,则BC的中点的轨迹方程是()A.x2+y2=1 B.x2+y2=9 C.x2+y2=16 D.x2+y2=4【考点】直线与圆的位置关系.【分析】设BC的中点的坐标,由弦长公式和两点间的距离公式列出式子,化简后可得BC的中点的轨迹方程.【解答】解:设BC的中点P的坐标是(x,y),∵BC是圆x2+y2=25的动弦,|BC|=6,且圆心O(0,0),∴|PO|==4,即,化简得x2+y2=16,∴BC的中点的轨迹方程是x2+y2=16,故选:C.8.若直线l1:(2m+1)x﹣4y+3m=0与直线l2:x+(m+5)y﹣3m=0平行,则m的值为()A.B.C.D.﹣1【考点】直线的一般式方程与直线的平行关系.【分析】直线l1的斜率一定存在,所以,当两直线平行时,l2的斜率存在,求出l2的斜率,利用它们的斜率相等解出m的值.【解答】解:直线l1的斜率一定存在,为,但当m=﹣5时,l2的斜率不存在,两直线不平行.当m≠﹣5时,l2的斜率存在且等于=≠=﹣1,解得m=﹣,故选:B.9.直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,则实数k的取值X围是()A. B. C.D.【考点】直线与圆的位置关系.【分析】求出直线l:y=kx﹣1与曲线C相切时k的值,即可求得实数k的取值X围.【解答】解:如图所示,直线y=kx﹣1过定点A(0,﹣1),直线y=0和圆(x﹣2)2+y2=1相交于B,C两点,,,,∵直线l:y=kx﹣1与曲线C:x2+y2﹣4x+3=0有且仅有2个公共点,∴0,故选A.10.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【考点】直线与圆的位置关系.【分析】根据圆心C到O(0,0)的距离为5,可得圆C上的点到点O的距离的最大值为6.再由∠APB=90°,可得PO=AB=m,可得m≤6,从而得到答案.【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.11.过M(1,3)引圆x2+y2=2的切线,切点分别为A、B,则△AMB的面积为()A.B.4 C.D.【考点】圆的切线方程.【分析】作出图象易得sin∠OMB,进而可得cos∠AMB和sin∠AMB=,代入三角形的面积公式计算可得.【解答】解:如图,由题意可得|OM|==,由勾股定理可得|MA|=|MB|==2,故sin∠OMB===,∴cos∠AMB=cos2∠OMB=2cos2∠OMB﹣1=﹣,故sin∠AMB=,三角形面积S=×|MA|×|MB|×sin∠AMB=,故选:C.12.若两条异面直线所成的角为90°,则称这对异面直线为“理想异面直线对”,在连接正方体各顶点的所有直线中,“理想异面直线对”的对数为()A.24 B.48 C.72 D.78【考点】异面直线的判定.【分析】可把连接正方体各顶点的所有直线分成3组,棱,面上的对角线,体对角线,分别组合,找出可能的”理想异面直线对”,再相加即可.【解答】解:先把连接正方体各顶点的所有直线有三种形式.分别是正方体的棱,有12条,各面对角线,有12条,体对角线,有4条.分几种情况考虑第一种,各棱之间构成的“理想异面直线对”,每条棱有4条棱和它垂直,∴共有=24对第二种,各面上的对角线之间构成的“理想异面直线对”,每相对两面上有2对互相垂直的异面对角线,∴共有=6对第三种,各棱与面上的对角线之间构成的“理想异面直线对”,每条棱有2条面上的对角线和它垂直,共有2×12=24对第四种,各体对角线与面上的对角线之间构成的“理想异面直线对”,每条体对角线有6条面上的对角线和它垂直,共有6×4=24对最后,把各种情况得到的结果相加,得,24+6+24+24=78对故选D二、填空题:(本大题共6小题,每小题5分,共30分,把答案填在答卷上)13.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为3π.【考点】由三视图求面积、体积;球的体积和表面积.【分析】由三视图得到这是一个四棱锥,底面是一个边长是1的正方形,一条侧棱与底面垂直,根据求与四棱锥的对称性知,外接球的直径是AD,利用勾股定理做出球的直径,得到球的面积.【解答】解:由主视图和左视图是腰长为1的两个全等的等腰直角三角形,得到这是一个四棱锥,底面是一个边长是1的正方形,一条侧棱AE与底面垂直,∴根据求与四棱锥的对称性知,外接球的直径是AC根据直角三角形的勾股定理知AC==,∴外接球的面积是,故答案为:3π14.函数f(x)=的最小值为2.【考点】两点间距离公式的应用;函数的最值及其几何意义.【分析】由配方可得函数表示f(x)表示P(x,0)到两点A(3,2),B(5,2)的距离之和.作出点A关于x轴的对称点A'(3,﹣2),连接A'B,交x轴于P,运用两点之间线段最短,由两点的距离公式计算即可得到.【解答】解:函数f(x)+=+,设点P(x,0),A(3,2),B(5,2),则f(x)表示P到两点A,B的距离之和.作出点A关于x轴的对称点A'(3,﹣2),连接A'B,交x轴于P,则||PA|+|PB|=|PA'|+|PB|≥|A'B|==2,则当A,P,B'三点共线,取得最小值2.故答案为:2.15.设点P、Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,线段PQ中点为M(x0,y0),且x0+y0>4,则的取值X围为[1,3).【考点】中点坐标公式.【分析】设P(x1,y1),Q(x2,y2),则3x1﹣y1﹣5=0,3x2﹣y2﹣13=0,两式相加得3(x1+x2)﹣(y1+y2)﹣8=0,设M(x0,y0),则由中点的坐标公式可得3x0﹣y0﹣4=0,又x0+y0>4即点M在直线x+y=4上或者其右上方区域,画图得到M位于以(2,2)为端点向上的射线上,数形结合可得答案.【解答】解:设P,Q两点的坐标为P(x1,y1),Q(x2,y2),∵点P,Q分别在直线3x﹣y+5=0和3x﹣y﹣13=0上运动,∴3x1﹣y1﹣5=0,①3x2﹣y2﹣13=0,②两式相加得3(x1+x2)﹣(y1+y2)﹣8=0.设线段PQ的中点M(x0,y0),则x1+x2=2x0,y1+y2=2y0.∴3x0﹣y0﹣4=0.即y0=3x0﹣4.又M点的坐标满足x0+y0>4,即M恒在直线x+y=4上或者其右上方区域,∴线段PQ的中点M满足,如图.联立,解得M(2,2),∴M位于以(2,2)为端点向上的射线上,当M(2,2)时,k OM=1,∴直线OM斜率的取值X围是[1,3).16.如右图,三棱锥A﹣BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=2,AD=,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是.【考点】多面体和旋转体表面上的最短距离问题.【分析】由题意画出图形,可得∠AOD为直角,求出OA的长度,然后利用圆的周长公式求解.【解答】解:如图,取BC中点O,在△ABC和△BCD中,∵CA=AB=BC=CD=DB=2,∴AO=DO=,在△AOD中,AO=DO=,又AD=,∴=,则,∴将该三棱锥以BC为轴转动,到点A落到平面α内时,A、D两点所经过的路程都是以O 为圆心,以OA为半径的圆周,∴A、D两点所经过的路程之和是.故答案为:.17.若直线m被两平行线l1:x+y=0与l2:x+y+=0所截得的线段的长为2,则m的倾斜角可以是①15° ②45° ③60° ④105°⑤120° ⑥165°其中正确答案的序号是④或⑥.(写出所有正确答案的序号)【考点】直线的倾斜角;直线的一般式方程与直线的平行关系.【分析】由两平行线间的距离=,得直线m和两平行线的夹角为30°.再根据两条平行线的倾斜角为135°,可得直线m的倾斜角的值.【解答】解:由两平行线间的距离为=,直线m被平行线截得线段的长为2,可得直线m和两平行线的夹角为30°.由于两条平行线的倾斜角为135°,故直线m的倾斜角为105°或165°,故答案为:④或⑥.18.如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱AA′,CC′的中点,过直线EF的平面分别与棱BB′、DD′交于M、N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面B DD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长l=f(x),x∈0,1]是单调函数;④四棱锥C′﹣MENF的体积v=h(x)为常函数;以上命题中真命题的序号为①②④.【考点】命题的真假判断与应用;棱柱、棱锥、棱台的体积;平面与平面垂直的判定.【分析】①利用面面垂直的判定定理去证明EF⊥平面BDD′B′.②四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可.③判断周长的变化情况.④求出四棱锥的体积,进行判断.【解答】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN 长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N 分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.三、解答题:(本大题共5小题,满分60分)19.已知△ABC中,BC边上的高所在的直线方程为x﹣2y+1=0,∠A的角平分线所在的直线方程为y=0,点C的坐标为(1,2).(Ⅰ)求点A和点B的坐标;(Ⅱ)又过点C作直线l与x轴、y轴的正半轴分别交于点M,N,求△MON的面积最小值及此时直线l的方程.【考点】与直线关于点、直线对称的直线方程.【分析】(I)列方程组求出A点坐标,根据两直线垂直的条件求出BC、AB所在的直线方程,然后解方程组得B的坐标;(II)若直线分别与x轴、y轴的负半轴交于A,B两点,说明直线的斜率小于0,设出斜率根据直线过的C点,写出直线方程,求出△MON面积的表达式,利用基本不等式求出面积的最小值,即可得到面积最小值的直线的方程.【解答】解:(Ⅰ)因为点A在BC边上的高x﹣2y+1=0上,又在∠A的角平分线y=0上,所以解方程组得A(﹣1,0).∵BC边上的高所在的直线方程为x﹣2y+1=0,∴k BC=﹣2,∵点C的坐标为(1,2),所以直线BC的方程为2x+y﹣4=0,∵k AC=﹣1,∴k AB=﹣k AC=1,所以直线AB的方程为x+y+1=0,解方程组得B(5,﹣6),故点A和点B的坐标分别为(﹣1,0),(5,﹣6).(Ⅱ)依题意直线的斜率存在,设直线l的方程为:y﹣2=k(x﹣1)(k<0),则,所以,当且仅当k=﹣2时取等号,所以(S△MON)min=4,此时直线l的方程是2x+y﹣4=0.20.如图(1),在正方形SG1G2G3中,E、F分别是G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体如图(2),使G1、G2、G3三点重合于点G.证明:(1)G在平面SEF上的射影为△SEF的垂心;(2)求二面角G﹣SE﹣F的正弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(1)根据线面垂直的性质定理即可证明G在平面SEF上的射影为△SEF的垂心;(2)根据二面角平面角的定义作出二面角的平面角,结合三角形的边角关系即可求二面角G﹣SE﹣F的正弦值.【解答】证明:(1)设G在平面SEF上的射影为点H,则GH⊥平面SEF.∵折前SG1⊥G1E、SG3⊥G3F,∴折后SG⊥GE、SG⊥GF,∵GE∩GF=G,∴SG⊥平面GEF…∵,,SG∩GH=G,∴EF⊥平面SGH…∵SH⊂平面SGH,∴EF⊥SH,同理,EH⊥SF,∴H为△SEF的垂心.…(2)过G作GO⊥SE交SE于点O,连OH,则∠GOH即为所求二面角G﹣SE﹣F的平面角.…∵,又∵GO⊥SE,GH∩GO=G,∴SE⊥平面GHO∵OH⊂平面GHO,∴SE⊥OH,∴∠GOH为所求二面角G﹣SE﹣F的平面角.…设正方形SG1G2G3的边长为1,则在Rt△SEG中,∴…又,∴sin∠GOH==,∴二面角G﹣SE﹣F的正弦值为.…21.一艘船在航行过程中发现前方的河道上有一座圆拱桥.在正常水位时,拱桥最高点距水面8m,拱桥内水面宽32m,船只在水面以上部分高6.5m,船顶部宽8m,故通行无阻,如图所示.(1)建立适当的平面直角坐标系,求正常水位时圆弧所在的圆的方程;(2)近日水位暴涨了2m,船已经不能通过桥洞了.船员必须加重船载,降低船身在水面以上的高度,试问:船身至少降低多少米才能通过桥洞?(精确到0.1m,)【考点】圆方程的综合应用.【分析】(1)在正常水位时,设水面与桥横截面的交线为x轴,过拱桥最高点且与水面垂直的直线为y轴,建立平面直角坐标系建立坐标系,利用|CD|=|CB|,确定圆的方程;(2)令x=4时,求得y≈7.6,即桥拱宽为8m的地方距正常水位时的水面约7.60m,即可求得通过桥洞,船身至少应该降低多少.【解答】解:(1)在正常水位时,设水面与桥横截面的交线为x轴,过拱桥最高点且与水面垂直的直线为y轴,建立平面直角坐标系,如图所示,则A,B,D三点的坐标分别为(﹣16,0),(16,0),(0,8).又圆心C在y轴上,故可设C(0,b).…因为|CD|=|CB|,所以,解得b=﹣12.…所以圆拱所在圆的方程为:x2+(y+12)2=(8+12)2=202=400…(2)当x=4时,求得y≈7.6,即桥拱宽为8m的地方距正常水位时的水面约7.60m,…距涨水后的水面约5.6m,因为船高6.5m,顶宽8m,所以船身至少降低6.5﹣5.6=0.9(m)以上,船才能顺利通过桥洞.…22.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(I)证明:BE∥平面ADP;(II)求直线BE与平面PDB所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取PD中点M,连接EM,AM,推导出四边形ABEM为平行四边形,由此能证明BE∥平面ADP.(Ⅱ)连接BM,推导出PD⊥EM,PD⊥AM,从而直线BE在平面PBD内的射影为直线BM,∠EBM为直线BE与平面PBD所成的角,由此能求出直线BE与平面PDB所成角的正弦值.【解答】证明:(Ⅰ)如图,取PD中点M,连接EM,AM.∵E,M分别为PC,PD的中点,∴EM∥DC,且EM=DC,又由已知,可得EM∥AB,且EM=AB,∴四边形ABEM为平行四边形,∴BE∥AM.∵AM⊂平面PAD,BE⊄平面PAD,∴BE∥平面ADP.解:(Ⅱ)连接BM,由(Ⅰ)有CD⊥平面PAD,得CD⊥PD,而EM∥CD,∴PD⊥EM.又∵AD=AP,M为PD的中点,∴PD⊥AM,∴PD⊥BE,∴PD⊥平面BEM,∴平面BEM⊥平面PBD.∴直线BE在平面PBD内的射影为直线BM,∵BE⊥EM,∴∠EBM为锐角,∴∠EBM为直线BE与平面PBD所成的角.依题意,有PD=2,而M为PD中点,∴AM=,进而BE=.∴在直角三角形BEM中,sin∠EBM===.∴直线BE与平面PDB所成角的正弦值为.23.如图,已知线段AB长度为a(a为定值),在其上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,⊙P和⊙Q是这两个正方形的外接圆,它们交于点M、N.试以A为坐标原点,建立适当的平面直角坐标系.(1)证明:不论点M如何选取,直线MN都通过一定点S;(2)当时,过A作⊙Q的割线,交⊙Q于G、H两点,在线段GH上取一点K,使=求点K的轨迹.【考点】轨迹方程.【分析】(1)以A为坐标原点,AB为x轴正方向,建立平面直角坐标系,求出圆P、圆Q的方程,由圆系方程求得MN所在直线方程,再由直线系方程可得直线MN都通过一定点;(2)由题意求出M的坐标,得到圆Q的方程,设G(x1,y1),H(x2,y2),K(x,y),GH所在直线斜率为k,由=,可得,整理后代入根与系数的关系可得点K的轨迹是直线2x+y﹣a=0被⊙Q所截的一条线段.【解答】(1)证明:以A为坐标原点,AB为x轴正方向,建立平面直角坐标系.设M(m,0),则:A(0,0),B(a,0),C(m,m),F(m,a﹣m),,,⊙P方程为:,即:x2+y2﹣mx﹣my=0 ①,⊙Q方程为:即:x2+y2﹣(a+m)x﹣(a﹣m)y+am=0 ②.①﹣②得,公共弦MN所在直线方程:ax+(a﹣2m)y﹣am=0.整理得:(ax+ay)+m(﹣2y﹣a)=0,∴MN恒过定点;(2)解:当时,,⊙Q:,即:.设G(x1,y1),H(x2,y2),K(x,y),GH所在直线斜率为k,则:,,,由题意,,即:.把y=kx代入⊙Q方程,得:,由韦达定理得:,,∴,将代入整理,得:2x+y﹣a=0.∴点K的轨迹是直线2x+y﹣a=0被⊙Q所截的一条线段.。
福建师大附中2012—2013学年度下学期期末考试高一数学试题(满分:150分,时间:120分钟)说明:试卷分第I 卷和第II 卷两部分,请将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.若0sin 02sin <>αα且,则α是( *** )A. 第二象限角B. 第三象限角C. 第一或第三象限角D. 第二或第三象限角2.︒︒︒︒+75sin 15cos 75cos 15sin 等于( *** )A. 0B.21C. 23D. 13.如图,已知3,AB a AC b BD DC a b ===, , 用、 表示AD ,则AD 等于(***)A .34a b +B . 3144a b +C .1144a b +D . 1344a b +4.若a =(2,1),b =(3,4),则向量a 在向量b 方向上的投影为( *** )A .52B.2C.5D.105.已知角α的终边过与单位圆交于点43(,)55P -,则sin()tan()2sin()cos(3)πααπαππα--⋅+-等于何值( *** )A .45 B .54 C .53 D .53- 6.tan 20tan 4020tan 40︒︒︒︒+的值为( **** )A .1 B.3CDA CD7.设1e 和2e 为不共线的向量,若21e ﹣32e 与k 1e +62e (k ∈R )共线,则k 的值为( *** )A .k=4B .k=-4C .k=-9D . k=98.在ABC ∆+ABC ∆一定是(**** )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定9.同时具有性质“(1)最小正周期是π;(2)图像关于直线3π=x 对称;(3)在]3,6[ππ-上是增函数”的一个函数是(****) A .)62sin(π+=x y B .)32cos(π+=x y C .)62sin(π-=x y D .)62cos(π-=x y10.如右图,ABCD 是由三个边长为1的正方形拼成的矩形,且EAB α∠=,CAB β∠=, 则αβ+的值为 ( **** ) A .34π B .2π C .3π D . 4π 11.已知,OA OB是两个单位向量,且OA OB ⋅=0.若点C 在∠AOB 内,且∠AOC=30°, 则(,),OC mOA nOB m n R =+∈ 则mn等于( **** )A .13 B C D .312.若对任意实数a ,函数215sin()36k y x ππ+=-()k N ∈在区间[],3a a +上的值54出现不少于4次且不多于8次,则k 的值为( **** )A .2B .4C .3或4D .2或3第Ⅱ卷 共90分二、填空题:(每小题4分,共20分。
2015-2016学年福建师大附中高一下学期期末数学试题一、选择题1.角α的终边过点(4,3),(0)P k k k -<,则cos α的值是( ) A .35 B .45 C .35- D .-45【答案】B【解析】试题分析:()()()0553422<-==+-=k k k k k r ,而5454cos =--==k k r x α,故选B. 【考点】三角函数的定义2.sin20°cos10°﹣cos160°sin10°=( )A .23-B . 23C .21-D .21【答案】D 【解析】试题分析:原式等于()2130sin 1020sin 10sin 20cos 10cos 20sin 0000000==+=+,故选D. 【考点】两角和与差的三角函数3.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m=( )A . 1-B .1C .2-D .2 【答案】C【解析】试题分析:根据公式222222b a b a b a b a +=++=+,根据公式22a a =,22b b =,可得,0=⋅b a,即0211=⨯+⨯m ,解得2-=m ,故选C.【考点】向量数量积4.下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y=sin (2x+2π)B .y=cos (2x+2π) C .y=sin2x+cos2x D .y=sinx+cosx【答案】B【解析】试题分析:x x y 2cos 22sin =⎪⎭⎫⎝⎛+=π,是周期为π的偶函数,故不正确,x x y 2sin 22cos -=⎪⎭⎫ ⎝⎛+=π,为周期为π的奇函数,故正确,⎪⎭⎫ ⎝⎛+=+=42sin 22cos 2sin πx x x y 是周期为π的函数,但既不是奇函数也不是偶函数,故不正确,⎪⎭⎫ ⎝⎛+=+=4sin 2cos sin πx x x y 是周期为π2的函数,既不是奇函数也不是偶函数,故不正确,故选B. 【考点】三角函数的性质5.如图,在△OAB 中,P 为线段AB 上的一点, =x +y ,且=3,则( )A .x=,y=B .x=,y=C .x=,y=D .x=,y= 【答案】D【解析】试题分析:()-=-⇔=33,整理为414334+=⇔+=,所以43=x ,41=y ,故选D. 【考点】平面向量基本定理6.若3cos()45πα-=,则sin 2α=( ) A .725B .725-C .15-D .15【答案】B【解析】试题分析:()53sin cos 224cos =+=⎪⎭⎫⎝⎛-αααπ,两边平方后得:()2518sin cos 2=+αα25182sin 1=+⇔α,解得2572sin -=α,故选B. 【考点】三角函数恒等变形7.将函数y=2sin (2x+6π)的图像向右平移4π个周期后,所得图像对应的函数为( ) A .y=2sin(2x+4π) B .y=2sin(2x+3π)C .y=2sin(2x –4π)D .y=2sin(2x –3π)【答案】D【解析】试题分析:根据平移规律,“左+右-”的原则,向右平移4π个周期后,变为⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=32sin 2642sin 2πππx x y ,故选D.【考点】三角函数的变换【易错点睛】本题考查了三角函数的变换,属于基础题型,在三角函数的变换中,容易出错在两个地方,举例,①函数x y 2sin =向左平移6π个单位得到哪个函数,很多同学会写成⎪⎭⎫⎝⎛+=62sin πx y ,谨记“左+右-”指的是x ,所以应是⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=32sin 62sin ππx x y ,②⎪⎭⎫ ⎝⎛+=62sin πx y 上所有点的横坐标伸长到原来的2倍,很多同学会写成⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=12sin 6221sinππx x y ,谨记,横坐标伸长或缩短到原来的ω1倍,仅仅是x 前面的系数变了,与ϕ无关,所以应是⎪⎭⎫⎝⎛+=6sin πx y . 8.函数=sin()y A x ωϕ+的部分图像如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(2+)6y x π=D .2sin(2+)3y x π=【答案】A【解析】试题分析:根据图像的最值可得2=A ,半周期26--3212πππωπ=⎪⎭⎫ ⎝⎛=⨯,解得2=ω,当3π=x 时,232πϕπ=+⨯,解得6-πϕ=,所以函数为⎪⎭⎫⎝⎛-=62sin 2πx y ,故选 A.【考点】()ϕω+=x A y sin 的图像9.()()01tan181tan 27++的值是( )A .1C .2D .()002tan18tan 27+【答案】C【解析】试题分析:根据公式()127tan 18tan 127tan 18tan 2718tan 000000=-+=+,所以00027tan 18tan 127tan 18tan -=+,原式等于227tan 18tan 27tan 18tan 10000=+++,故选C.【考点】两角和的正切函数10.在ABC ∆+ABC ∆一定是( )A .钝角三角形B .锐角三角形C .直角三角形D .不能确定 【答案】C【解析】试题分析:原式变形为-=,两边平方后得BABA⋅-+=⋅++222222,化简为0=⋅,即BC BA ⊥,角B 为直角,所以是直角三角形,故选C.【考点】向量数量积11.设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C .()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D .()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A【解析】试题分析:()⎪⎭⎫ ⎝⎛++=4sin 2πϕωx x f ,πωπ==2T ,2=ω,根据条件()()x f x f =-,说明函数是偶函数,关于y 轴对称,当0=x 时,Z k k ∈+=+,24πππϕ,解得:Z k k ∈+=,4ππϕ,当0=k 时,4πϕ=,所以函数()x x x f 2cos 222sin 2=⎪⎭⎫ ⎝⎛+=π,当⎪⎭⎫⎝⎛∈2,0πx 时,()π,02∈x 是函数的单调递减区间,故A 正确,C 不正确,当⎪⎭⎫⎝⎛∈ππ43,4x 时,⎪⎭⎫⎝⎛∈ππ23,22x ,在此区间函数我先减后增,即⎪⎭⎫⎝⎛∈2,4ππx 时函数单调递减,⎪⎭⎫⎝⎛∈ππ43,2x 时,函数单调递增,故B,D 不正确,故选A.【考点】三角函数的图像和性质【方法点睛】本题考查了()ϕω+=x A y sin ⎪⎭⎫⎝⎛<>>200πϕω,,A 的性质,本题考查了两个问题,一是如何求函数解析式,二是如何判断三角函数的性质,A 是振幅,一般根据函数的最值求解,ωπ2=T ,ω一般根据周期求解,ϕ一般根据“五点法”求解,而象本题给出三角函数后,如何判断所给区间是否具有单调性,首先由x 的区间,代入求ϕω+=x u 的区间,然后判断ϕω+=x u 是否落在u y sin =的单调区间内. 12.定义在R 上的偶函数()f x 满足(2)()f x f x +=,且在[-3,-2]上是减函数,若,αβ是锐角三角形的两个内角,则( )A .()()sin sin f f αβ>B .()()sin cos f f αβ<C .()()sin cos f f αβ>D .()()cos cos f f αβ< 【答案】C【解析】试题分析:根据条件函数的周期2=T ,并且满足()()()x f x f x f -==+2,函数关于1=x 对称,当函数在[]2-3-,为减函数,根据周期,[]2,1也是减函数,根据对称性,[]1,0上是增函数,,αβ是锐角三角形的两个内角,那么2πβα>+,即βπα->2,即1cos 2sin sin 0<=⎪⎭⎫⎝⎛-><ββπα,根据在区间[]1,0上是增函数,所以()()βαcos sin f f >,故选C.【考点】函数的性质【思路点睛】本题考查了函数性质与解三角形的综合考察,属于中档题型,本题的难点是如何转化锐角三角形这个条件,即若是锐角三角形,需满足⎪⎪⎪⎩⎪⎪⎪⎨⎧>+<<<<22020πβαπβπα,这样βπα->2,这样根据函数的单调性,两边取三角函数,ββπαcos 2sin sin =⎪⎭⎫⎝⎛->,或是⎪⎭⎫⎝⎛-<βπα2cos cos βsin =,这个难点克服后,就容易想到根据函数的性质,转化为求函数()x f 在区间()1,0的单调性. 13.已知函数5()),6f x x π=+方程()f x m =在区间[0,]2π上有两个不同的实数根,则实数m 的取值范围是 .【答案】(【解析】试题分析:如图,画出函数u y si n 3=的图像,当⎥⎦⎤⎢⎣⎡∈2,0πx 时,⎥⎦⎤⎢⎣⎡∈+=611,65652πππx u ,此时()⎥⎦⎤⎢⎣⎡-∈23,3x f ,当2π=x 时,23-=y 根据图像可得若有两个不同的实根,那么⎥⎦⎤ ⎝⎛-∈23,3m ,故填:⎥⎦⎤ ⎝⎛23-3-,.【考点】三角函数图像的应用【方法点睛】本题考查了三角函数图像的应用,属于基础题型,以复合函数的观点解决函数零点问题,首先设π652+=x u ,并且求出u 的取值范围,然后画出函数u y sin 3=的图像,这问题转化为m y =与三角函数图像交点的问题,通过图像很容易求出没有交点,一个交点,以及两个交点的m 的取值范围问题,切记,最好不要画⎪⎭⎫ ⎝⎛+=π652sin 3x y 的图像,因为画这个图像对很多同学来说比较浪费时间得不偿失,一定画换元后的图像.二、填空题14.设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x= . 【答案】23-【解析】试题分析:根据两向量垂直,可得()0211=⨯++⨯x x ,解得32-=x ,故填:32-. 【考点】向量数量积15.已知向量()()(),12,4,5,,10OA k OB OC k ===-,且,,A B C 三点共线,则k = .【答案】23-【解析】试题分析:()7,4--=k ,()2,2--=k ,因为,,A B C 三点共线,所以AB 与共线,所以()()()k k 272-4-⨯-=-⨯,解得:32-=k ,故填:32-. 【考点】向量共线的充要条件 16.已知,022ππαπβ<<<<,3tan 4α=-,()5cos 13βα-=,则sin β的值为 . 【答案】6365【解析】试题分析:0-<<-αβπ,又因为()0135cos >=-αβ,所以02<-<-αβπ,()1312sin -=-αβ, 因为43t a n -=α,所以53s i n=α,54cos -=α,而()[]()()6563131********sin cos cos sin sin sin =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-+⨯=-+-=-+=αβααβααβαβ,故填:6563. 【考点】三角函数恒等变形17.函数()sin(2)sin()()66f x x x x ππ=++-∈R 的值域为 .【答案】928⎡⎤-⎢⎥⎣⎦,【解析】试题分析:设tx =-6π,那么()8941s i n 2s i n s i n 21s i n 2c o s s i n 22s i n 22+⎪⎭⎫ ⎝⎛--=+-=+=+⎪⎭⎫⎝⎛+=t t t t t t t t f π,因为[]1,1sin -∈t ,所以当41sin =t 时,函数取得最大值89,当1sin -=t 时,函数取得最小值-2,所以函数的值域为⎥⎦⎤⎢⎣⎡-89,2,故填:⎥⎦⎤⎢⎣⎡-89,2. 【考点】三角函数的性质18.已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为 . 【答案】81 【解析】试题分析:AC AB DF AD AF 4321+=+=,AB AC BC -=,所以()812111414321414321432122=⨯⨯⨯-+-=⋅-+-=-⎪⎭⎫⎝⎛+=⋅,故填:81.【考点】向量数量积19.已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 . 【答案】9【解析】试题分析:由题可知,244--4kTT +=⎪⎭⎫⎝⎛ππ,即ωππ24124122⋅+=+=k T k ,解得()*12N k k ∈+=ω,又因为()x f 在区间⎪⎭⎫⎝⎛36518ππ,单调,所以ωππππ22121218-365⋅=≤=T ,即12≤ω,接下来,采用排除法,若11=ω,此时4-πϕ=,此时()()x f x x f ,411sin ⎪⎭⎫⎝⎛-=π在区间⎪⎭⎫ ⎝⎛443,18ππ上单调递增,在⎪⎭⎫⎝⎛365443ππ,上单调递减,不满足在区间⎪⎭⎫⎝⎛36518ππ,单调,若49πϕω==,,此时()⎪⎭⎫ ⎝⎛+=49sin πx x f ,满足()x f 在区间⎪⎭⎫⎝⎛36518ππ,单调递减,所以ω的最大值为9. 【考点】三角函数的性质【思路点睛】本题考查了三角函数的性质,属于中档题型,本题的难点是如何将这两个条件结合在一起,ω是与周期有关的量,对称轴与零点间的距离也与周期有关,这样根据图像得到244--4kTT +=⎪⎭⎫⎝⎛ππ,即ωππ24124122⋅+=+=k T k ,第二个条件⎪⎭⎫⎝⎛36518ππ,是单调区间的子集,所以其长度小于等于半个周期,这样就得到了ω的一个范围与形式,最后求最大值,只能通过从最大的逐个代起,找到ω的最大值.三、解答题20.已知||=2,||=3,(2﹣3)•(2+)=3. (1)求与的夹角的余弦值; (2)求|+|;(3)求在+方向上的投影.【答案】(1)127-;(2)6;(3)126.【解析】试题分析:(1)将条件()()3232=-⋅-b a b a按照分配率展开,根据向量数量积的公式,得到两向量的夹角;(2)()b a b a ba b a⋅++=+=+2222,根据公式22a a =代入数值;(3)根据向量数量积的几何意义可知a 在b a +方向上的投影为()ba ba a ++,代入数量积和上一问模的结果,即可.试题解析:(1)∵||=2,||=3,(2﹣3)•(2+)=3, ∴4||2﹣3||2﹣4•=3,∴•=﹣,∴cos<•>===﹣;(2)|+|===;(3)在+方向上的投影为===.【考点】向量数量积【方法点睛】本题考查了向量数量积,属于基础题型,所涉及的公式包括(1)θcos b a b a=⋅,(2)ba b a ⋅=θcos ,(3)22a a =,以及()2ba b a +=+,(4)0=⋅⇔⊥b a b a,(5)投影公式:向量a 在b 方向上的投影为θcos a 或是bb a ⋅,对于这类型的向量问题,要谨记公式,并且熟练运用公式避免计算错误. 21.(1)已知,求的值.(2) 已知3177cos(),,45124x x πππ+=<<求2sin 22sin 1tan x xx+-的值.【答案】(1)41;(2)7528. 【解析】试题分析:(1)由条件可直接求得22tan =x ,再利用公式2tan 12tan2tan 2x xx -=,求x tan ,然后将所求原式的分子x x x 22sin cos 2cos -=,分母⎪⎭⎫⎝⎛+x 4cos π展开化简,并上下同时除以x cos ,将分式转化为关于x tan 的式子,代入求解;(2)首先根据公式x x x cos sin 22sin =,xxx cos sin tan =,进行初步的化简,得到原式等于⎪⎭⎫⎝⎛+⋅=-+⋅x x x x x 4tan 2sin tan 1tan 12sin π,根据条件再依次求解各项.试题解析:(1)由,,∴.原式==,由以上知cosx ﹣sinx≠0, 所以上式==1tan tan xx+==.22sin 22sin 2sin cos 2sin 2sin cos (sin cos )(2)sin 1tan cos sin 1cos 1tan 17753sin 2sin 2tan(),,2,cos()1tan 4124344544sin(),tan().4543cos cos[()]44x x x x x x x x x x x x x xx x x x x x x x x x x x πππππππππππ+++==---+==⋅+<<∴<+<+=-∴+=-+=-=+-由又7282,=-2575x x ===原式【考点】三角函数的恒等变形求值22.如图所示,某村积极开展“美丽乡村生态家园”建设,现拟在边长为1千米的正方形地块ABCD 上划出一片三角形地块CMN 建设美丽乡村生态公园,给村民休闲健身提供去处.点M ,N 分别在边AB ,AD 上.由于村建规划及保护生态环境的需要,要求△AMN 的周长为2千米,请探究∠MCN 是否为定值,若是,求出此定值,若不是,请说明理由.【答案】∠MCN 是定值,且∠MCN=4π.【解析】试题分析:设∠BCM=α,∠DCN=β,AM=x ,AN=y ,则BM=1﹣x ,DN=1﹣y ,若MC N ∠为定值,那么βα+为定值,即()βα+tan 为定值,根据所设条件,得到()βα+t a n()xyy x y x -++-=2,因为AMN ∆的周长等于222=+++y x y x ,将此式进行化简为()y x y x +-=+222,两边平方得到()22-+=y x xy ,代入正切公式得到定值.试题解析:设∠BCM=α,∠DCN=β,AM=x ,AN=y ,则BM=1﹣x ,DN=1﹣y , 在△CBM 中,tan α=1﹣x ,在△CDN 中,tan β=1﹣y ,所以:tan (α+β)=()()()xy y x y x y x y x -++-=----+-=-+211111tan tan 1tan tan βαβα,△AMN 的周长为2千米,所以222=+++y x y x ,化简得()22-+=y x xy ,代入()式,可得tan (α+β)=()()()[]()()1222222=+-+-=-+-++-=-++-y x y x y x y x y x xy y x y x , 由于α+β(0,)2π∈,所以α+β=4π,所以∠MCN 是定值,且∠MCN=4π. 【考点】三角函数的实际应用23.已知函数f (x )=2sin ωxcos ωx+23sin 2ωx ﹣3(ω>0)的最小正周期为π.(1)求函数f (x )的单调增区间;(2)将函数f (x )的图象向左平移6π个单位,再向上平移1个单位,得到函数y=g (x )的图象,若y=g (x )在[0,b](b >0)上至少含有10个零点,求b 的最小值.【答案】(1)Z k k k ∈⎥⎦⎤⎢⎣⎡+-,125,12ππππ;(2)1259π.【解析】试题分析:(1)第一步根据降幂公式x x x ωωω2sin 21cos sin =,22cos 1sin 2xx ωω-=化简,第二步,对降幂后的式子,再根据辅助角公式化简,得到()⎪⎭⎫ ⎝⎛-=32sin 2πx x f ,令⎥⎦⎤⎢⎣⎡+-∈-22,2232πππππk k x ,Z k ∈得到函数的单调递增区间;(2)根据三角函数的图像变换规律,“左+右-,上+下-”,得到函数()12sin 2+=x x g ,令()0=x g ,得到x 的值,根据x 的取值集合,b 只需大于等于 10个点的横坐标即可.试题解析:(1)由题意得f (x )=2sin ωxcos ωx+23sin 2ωx ﹣3=sin2ωx ﹣3cos2ωx=2sin (2ωx ﹣3π),由最小正周期为π,得ω=1,所以()⎪⎭⎫ ⎝⎛-=32sin 2πx x f , 由Zk k x k ∈+≤-≤-,223222πππππ,整理得kk x k ,12512ππππ+≤≤-Z ∈,所以函数f (x )的单调增区间是Z k k k ∈⎥⎦⎤⎢⎣⎡+-,125,12ππππ.(2)将函数f (x )的图象向左平移6π个单位,再向上平移1个单位,得到y=2sin2x+1的图象,所以g (x )=2sin2x+1,令g (x )=0,得127ππ+=k x 或Z k k x ∈+=,1211ππ,所以在[0,π]上恰好有两个零点,若y=g (x )在[0,b]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为125912114πππ=+.【考点】1.三角恒等变换;2.单价函数的性质;3.三角函数的图像变换.【方法点睛】本题考查了三角函数的恒等变换以及三角函数图像的问题,属于基础题型,重点说说对于(1)所考查到的三角恒等变换的问题,比较常见,所使用的公式包括ααα2sin 21cos sin =,22cos 1sin 2αα-=,22cos 1cos 2αα+=,降幂后采用辅助角公式化简,()ϕ++=+x b a x b x a sin cos sin 22,其中a b=ϕtan ,这样函数就可以化简为()ϕω+=x A y sin .24.已知函数x c x b a x f sin cos )(++=的图像经过点)1,0(A 及)1,2(πB(1)已知)2,0(π∈x 时,2|)(|≤x f 恒成立,求实数a 的取值范围;(2)当a 取上述范围内的最大整数....值时,若有实数φ,,n m ,使得1)()(=-+φx nf x mf 对于 R x ∈恒成立,求φ,,n m 的值.【答案】(1)[]234,2-+;(2)161=m ,161=n ,Z k k ∈+=,2ππφ. 【解析】试题分析:(1)首先根据条件可得a c b -==1,将函数转化为()()a x a x f +⎪⎭⎫ ⎝⎛+-=4sin 12π,根据条件可得⎪⎭⎫ ⎝⎛+4sin πx 的范围,最终讨论a -1的取值范围后,得到函数的值域,根据条件()2≤x f 得到a 的取值范围;(2)由(1)的结论可得8=a ,代入()()1=-+ϕx nf x mf ,要使上式对R x ∈∀恒成立,则需满足()⎪⎩⎪⎨⎧==+=+0sin 0cos 18φφn n m n m ,得到参数的取值范围. 试题解析:由12,1)0(=⎪⎭⎫⎝⎛=πf f ,可得,1,1=+=+c a b a , 所以a c b -==1,所以()()a x a a x x a x f +⎪⎭⎫ ⎝⎛+-=++-=4sin 12)cos )(sin 1(π,(1)设t x =⎪⎭⎫⎝⎛+4sin π,()a t a y +-=12, 因为⎪⎭⎫⎝⎛∈2,0πx ,所以⎪⎭⎫ ⎝⎛∈+πππ43,44x ,即⎥⎦⎤ ⎝⎛∈1,22t ,① 当01>-a 时,()()(]a a x f +-∈12,1,此时()2≤x f 恒成立,只需()212≤+-a a ,可得[)1,2-∈a , ②当0-1=a 时,()1=x f ,此时满足条件, ③当0-1<a 时,()()[)1,12a a x f +-∈,此时()2≤x f 恒成立,只需()212-≥+-a a , 可得(]234,1+∈a综上,a 的取值范围是[]234,2-+. (2)可得8=a ,则()⎪⎭⎫⎝⎛+-=4sin 278πx x f 由()()1=-+φx nf x mf ,可得()14sin 274sin 278=⎪⎭⎫⎝⎛-+-⎪⎭⎫ ⎝⎛+-+φππx x m n m ,令X x =+4π得,()()1cos sin 27sin cos 278=++-+X n X n m n m φφ要使上式对任意X 恒成立,则有()⎪⎩⎪⎨⎧==+=+0sin 0cos 18φφn n m n m ,解得⎪⎪⎩⎪⎪⎨⎧=+-==1611cos 0sin n m φφ 所以161=m ,161=n ,Z k k ∈+=,2ππφ. 【考点】1.三角函数的性质;2.恒成立问题.。