2019学年北京市昌平区九年级上学期期末考试数学试卷【含答案及解析】
- 格式:docx
- 大小:496.24 KB
- 文档页数:23
A BCOA BCDEABCDy xP A OABCDO 2014-2015学年第一学期初三年级期末质量抽测数 学 试 卷一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个正确 1.已知∠A 为锐角,且sin A =12,那么∠A 等于A .15°B .30°C .45°D .60° 2.下列图形中,既是轴对称图形又是中心对称图形的是A .等边三角形B .等腰直角三角形;C .正方形D .正五边形 3.如图,等边三角形ABC 内接于⊙O ,那么∠BOC 的度数是 A .150°B .120°C .90°D .60°4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于A .12B .14C .18D .195.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BC =6,AC =3,则CD 的长为A .1B .32C .2D .526.如图,点P 是第二象限内的一点,且在反比例函数ky x的图象上,PA ⊥x 轴于点A , △PAO 的面积为3,则k 的值为A .3B .- 3C . 6D .-67.如图,AB 为⊙O 的弦,半径OD ⊥AB 于点C .若AB =8,CD =2,则⊙O的半径长为A .7B .3C .4D .58.如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为 PMD CB AC xy74Dxy74Axy 7447yxBPABCO二、填空题(本题共16分,每小题4分) 9. 抛物线2(2)1y x =-+的顶点坐标是 .10.已知关于x 的一元二次方程220x x m --= 有两个不相等的实数根,则m 的取值范围是 .11. 如图,点P 是⊙O 的直径BA 的延长线上一点,PC 切⊙O 于点C ,若30P ∠=,PB =6,则PC 等于 .12.如图,在平面直角坐标系中,已知点A (3,0),B (0,4),记Rt △OAB 为三角形①,按图中所示的方法旋转三角形,依次得到三角形②,③,④,……,则三角形⑤的直角顶点的坐标为 ;三角形⑩的直角顶点的坐标为 ;第2015个三角形的直角顶点的坐标为 .三、解答题(本题共30分,每小题5分)13. 计算 :23tan60sin 453tan 45cos60︒-︒-︒+︒.14. 解方程:01322=+-x x .①②③④BAOy x……15.已知△ABC 如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC 绕点C 顺时针旋转90°,得到△11A B C . (1)在网格中画出△11A B C ;(2)直接写出点B 运动到点1B 所经过的路径的长.16. 如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数ky x=的图象交于A (-1,4),B (2,m )两点. (1)求一次函数和反比例函数的解析式; (2)直接写出不等式ax b +<kx的解集.17.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.BACCEADBxOy AB18.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,DC=3, AC=3.(1)求∠B 的度数; (2)求AB 及BC 的长.四、解答题(本题共20分,每小题5分) 19.已知抛物线22(21)y x m x m m =--+-. (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =-+的一个交点在y 轴上,求m 的值.DCBA20.如图,在修建某条地铁时,科技人员利用探测仪在地面A、B两个探测点探测到地下C 处有金属回声.已知A、B两点相距8米,探测线AC,BC与地面的夹角分别是30°和45°,试确定有金属回声的点C的深度是多少米?21.已知:如图,在Rt△ABC中,∠ C=90°,BD平分∠ABC,交AC于点D,经过B、D 两点的⊙O交AB于点E,交BC于点F,EB为⊙O的直径.(1)求证:AC是⊙O的切线;(2)当BC=2,cos∠ABC13时,求⊙O的半径.FDCBOEACBA45°30°22.已知,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,且∠EDF =45°.(1)利用画图工具,在右图中画出满足条件的图形; (2)猜想tan ∠ADF 的值,并写出求解过程.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知:如图,一次函数2+=x y 的图象与反比例函数ky x=的图象交于A 、B 两点,且点A 的坐标为(1,m ). (1)求反比例函数ky x=的表达式; (2)点C (n ,1)在反比例函数ky x=的图象上,求△AOC 的面积; (3)在x 轴上找出点P ,使△ABP 是以AB 为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.AB CDCA Bxy O备用图CA Bxy O24.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90°,AB =AC ,AD =AE .连接 BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF . (1)如图1,求证:BD ⊥CE ;(2)如图1,求证:FA 是∠CFD 的平分线; (3)如图2,当AC =2,∠BCE =15°时,求CF 的长.FEDCBA图1NM图2ABCDEF MN25.如图,二次函数y=-x 2+bx +c 的图象与x 轴交于点A (﹣1,0),B (2,0),与y 轴相交于点C .(1)求二次函数的解析式;(2)若点E 是第一象限的抛物线上的一个动点,当四边形ABEC 的面积最大时,求点E 的坐标,并求出四边形ABEC 的最大面积;(3)若点M 在抛物线上,且在y 轴的右侧.⊙ M 与y 轴相切,切点为D .以C ,D ,M 为顶点的三角形与△AOC 相似,求点M 的坐标.备用图CBAyOxCBAyOx参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案BCBDCDDB二、填空题(本题共16分,每小题4分)题号 9 10 1112答案(2,1)m >-123841240284123605555(,) (,) (,) 三、解答题(本题共30分,每小题5分)13.解:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯= …………………………4分 213213+--= 0=. ……………………………………5分14.解法一:∵ 2a =,3b =-,1c =,∴ .1124)3(2=⨯⨯--=∆ ……………………………………2分 ∴ 413±=x . ……………………………………3分 ∴ 原方程的根为:1211.2x x ==, ……………………………………5分 解法二: 21232-=-x x . 16921169232+-=+-x x . ………………………………………1分 161432=⎪⎭⎫ ⎝⎛-x . ………………………………………2分4143±=-x . ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分 解法三:()()0112=--x x ………………………………………2分 210x -=,或10x -=. ………………………………………3分∴ 11x =,212x =. ………………………………………5分15.解:(1)如图所示,△A 1B 1C 即为所求作的图形. ……………3分 (2)1BB =2π. ……………………………5分16.解:(1)∵ 反比例函数ky x=经过A (-1,4),B (2,m )两点, ∴ 可求得k =-4,m =-2. ∴ 反比例函数的解析式为 4y x=-. B (2,-2). ……………………………………2分 ∵ 一次函数y ax b =+也经过A 、B 两点,∴ 422.a b a b =-+⎧⎨-=+⎩,解得 22.a b =-⎧⎨=⎩,∴ 一次函数的解析式为 22y x =-+. (3)分 (2)如图,-1<x <0,或x >2. ……………………………………5分 17.解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º. ∵ AC ⊥CE ,∴ ∠ACB +∠ECD =90º.∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中, ∠A =∠ECD ,∠B =∠D =90º,∴ △ABC ∽△CDE . ……………………………………3分 ∴DEBCCD AB =. ……………………………………4分 ∵ AB = 3,DE =2,BC =6,∴ CD =1. ……………………………………5分 18.解:(1)∵ 在△ACD 中,90C ∠=︒,CD =3,AC =3, ∴ 3tan 3CD DAC AC∠==.∴ ∠DAC =30º. ……………………………………1分2-1xOy ABCE ADB DCBA∵ AD 平分∠BAC ,∴ ∠BAC =2∠DAC =60º. ……………………………2分 ∴ ∠B =30º. …………………………………………3分 (2) ∵ 在Rt △ABC 中,∠C =90°,∠B =30º,AC =3,∴ AB =2AC =6. ……………………………………4分 333tan 33AC BC B ===. ……………………………………5分四、解答题(本题共20分,每小题5分) 19 (1)证明:∵ △=[]22(21)4()m m m ----…………………………………… 1分 =2244144m m m m -+-+ =1>0,∴ 此抛物线与x 轴必有两个不同的交点. …………………… 2分(2)解:∵ 此抛物线与直线33y x m =-+的一个交点在y 轴上,∴ 233m m m -=-+. ………………………………… 3分 ∴ 2230m m +-=.∴ 13m =-,21m =. ………………………………… 5分 ∴ m 的值为3-或1.20.解:如图,作CD ⊥AB 于点D .∴ ∠ADC =90°.∵ 探测线与地面的夹角分别是30°和45°, ∴ ∠DBC =45°,∠DAC =30°. ∵ 在Rt △DBC 中,∠DCB =45°, ∴ DB =DC . ........................................ 2分 ∵ 在Rt △DAC 中,∠DAC =30°, ∴ AC=2CD . ...................................... 3分 ∵ 在Rt △DAC 中,∠ADC =90°,AB =8, ∴ 由勾股定理,得 222AD CD AC +=.∴ 222(8)(2)CD CD CD ++=. ……………… 4分 ∴ 443CD =±.∵ 443CD =-不合题意,舍去. ∴ 443CD =+.D 30°45°AB C∴ 有金属回声的点C 的深度是(443+)米. ………………………………5分21(1)证明:如图,连结OD .∴ OD OB =.∴ 12∠=∠. ∵ BD 平分ABC ∠, ∴ 13∠=∠.∴23∠=∠. …………………………..1分 ∴ OD BC ∥.∴ 90ADO C ∠=∠=°. ∴ OD AC ⊥. ∵ OD 是⊙O 的半径,∴ AC 是⊙O 的切线. ……………………………………2分(2)解:在Rt △ACB 中,90C ∠=,BC =2 , cos ∠ABC 13=, ∴ 6cos BCAB ABC==∠. ……………………… 3分设O ⊙的半径为r ,则6AO r =-. ∵ OD BC ∥, ∴ AOD ABC △∽△. ∴OD AOBC AB=. ∴626r r-=. 解得 32r =. ∴ O ⊙的半径为32. ………………………… 5分22. 解:(1)如图1. ………………………… 1分 (2)猜想tan ∠ADF 的值为13.……………………2分 求解过程如下:如图2.321FDC BOE AFEDCBA 图1在BA 的延长线上截取AG=CE ,连接DG . ∵ 四边形ABCD 是正方形,∴ AD=CD=BC=AB=6,∠DAF=∠ABC=∠ADC=∠BCD = 90°. ∴ ∠GAD = 90°.∴ △AGD ≌ △CED . ………………………………3分 ∴ ∠GDA=∠EDC ,GD=ED ,AG=CE . ∵ ∠FDE =45°,∴ ∠ADF +∠EDC=45°. ∴ ∠ADF +∠GDA =45°. ∴ ∠GDF=∠EDF . ∵ DF = DF ,∴ ∠GDF ≌∠EDF . ……………………………… 4分 ∴ GF =EF . 设AF =x , 则FB=6-x , ∵ 点E 为BC 的中点, ∴ BE=EC=3. ∴ AG=3. ∴ FG=EF=3+x .在Rt △BEF 中,∠B =90°,由勾股定理,得 222BF BE EF +=, ∴ 2223(6)(3)x x +-=+ . ∴ x=2.∴ AF=2. ……………………………………………………………… 5分 ∴ 在Rt △ADF 中,tan ∠ADF =AF AD =13. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵点A (1,m )在一次函数2+=x y 的图象上,∴ m=3.∴ 点A 的坐标为(1,3). ………………1分 ∵点A (1,3)在反比例函数ky x=的图象上, ∴ k =3. ∴反比例函数ky x=的表达式为3y x =. ………………2分GA BCDEF图2(2)∵点C (n ,1)在反比例函数3y x=的图象上, ∴ n=3. ∴ C (3,1). ∵ A (1,3),∴ S △AOC =4. ……………………………5分 (3)所有符合条件的点P 的坐标:P 1(71--,0),P 2(71-,0). ……………7分24.(1)证明:如图1.∵ ∠BAC =∠DAE =90°,∠BAE =∠BAE , ∴ ∠CAE =∠BAD . 在△CAE 和△BAD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,, ∴ △CAE ≌△BAD . …………………… 1分 ∴ ∠ACF=∠ABD . ∵ ∠ANC=∠BNF , ∴ ∠BFN =∠NAC =90°.∴ BD ⊥CE . ……………………… 2分(2)证明:如图1’.作AG ⊥CE 于G ,AK ⊥BD 于K . 由(1)知 △CAE ≌△BAD ,∴ CE = BD ,S △CAE =S △BAD . ………………… 3分 ∴ AG = AK .∴ 点A 在∠CFD 的平分线上. ………… 4分 即 FA 是∠CFD 的平分线.(3)如图2.∵ ∠BAC = 90°,AB =AC , ∴ ∠ACB =∠ABC =45°.∵ ∠BCE =15°,∴ ∠ACN =∠ACB-∠BCE= 30°=∠FBN . 在Rt △ACN 中∵ ∠NAC = 90°,AC =2,∠ACN = 30°,NM F ED CBA图1MN 图1'ABCDEFKG图2ABCDE F MN∴ ,234333CN AN ==. …………………………………… 5分∵ AB=AC =2,∴ BN= 2-233. …………………………………… 6分在Rt △ACN 中∵ ∠BFN = 90°,∠FBN = 30°,∴ 13323NF BN -==.∴ 13CF CN NF =+=+. …………… 7分25.解:(1)∵ 二次函数y=-x 2+bx +c 的图象与x 轴相交于点A (﹣1,0),B (2,0),∴ 01,042.b c b c =--+⎧⎨=-++⎩解得 1,2.b c =⎧⎨=⎩∴ 二次函数的解析式为y = -x 2 +x +2. ………2分 (2)如图1.∵二次函数的解析式为y =-x 2+x +2与y 轴相交于点C , ∴ C (0,2).设 E (a ,b ),且a >0,b >0. ∵ A (-1,0),B (2,0), ∴ OA =1,OB =2,OC =2.则S 四边形ABEC = 11112(2)(2)222b a a b ⨯⨯++⋅+-⋅= 1a b ++∵ 点 E (a ,b )是第一象限的抛物线上的一个动点, ∴ b = -a 2 +a +2, ∴ S 四边形ABEC = - a 2+2a +3 = -(a -1)2+4∴ 当四边形ABEC 的面积最大时,点E 的坐标为(1,4),且四边形ABEC 的最大面积为4.………………5分图1CBAyO xEF(3)如图2.设M(m,n),且m>0.∵点M在二次函数的图象上,∴n =-m2 +m +2.∵⊙M与y轴相切,切点为D,∴∠MDC =90°.∵以C,D,M为顶点的三角形与△AOC相似,∴12CD OADM OC==,或2CD OCDM OA==.……6分①当n >2时,22-122m m m mm m+-+==,或.解得m1=0(舍去),m2= 12,或m3=0(舍去),m4=-1(舍去).②同理可得,当n<2时,m1=0(舍去) ,m2=32,或m3=0(舍去),m4=3.综上,满足条件的点M的坐标为(12,94),(32,54),(3,-4).……8分图2CBAyO xMD。
北京市昌平区2022- 2023学年九年级上学期期中质量监控数学试卷(共8题;共16分)1.(2分)下列各组线段中,成比例的是( )A .1,2,2,4B .1,2,3,4C .3,5,9,13D .1,2,2,32.(2分)抛物线y =x 2﹣2的顶点坐标是( )A .(0,﹣2)B .(﹣2,0)C .(0,2)D .(2,0)3.(2分)如果一个矩形的宽与长的比等于黄金数√5−12(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD 为黄金矩形,宽AD =√5﹣1,则长AB 为( ) A .1B .﹣1C .2D .﹣24.(2分)若将抛物线y=- 12x 2先向左平移3个单位,再向下平移2个单位,得到新的抛物线,则新抛物线的表达式是( ) A .y =−12(x +3)2−2B .y =−12(x −3)2−2C .y =(x +3)2−2D .y =−12(x +3)2+25.(2分)如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是( )A .1:2B .1:3C .2:1D .3:16.(2分)如图,▱ABC▱▱A′B′C′,AD 和 A′D′分别是▱ABC 和▱A′B′C′的高,若 AD =2,A′D′=3,则▱ABC 与▱A′B′C′的面积的比为( )A .4:9B .9:4C .2:3D .3:27.(2分)已知二次函数 y =ax 2+bx +c 的部分图象如图所示,则使得函数值 y 大于 2 的自变量 x 的取值可以是( )A.-4B.-2C.0D.28.(2分)在平面直角坐标系xOy中,点A,点B的位置如图所示,抛物线y=ax2−2ax经过A,B,则下列说法错误的是()A.抛物线的开口向上B.抛物线的对称轴是x=1C.点B在抛物线对称轴的左侧D.抛物线的顶点在第四象限(共8题;共8分)9.(1分)写出一个开口向上,并且与y轴交于点(0,2)的抛物线的解析式.10.(1分)如图,AB▱CD▱EF,直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3,CE=5,DF=4,则BF的长为.11.(1分)把二次函数y=x2-6x+5配成y=(x-h)2+k的形式是.12.(1分)已知抛物线y=x2−2x经过点(−1,y1),(4,y2),则y1y2(填“>”“ =”或“<”).13.(1分)如图,在▱ABC中,DE分别与AB、AC相交于点D、E,且DE▱BC,如果ADDB=23,那么DEBC=.14.(1分)二次函数y=−x2+bx+c的部分图像如图所示,由图像可知,方程−x2+bx+c=0的解为.15.(1分)据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了世界上第1个“小孔成像”的实验,阐释了光的直线传播原理,如图(1)所示。
人教版2018-2019学年九年级上学期期末考试数学试题(解析版)一、单选题:(每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分). 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=32.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直; C.对角线互相平分D.对角线平分对角3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,105.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.46.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.47.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196;C.196(1+x)2=100;D.100(1+x)2=196 8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.59.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2 10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C.D.二.填空题(每题3分,共15分)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有条.(填具体数字)14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32 (2)2x2+3x﹣1=0(用配方法)17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.参考答案与试题解析一.单选题:每题只有一个正确答案,将正确答案序号填在表格中每题3分,共30分. 1.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=3【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分对角【考点】多边形.【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;B、对角线互相垂直,矩形不具有此性质,故本选项错误;C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;D、对角线平分对角,矩形不具有此性质,故本选项错误;故选:C.3.在一个不透明的口袋中,装有5个红球和2个白球,它们除颜色外都相同,从中任意摸出有一个球,摸到红球的概率是()A.B.C.D.【考点】概率公式.【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【解答】解:袋子中球的总数为5+2=7,而红球有5个,则摸出红球的概率为.故选D.4.长度为下列各组数据的线段(单位:cm)中,成比例的是()A.1,2,3,4 B.6,5,10,15 C.3,2,6,4 D.15,3,4,10【考点】比例线段.【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【解答】解:A、1×4≠2×3,故本选项错误;B、5×15≠6×10,故本选项错误;C、2×6=3×4,故选项正确;D、3×15≠4×10,故选项错误.故选C.5.已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则+等于()A.﹣4 B.﹣1 C.1 D.4【考点】根与系数的关系.【分析】根据根与系数的关系可得x1+x2=4、x1•x2=1,将+通分后可得,再代入x1+x2=4、x1•x2=1即可求出结论.【解答】解:∵x1、x2是一元二次方程x2﹣4x+1=0的两个根,∴x1+x2=4,x1•x2=1,+===4.故选D.6.如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A.1 B.2 C.3 D.4【考点】平行线分线段成比例.【分析】根据平行线分线段成比例可得,代入计算即可解答.【解答】解:∵DE∥BC,∴,即,解得:EC=2,故选:B.7.某果园2017年水果产量为100吨,2019年水果产量为196吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.196(1﹣x)2B.100(1﹣x)2=196 C.196(1+x)2=100 D.100(1+x)2=196【考点】由实际问题抽象出一元二次方程.【分析】2019年的产量=2017年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2014年的产量为100(1+x),2015年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=196,故选:D.8.如图,CD是Rt△ABC的中线,∠ACB=90°,AC=8,BC=6,则CD的长是()A.2.5 B.3 C.4 D.5【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理列式求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵CD是Rt△ABC的中线,∴CD=AB=×10=5.故选D.9.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.10.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.2 B.C. D.【考点】轴对称﹣最短路线问题;菱形的性质.【分析】根据轴对称确定最短路线问题,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,然后求解即可.【解答】解:如图,菱形ABCD中,∵AB=2,∠A=120°,∴AD=2,∠ADC=60°,过A作AE⊥CD于E,则AE=P′Q,∵AE=AD•cos60°=2×=,∴点P′到CD的距离为,∴PK+QK的最小值为.故选B.二.填空题11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【考点】列表法与树状图法;概率公式.【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:【点评】本题主要考查了概率,解决问题的关键是掌握树状图法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为﹣3.【考点】一元二次方程的解.【分析】先求出方程2x﹣4=0的解,再把x的值代入方程x2+mx+2=0,求出m的值即可.【解答】解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了一元二次方程的解,先求出x的值,再代入方程x2+mx+2=0是解决问题的关键,是一道基础题.13.如图:在矩形ABCD中,对角线AC,BD交于点O,已知∠AOB=60°,AC=16,则图中长度为8的线段有6条.(填具体数字)【考点】矩形的性质;等边三角形的判定与性质.【分析】根据矩形性质得出DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,推出BO=OD=AO=OC=8,得出△ABO是等边三角形,推出AB=AO=8=D C.【解答】解:∵AC=16,四边形ABCD是矩形,∴DC=AB,BO=DO=BD,AO=OC=AC=8,BD=AC,∴BO=OD=AO=OC=8,∵∠AOB=60°,∴△ABO是等边三角形,∴AB=AO=8,∴DC=8,即图中长度为8的线段有AO、CO、BO、DO、AB、DC共6条,故答案为:6.【点评】本题考查了矩形性质和等边三角形的性质和判定的应用,注意:矩形的对角线互相平分且相等,矩形的对边相等.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE 的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.矩形的两条邻边长分别是6cm和8cm,则顺次连接各边中点所得的四边形的面积是24cm2.【考点】正方形的判定与性质;三角形中位线定理;矩形的性质.【专题】计算题.【分析】根据题意,先证明四边形EFGH是菱形,然后根据菱形的面积等于对角线乘积的一半,解答出即可.【解答】解:如图,连接EG、FH、AC、BD,设AB=6cm,AD=8cm,∵四边形ABCD是矩形,E、F、G、H分别是四边的中点,∴HF=6cm,EG=8cm,AC=BD,EH=FG=BD,EF=HG=AC,∴四边形EFGH是菱形,∴S菱形EFGH=×FH×EG=×6×8=24cm2.故答案为24cm2.【点评】本题考查了矩形的性质、三角形的中位线定理,证明四边形EFGH是菱形及菱形面积的计算方法,是解答本题的关键.三、解答题(共55分)16.解方程:(1)(x+1)(x﹣3)=32(2)2x2+3x﹣1=0(用配方法)【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)根据因式分解法可以解答本题;(2)根据配方法可以求得方程的解.【解答】解:(1)(x+1)(x﹣3)=32去括号,得x2﹣2x﹣3=32移项及合并同类项,得x2﹣2x﹣35=0∴(x﹣7)(x+5)=0∴x﹣7=0或x+5=0,解得,x1=7,x2=﹣5;(2)2x2+3x﹣1=0(用配方法)∴∴,∴.17.如图,在平行四边形ABCD中,∠ABC的平分线BF分别与AC、AD交于点E、F.(1)求证:AB=AF;(2)当AB=6,BC=10时,求的值.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】(1)由在▱ABCD中,AD∥BC,利用平行线的性质,可求得∠FBC=∠AFB,又由BF是∠ABC的平分线,易证得∠ABF=∠AFB,利用等角对等边的知识,即可证得AB=AF;(2)易证得△AEF∽△CEB,利用相似三角形的对应边成比例,即可求得的值.【解答】(1)证明:∵BF平分∠ABC,∴∠CBF=∠AFB,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∵平行四边形ABCD,∴AB=AF,(2)解:∵AB=6,∴AF=6,∵AF∥BC,∴△AEF∽△CEB,∴===,∴.18.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).【考点】相似三角形的应用;中心投影.【分析】根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.【解答】解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x,∴△ABN∽△ACD,∴=,即=,解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米19.将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.【考点】列表法与树状图法;概率公式.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:(1)A,2,3,4共有4张牌,随意抽取一张为偶数的概率为=;(2)1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)=.或根据题意,画表格:由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)=.20.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B(b,1)两点,(1)求反比例函数的表达式及点A,B的坐标(2)在x轴上找一点,使P A+PB的值最小,求满足条件的点P的坐标.【考点】反比例函数与一次函数的交点问题;轴对称﹣最短路线问题.【分析】(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,即可得出a,b,再把点A 坐标代入反比例函数y=,即可得出结论;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,求出直线AD的解析式,令y=0,即可得出点P坐标.【解答】解:(1)把点A(1,a),B(b,1)代入一次函数y=﹣x+4,得a=﹣1+4,1=﹣b+4,解得a=3,b=3,∴A(1,3),B(3,1);点A(1,3)代入反比例函数y=得k=3,∴反比例函数的表达式y=;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时P A+PB 的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,,解得m=﹣2,n=5,∴直线AD的解析式为y=﹣2x+5,令y=0,得x=,∴点P坐标(,0).。
2019-2020学年北京市朝阳区九年级(上)期末数学试卷一、选择题1.下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°2.抛物线y=(x﹣2)2+1的顶点坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.14.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.扩大为原来的9倍5.如图,△ABC中,点D,E分别在AB,AC上,DE∥BC.若AD=1,BD=2,则△ADE 与△ABC的面积之比为()A.1:2B.1:3C.1:4D.1:96.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④8.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3二、填空题(本题共16分,每小题2分)9.点(﹣1,﹣3)关于原点的对称点的坐标为.10.如图,在平面直角坐标系xOy中,射线l的端点为(0,1),l∥x轴,请写出一个图象与射线l有公共点的反比例函数的表达式:.11.如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD为黄金矩形,宽AD=,则长AB为.12.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.13.如图,在正方形网格中,点A,B,C在⊙O上,并且都是小正方形的顶点,P 是上任意一点,则∠P 的正切值为.14.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),则m+n的值为.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:柑橘总质量n/kg100150200250300350400450500完好柑橘质量92.40138.45183.80229.50276.30322.70367.20414.45459.50m/kg柑橘完好的频0.9240.9230.9190.9180.9210.9220.9180.9210.919率①估计从该村运到火车站柑橘完好的概率为(结果保留小数点后三位);②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地柑橘完好的概率为.16.如图,分别过第二象限内的点P作x,y轴的平行线,与y,x轴分别交于点A,B,与双曲线分别交于点C,D.下面三个结论,①存在无数个点P使S△AOC=S△BOD;②存在无数个点P使S△POA=S△POB;③存在无数个点P使S四边形OAPB=S△ACD.所有正确结论的序号是.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:sin60°﹣cos30°+tan45°.18.如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AB=8,求BC的长.19.如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.20.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是.21.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.22.在平面内,O为线段AB的中点,所有到点O的距离等于OA的点组成图形W.取OA 的中点C,过点C作CD⊥AB交图形W于的点D,D在直线AB的上方,连接AD,BD.(1)求∠ABD的度数;(2)若点E在线段CA的延长线上,且∠ADE=∠ABD,求直线DE与图形W的公共点个数.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=45°,AP=1,求BP的长.小军的思路是:根据已知条件可以证明△ACP∽△CBP,进一步推理可得BP的长.请回答:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴=.∵AP=1,∴PC=.∴PB=.参考小军的思路,解决问题:如图2,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=30°,求的值;24.点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y =(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76°,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9 BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79 4.00 DF/cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在BM,DF,DM的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为cm.26.在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.28.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为,线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤PA≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水结冰B.随意翻到一本书的某页,这页的页码是偶数C.明天太阳从东方升起D.三角形的内角和是360°【分析】根据随机事件的意义,这个选项进行判断即可.解:“通常温度降到0℃以下,纯净的水结冰”是必然事件;“随意翻到一本书的某页,这页的页码可能是偶数,也可能是奇数”因此选项B符合题意;“明天太阳从东方升起”是必然事件,不符合题意;“三角形的内角和是180°”因此“三角形的内角和是360°”是确定事件中的不可能事件,不符合题意;故选:B.2.抛物线y=(x﹣2)2+1的顶点坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣2,1)【分析】抛物线的顶点式为:y=a(x﹣h)2+k,其顶点坐标是(h,k),可以确定抛物线的顶点坐标.解:抛物线y=(x﹣2)2+1是以抛物线的顶点式给出的,其顶点坐标为:(2,1).故选:A.3.只有1和它本身两个因数且大于1的自然数叫做素数,我国数学家陈景润在有关素数的“哥德巴赫猜想”的研究中取得了世界领先的成果.从5,7,11这3个素数中随机抽取一个,则抽到的数是7的概率是()A.B.C.D.1【分析】根据概率=所求情况数与总情况数之比解答即可.解:∵共3个素数,分别是5,7,11,∴抽到的数是7的概率是;故选:C.4.把Rt△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.不变B.缩小为原来的C.扩大为原来的3倍D.扩大为原来的9倍【分析】根据相似三角形的性质解答.解:三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:A.5.如图,△ABC中,点D,E分别在AB,AC上,DE∥BC.若AD=1,BD=2,则△ADE 与△ABC的面积之比为()A.1:2B.1:3C.1:4D.1:9【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质即可求出△ADE与△ABC的面积之比.解:∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=.故选:D.6.如图,在正方形网格中,△MPN绕某一点旋转某一角度得到△M′P′N′,则旋转中心可能是()A.点A B.点B C.点C D.点D【分析】连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,交点为旋转中心.解:如图,∵△MNP绕某点旋转一定的角度,得到△M'N'P',∴连接PP'、NN'、MM',作PP'的垂直平分线,作NN'的垂直平分线,作MM'的垂直平分线,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④【分析】根据圆心角、弧、弦的关系,圆周角定理即可得到结论.解:由题意得,AP=CD,BP=EF,∵AP+BP>AB,∴CD+EF>AB;∵⊙O1,⊙O2,⊙O3是等圆,∴=,=,∵+=,∴+=;∴∠CO2D=∠AO1P,∠EO3F=∠BO1P,∵∠AO1P+∠BO1P=∠AO1P,∴∠CO2D+∠EO3F=∠AO1B;∵∠CDO2=∠APO1,∠BPO1=∠EFO3,∵∠P=∠APO1+∠BPO1,∴∠CDO2+∠EFO3=∠P,∴正确结论的序号是②③④,故选:D.8.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.3【分析】根据抛物线y=﹣1与x轴交于A,B两点,可得A、B两点坐标,D是以点C(0,4)为圆心,根据勾股定理可求BC的长为5,E是线段AD的中点,再根据三角形中位线,BD最小,OE就最小.解:∵抛物线y=﹣1与x轴交于A,B两点,∴A、B两点坐标为(﹣3,0)、(3,0),∵D是以点C(0,4)为圆心,根据勾股定理,得BC=5,∵E是线段AD的中点,O是AB中点,∴OE是三角形ABD的中位线,∴OE=BD,即点B、D、C共线时,BD最小,OE就最小.如图,连接BC交圆于点D′,∴BD′=BC﹣CD′=5﹣1=4,∴OE′=2.所以线段OE的最小值为2.故选:A.二、填空题(本题共16分,每小题2分)9.点(﹣1,﹣3)关于原点的对称点的坐标为(1,3).【分析】直接利用关于原点对称点的性质得出答案.解:点(﹣1,﹣3)关于原点的对称点的坐标为:(1,3).故答案为:(1,3).10.如图,在平面直角坐标系xOy中,射线l的端点为(0,1),l∥x轴,请写出一个图象与射线l有公共点的反比例函数的表达式:答案不唯一,如y=.【分析】直接利用射线的特点得出符合题意的反比例函数解析式.解:∵射线l的端点为(0,1),l∥x轴,∴写出一个图象与射线l有公共点的反比例函数的表达式:答案不唯一,如y=.故答案为:答案不唯一,如y=.11.如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.如图,矩形ABCD为黄金矩形,宽AD=,则长AB为2.【分析】判断黄金矩形的依据是:宽与长之比为0.618,根据已知条件即可得出答案.解:∵矩形ABCD是黄金矩形,且AD=,∴,,∴AB=2,故答案为2.12.如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=1,∠A=45°,则的长度为.【分析】连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=1,∠COD=90°,根据弧长公式求得即可.解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=1,∵AC=BD=1,OC=OD=1,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=π,故答案为:.13.如图,在正方形网格中,点A,B,C在⊙O上,并且都是小正方形的顶点,P是上任意一点,则∠P的正切值为.【分析】:连接OA、OB,作OD⊥AB于D,如图,利用等腰三角形的性质和圆周角定理得到∠AOD=∠APB,再利用正切的性质得到tan∠AOD=,从而得到tan∠P的值.解:连接OA、OB,作OD⊥AB于D,如图,∵OA=OB,OD⊥AB,∴∠AOD=∠AOB,∵∠APB=∠AOB,∴∠AOD=∠APB,在Rt△AOD中,tan∠AOD==,∴tan∠P=.故答案为.14.抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),则m+n的值为2.【分析】根据根与系数的关系解答即可.解:∵抛物线y=ax2﹣2ax﹣3与x轴交于两点,分别是(m,0),(n,0),∴m+n=﹣=2.故答案是:2.15.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:柑橘总质量n/kg100150200250300350400450500完好柑橘质量92.40138.45183.80229.50276.30322.70367.20414.45459.50m/kg柑橘完好的频0.9240.9230.9190.9180.9210.9220.9180.9210.919率①估计从该村运到火车站柑橘完好的概率为0.920(结果保留小数点后三位);②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地柑橘完好的概率为.【分析】(1)根据表格中频率的变化情况,估计概率即可;(2)根据完好的概率进行列方程求解即可.解:(1)根据抽查的柑橘完好的频率,大约集中在0.920上下波动,因此估计柑橘的完好的概率为0.920,故答案为:0.920;(2)设总质量为m千克,从火车站运到A地柑橘完好的概率为x,由题意得,m×0.920×x=m×0.880,解得,x=,故答案为:.16.如图,分别过第二象限内的点P作x,y轴的平行线,与y,x轴分别交于点A,B,与双曲线分别交于点C,D.下面三个结论,①存在无数个点P使S△AOC=S△BOD;②存在无数个点P使S△POA=S△POB;③存在无数个点P使S四边形OAPB=S△ACD.所有正确结论的序号是①②③.【分析】如图,设C(m,),D(n,),则P(n,),利用反比例函数k的几何意义得到S△AOC=3,S△BOD=3,则可对①进行判断;根据三角形面积公式可对②进行判断;通过计算S四边形OAPB和S△ACD得到m与n的关系可对对③进行判断.解:如图,设C(m,),D(n,),则P(n,),∵S△AOC=3,S△BOD=3,∴S△AOC=S△BOD;所以①正确;∵S△POA=﹣n×=﹣,S△POB=﹣n×=﹣,∴S△POA=S△POB;所以②正确;∵S四边形OAPB=﹣n×=﹣,S△ACD=×m×(﹣)=3﹣,∴当﹣=3﹣,即m2﹣mn﹣2n2=0,所以m=2n(舍去)或m=﹣n,此时P点为无数个,所以③正确.故答案为①②③.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:sin60°﹣cos30°+tan45°.【分析】直接利用特殊角的三角函数值分别代入得出答案.解:原式==1.18.如图,在△ABC中,∠B=30°,tan C=,AD⊥BC于点D.若AB=8,求BC的长.【分析】根据直角三角形中30°角所对的直角边是斜边的一半可以求得AD的长,然后即可求得BD的长,再根据AD的长和tan C=,可以求得CD的长,从而可以求得BC 的长,本题得以解决.解:∵AD⊥BC,∴∠ADB=∠ADC=90°.∵在Rt△ADB中,∠B=30°,AB=8,∴AD=4,BD=,∵在Rt△ADC中,tan C=,AD=4,∴,∴CD=3.∴BC=BD+CD=.19.如图,△ABC为等边三角形,将BC边绕点B顺时针旋转30°,得到线段BD,连接AD,CD,求∠ADC的度数.【分析】首先证明∠ABD=90°,求出∠BDC,∠ADB即可解决问题.解:∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.根据题意可知BD=BC,∠DBC=30°.∴AB=BD.∴∠ABD=90°,∠BDC=75°.∴∠BDA=45°.∴∠ADC=30°.20.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如下表:x…﹣2﹣1012…y1…01234…y2…0﹣1038…(1)求y2的表达式;(2)关于x的不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.【分析】(1)根据题意设出y2的表达式,再把(0,0)代入,求出a的值,即可得出y2的表达式;(2)利用表中数据得到直线与抛物线的交点为(﹣2,0)和(1,3),x<﹣2或x>1时,y2>y1,从而得出不等式ax2+bx+c>kx+m的解集.解:(1)根据题意设y2的表达式为:y2=a(x+1)2﹣1,把(0,0)代入得a=1,∴y2=x2+2x;(2)当x=﹣2时,y1=y2=0;当x=1时,y1=y2=3;∴直线与抛物线的交点为(﹣2,0)和(1,3),而x<﹣2或x>1时,y2>y1,∴不等式ax2+bx+c>kx+m的解集是x<﹣2或x>1.故答案为:x<﹣2或x>1.21.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.22.在平面内,O为线段AB的中点,所有到点O的距离等于OA的点组成图形W.取OA 的中点C,过点C作CD⊥AB交图形W于的点D,D在直线AB的上方,连接AD,BD.(1)求∠ABD的度数;(2)若点E在线段CA的延长线上,且∠ADE=∠ABD,求直线DE与图形W的公共点个数.【分析】(1)根据题意,图形W为以O为圆心,OA为直径的圆.如图1,连接OD,根据等边三角形的判定与性质即可求解;(2)根据切线的判定即可求解.解:(1)根据题意,图形W为以O为圆心,OA为直径的圆.如图1,连接OD,∴OA=OD.∵点C为OA的中点,CD⊥AB,∴AD=OD.∴OA=OD=AD.∴△OAD是等边三角形.∴∠AOD=60°.∴∠ABD=30°.(2)如图2,∵∠ADE=∠ABD,∴∠ADE=30°.∵∠ADO=60°.∴∠ODE=90°.∴OD⊥DE.∴DE是⊙O的切线.∴直线DE与图形W的公共点个数为1.23.阅读下面材料:小军遇到这样一个问题:如图1,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=45°,AP=1,求BP的长.小军的思路是:根据已知条件可以证明△ACP∽△CBP,进一步推理可得BP的长.请回答:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴=.∵AP=1,∴PC=.∴PB=2.参考小军的思路,解决问题:如图2,在△ABC中,AB=AC,P是△ABC内一点,∠PAC=∠PCB=∠PBA.若∠ACB=30°,求的值;【分析】阅读材料:证明△ACP∽△CBP.得出.由等腰直角三角形的性质得出CB=AC得出=.PC=AP=.得出PB=PC=2.解决问题:证明△ACP∽△CBP.得出=,设AP=a,则PC=,得出PB=3a.即可得出.【解答】阅读材料:解:∵AB=AC,∴∠ABC=∠ACB.∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴.∵∠ACB=45°,∴∠BAC=90°.∴CB=AC,∴=.∵AP=1,∴PC=AP=.∴PB=PC=2.故答案为:∠PBC;;2;解决问题:解:作AD⊥BC于D,如图2所示:∵AB=AC,∴∠ABC=∠ACB=30°.BD=CD=BC,∴AD=AC,CD=AD,∴AC=2AD,BC=2CD=2AD,∵∠PCB=∠PBA,∴∠PCA=∠PBC.∵∠PAC=∠PCB,∴△ACP∽△CBP.∴==,设AP=a,则PC=,∴PB=3a.∴.24.点A是反比例函数y=(x>0)的图象l1上一点,直线AB∥x轴,交反比例函数y =(x>0)的图象l2于点B,直线AC∥y轴,交l2于点C,直线CD∥x轴,交l1于点D.(1)若点A(1,1),求线段AB和CD的长度;(2)对于任意的点A(a,b),判断线段AB和CD的大小关系,并证明.【分析】(1)根据题意求得B(3,1),C(1,3),D(,3),即可求得AB和CD 的长度;(2)根据题意得到A(a,),B(3a,).C(a,),D(,),进一步求得AB=2a,CD=.即可求得AB>CD.解:(1)∵AB∥x轴,A(1,1),B在反比例函数的图象上,∴B(3,1).同理可求:C(1,3),D(,3).∴AB=2,CD=.(2)AB>CD.证明:∵A(a,b),A在反比例函数的图象上,∴A(a,).∵AB∥x轴,B在反比例函数的图象上,∴B(3a,).同理可求:C(a,),D(,).∴AB=2a,CD=.∵a>0,∴2a>.∴AB>CD.25.如图,在矩形ABCD中,E是BA延长线上的定点,M为BC边上的一个动点,连接ME,将射线ME绕点M顺时针旋转76°,交射线CD于点F,连接MD.小东根据学习函数的经验,对线段BM,DF,DM的长度之间的关系进行了探究.下面是小东探究的过程,请补充完整:(1)对于点M在BC上的不同位置,画图、测量,得到了线段BM,DF,DM的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8位置9 BM/cm0.000.53 1.00 1.69 2.17 2.96 3.46 3.79 4.00 DF/cm0.00 1.00 1.74 2.49 2.69 2.21 1.140.00 1.00 DM/cm 4.12 3.61 3.16 2.52 2.09 1.44 1.14 1.02 1.00在BM,DF,DM的长度这三个量中,确定BM的长度是自变量,DF的长度和DM的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当DF=2cm时,DM的长度约为 2.98和1.35 cm.【分析】(1)由函数的定义可得;(2)描点即可;(3)结合图象,即可求解.解:(1)由函数的定义可得:BM的长度是自变量,DF的长度和DM的长度都是这个自变量的函数,故答案为:BM,DF,DM;(2)如图所示.(3)由图象得到:当DF=2cm时,DM的长度约为2.98cm和1.35cm.26.在平面直角坐标系xOy中,抛物线y=ax2+bx经过点(3,3).(1)用含a的式子表示b;(2)直线y=x+4a+4与直线y=4交于点B,求点B的坐标(用含a的式子表示);(3)在(2)的条件下,已知点A(1,4),若抛物线与线段AB恰有一个公共点,直接写出a(a<0)的取值范围.【分析】(1)将点(3,3)代入解析式即可求得;(2)把y=4代入y=x+4a+4得到关于x的方程,解方程即可求得;(3)根据抛物线与线段AB恰有一个公共点,分两种情况讨论,即可得结论.解:(1)将点(3,3)代入y=ax2+bx,得9a+3b=3.∴b=﹣3a+1.(2)令x+4a+4=4,得x=﹣4a.∴B(﹣4a,4).(3)∵a<0,∴抛物线开口向下,抛物线与线段AB恰有一个公共点,∵A(1,4),B(﹣4a,4)∴点A、B所在的直线为y=4,由(1)得b=1﹣3a,则抛物线可化为:y=ax2+(1﹣3a)x,分两种情况讨论:①当抛物线y=ax2+(1﹣3a)x与直线y=4只有一个公共点时,且抛物线的顶点在点A、B之间,则1≤≤﹣4a或﹣4a≤≤1,方程ax2+(1﹣3a)x=4的根的判别式:△=0,即(1﹣3a)2+16a=0,解得a1=﹣,a2=﹣1,当a1=﹣时,=6(不符合题意),当a2=﹣1时,=2,则1≤≤﹣4a成立.②当抛物线经过点A时,即当x=1,y=4时,a+1﹣3a=4,解得a=﹣;∴a<﹣时,抛物线与线段AB恰有一个公共点,综上:a的取值为:a=﹣1或a<﹣时,抛物线与线段AB恰有一个公共点.27.已知∠MON=120°,点A,B分别在ON,OM边上,且OA=OB,点C在线段OB 上(不与点O,B重合),连接CA.将射线CA绕点C逆时针旋转120°得到射线CA′,将射线BO绕点B逆时针旋转150°与射线CA′交于点D.(1)根据题意补全图1;(2)求证:①∠OAC=∠DCB;②CD=CA(提示:可以在OA上截取OE=OC,连接CE);(3)点H在线段AO的延长线上,当线段OH,OC,OA满足什么等量关系时,对于任意的点C都有∠DCH=2∠DAH,写出你的猜想并证明.【分析】(1)根据题意即可补全图形;(2)①由旋转得∠ACD=120°,由三角形内角和得出∠DCB+∠ACO=60°,∠OAC+∠ACO=60°,即可得出结论;②在OA上截取OE=OC,连接CE,则∠OEC=∠OCE=(180°﹣∠MON)=30°,∠AEC=150°,得出∠AEC=∠CBD,易证AE=BC,由ASA证得△AEC≌△CBD,即可得出结论;(3)猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH,在OH上截取OF=OC,连接CF、CH,则FH=OA,∠COF=180°﹣∠MON=60°,得出△OFC是等边三角形,则CF=OC,∠CFH=∠COA=120°,由SAS证得△CFH≌△COA,得出∠H=∠OAC,由三角形外角性质得出∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,则∠DCH=60°+∠H+∠DCB=60°+2∠OAC,由CA=CD,∠ACD=120°,得出∠CAD=30°,即可得出∠DCH=2∠DAH.【解答】(1)解:根据题意补全图形,如图1所示:(2)证明:①由旋转得:∠ACD=120°,∴∠DCB+∠ACO=180°﹣120°=60°,∵∠MON=120°,∴∠OAC+∠ACO=180°﹣120°=60°,∴∠OAC=∠DCB;②在OA上截取OE=OC,连接CE,如图2所示:则∠OEC=∠OCE=(180°﹣∠MON)=(180°﹣120°)=30°,∴∠AEC=180°﹣∠OEC=180°﹣30°=150°,由旋转得:∠CBD=150°,∴∠AEC=∠CBD,∵OA=OB,OE=OC,∴AE=BC,在△AEC和△CBD中,,∴△AEC≌△CBD(ASA),∴CD=CA;(3)解:猜想OH﹣OC=OA时,对于任意的点C都有∠DCH=2∠DAH;理由如下:在OH上截取OF=OC,连接CF、CH,如图3所示:则FH=OA,∠COF=180°﹣∠MON=180°﹣120°=60°,∴△OFC是等边三角形,∴CF=OC,∠CFH=∠COA=120°,在△CFH和△COA中,,∴△CFH≌△COA(SAS),∴∠H=∠OAC,∴∠BCH=∠COF+∠H=60°+∠H=60°+∠OAC,∴∠DCH=60°+∠H+∠DCB=60°+2∠OAC,∵CA=CD,∠ACD=120°,∴∠CAD=30°,∴∠DCH=2(∠CAD+∠OAC)=2∠DAH.28.在平面直角坐标系xOy中,已知点A(0,2),点B在x轴上,以AB为直径作⊙C,点P在y轴上,且在点A上方,过点P作⊙C的切线PQ,Q为切点,如果点Q在第一象限,则称Q为点P的离点.例如,图1中的Q为点P的一个离点.(1)已知点P(0,3),Q为P的离点.①如图2,若B(0,0),则圆心C的坐标为(0,1),线段PQ的长为;②若B(2,0),求线段PQ的长;(2)已知1≤PA≤2,直线l:y=kx+k+3(k≠0).①当k=1时,若直线l上存在P的离点Q,则点Q纵坐标t的最大值为6;②记直线l:y=kx+k+3(k≠0)在﹣1≤x≤1的部分为图形G,如果图形G上存在P的离点,直接写出k的取值范围.【分析】(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2;②如图,过C作CM⊥y轴于点M,连接CP,CQ,M(0,1).在Rt△ACM中,由勾股定理可得CA=,CQ=.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①当k=1时,y=x+4,Q(t﹣4,t),P的纵坐标为4时,PQ与圆C相切,设B (m,0),则圆心为C(,1),由CQ⊥PQ,可求CQ的解析式为y=﹣x++1,Q 点横坐标为﹣=t﹣4,则C(2t﹣5,1),再由CQ=AC,得到t=6或t=2;②y =kx+k+3经过定点(﹣1,3),PQ是圆的切线,AO是圆的弦,则有PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),1+4k2=3,所以1﹣2<k≤﹣;当k >0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),1+4k2=3,所以≤k<1+2.解:(1)①如图可知:C(0,1),在Rt△PQC中,CQ=1,PC=2,∴PQ=,故答案为(0,1);;②如图,过C作CM⊥y轴于点M,连接CP,CQ.∵A(0,2),B(2,0),∴C(1,1).∴M(0,1).在Rt△ACM中,由勾股定理可得CA=.∴CQ=.∵P(0,3),M(0,1),∴PM=2.在Rt△PCM中,由勾股定理可得PC=.在Rt△PCQ中,由勾股定理可得PQ==.(2)①如图1:当k=1时,y=x+4,∴Q(t﹣4,t),∵1≤PA≤2,∴P的纵坐标为4时,PQ与圆C相切,设B(m,0),∴C(,1),∵CQ⊥PQ,∴CQ的解析式为y=﹣x++1,∴Q点横坐标为﹣,∴﹣=t﹣4,∴m=4t﹣10,∴C(2t﹣5,1),∵CQ=AC,∴(2t﹣5)2+1=2(t﹣1)2,∴t=6或t=2,∴t的最大值为6;故答案为6.②∵﹣1≤x≤1,∵y=kx+k+3经过定点(﹣1,3),∵PQ是圆的切线,AO是圆的弦,∴PQ2=PA•PO,当k<0时,Q点的在端点(﹣1,3)和(1,2k+3)之间运动,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4﹣2),此时k=1﹣2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=﹣,∴1﹣2<k≤﹣;当k>0时,当P(0,4)时,PQ=2,以P为圆心,PQ长为半径的圆与y轴交于点(0,4+2),此时k=1+2,当P(0,3)时,PQ=,Q(1,2k+3),∴1+4k2=3,∴k=,∴k=,∴≤k<1+2.。
2019-2020学年北京市昌平区高一(上)期末数学试卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项)1.(5分)已知集合U={0,1,2,3,4,5,6},A={0,1,2},B={1,2,3},则()A.A∪B=U B.A∩B={1,2}C.∁U A={3,4,5}D.∁U B={4,5,6} 2.(5分)已知二次不等式x2﹣2x﹣3≤0的解集在数轴上表示正确的是()A.B.C.D.3.(5分)下列各式正确的是()A.π2•π3=π6B.C.lg2+lg5=1D.4.(5分)已知向量=(2,﹣1),=(﹣1,3),则|﹣|=()A.1B.C.D.55.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.C.D.log2a<log2b6.(5分)为了丰富学生的寒假生活,某学校为了学生推荐了《论语》、《红楼梦》、《乡土中国》和《巴黎圣母院》4部名著.小明准备从中任意选择2部进行阅读,那么选择的2部名著中包括外国名著的概率为()A.B.C.D.7.(5分)已知函数f(x)=mx2+x+1有两个零点,则实数m的取值范围是()A.B.C.D.8.(5分)已知y=f(x)是定义在R上的偶函数,当x≥0时,y=f(x)的图象如图所示,则下列关系正确的是()A.f(1)>f(﹣2)>f(3)B.f(3)>f(1)>f(﹣2)C.f(1)>f(3)>f(﹣2)D.f(﹣2)>f(1)>f(3)9.(5分)设,是非零向量,则“,共线”是“|+|=||+||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.(5分)“里氏震级”反映的地震释放出来的能量大小的一种度量.里氏震级M地震释放的能量E(单位:焦耳)之间的关系为:.1988年云南澜沧发生地震为里氏7.6级,2008年四川汶川发生的地震为里氏8级.若云南澜沧地震与四川地震释放的能量分别为E1,E2,则的值为()A.10﹣0.6B.10﹣0.4C.100.4D.100.6二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)已知命题p:∀x∈R,x2+x+1≥0,¬p为.12.(5分)已知幂函数f(x)=xα(α为常数)的图象经过点(4,2),则f(x)=.13.(5分)在某社区举行的“讲文明,树新风”答题竞赛中,根据甲、乙两组选手的成绩,绘制的茎叶图如图所示,甲组成绩的25%分位数为;设甲、乙两组成的方差分别为s甲2,s乙2,那么s甲2 s乙2.(填“>”或“<”或“=”)14.(5分)向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则λ+μ=.15.(5分)已知函数,则f(0)=;能说明“方程f (x)﹣a=0有两个实根”为真命题的实数a的一个值为.16.(5分)若函数f(x)满足下面三个条件:①f(x)在其定义域上图象不间断;②f(x)是偶函数;③f(x)恰有3个零点.请写出一个满足上述条件的函数f(x)=.三、解答题(本大题共5小题,共70分.解答应写文字说明,证明过程或演算步骤)17.(14分)某校为了调查高一年级学生的体育锻炼情况,从2000名高一学生中随机抽取100名学生,收集了他们周平均锻炼时间(单位:小时),将数据按照[3,5),[5,7)[7,9),[9,11),[11,13]分成5组,制成了如图所示的频率分布直方图.(Ⅰ)求图中a的值;(Ⅱ)估计高一年级全体学生周平均锻炼时间不低于7小时的人数;(Ⅲ)假设同组中的每个数据可用该区间的中点值代替,试估计高一年级全体学生周平均锻炼时间的平均数落在哪一个区间.(只需写出结论)18.(14分)如图,在长方形ABCD中,E为边DC的中点,F为边BC上一点,且.设=.(Ⅰ)试用基底{,},表示;(Ⅱ)若G为长方形ABCD内部一点,且.求证:E,G,F三点共线.19.(14分)为了解甲、乙两名运动员的射击成绩,从两人近一年的射击成绩中各随机抽取一个容量为20的样本,经过处理,得到两人击中环数的频数如图所示.(Ⅰ)试估计甲射击一次,击中环数不低于8环的概率;(Ⅱ)从上述两个样本中各随机抽取一次,求甲、乙两人中恰有1人击中环数为10环的概率.20.(14分)为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C(单位:万元)与太阳能电池面积x(单位:平方米)之间的函数关系为(m为常数).已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x(单位:万元).记F(x)为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和.(Ⅰ)写出F(x)的解析式;(Ⅱ)当x为多少平方米时,F(x)取得最小值?最小值是多少万元?21.(14分)对于任意的有限集合P,Q定义:①;②P*Q={x|f p(x)•f Q(x)=1};③card(P)表示集合P的元素个数.已知集合A={x|x=k,k∈N*,1≤k≤2020},B={x|x=2k,k∈N*,1≤k≤2020}.(Ⅰ)求f A(2019),f B(2019)的值;(Ⅱ)求card(A*B)的值;(Ⅲ)对于任意的有限集合M,设n=card(M*A)+card(M*B),求n的最小值.2019-2020学年北京市昌平区高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项)1.(5分)已知集合U={0,1,2,3,4,5,6},A={0,1,2},B={1,2,3},则()A.A∪B=U B.A∩B={1,2}C.∁U A={3,4,5}D.∁U B={4,5,6}【分析】直接根据交并补的定义即可求出.【解答】解:集合U={0,1,2,3,4,5,6},A={0,1,2},B={1,2,3},则A∪B={0,1,2,3},A∩B={1,2},∁U A={3,4,5,6},∁U B={0,4,5,6},故选:B.【点评】本题考查了集合的交并补的运算,属于基础题.2.(5分)已知二次不等式x2﹣2x﹣3≤0的解集在数轴上表示正确的是()A.B.C.D.【分析】先分解因式,解出不等式即可求解结论.【解答】解:因为x2﹣2x﹣3≤0⇒(x﹣3)(x+1)≤0⇒﹣1≤x≤3;故选:A.【点评】本题考查了不等式的解法与应用问题,也考查了因式分解的应用问题,是基础题目.3.(5分)下列各式正确的是()A.π2•π3=π6B.C.lg2+lg5=1D.【分析】由已知结合指数与对数的运算性质及对数的换底公式分别检验各选项即可.【解答】解:根据指数的运算性质可知,π2•π3=π5,A错误;根据分数指数幂可知,=,B错误;由对数的运算性质可得,lg2+lg5=lg10=1,C正确;由对数的换底公式可得,=log36≠ln2,D错误.故选:C.【点评】本题主要考查指数与对数的运算性质,对数的换底公式的简单应用,属于基础试题.4.(5分)已知向量=(2,﹣1),=(﹣1,3),则|﹣|=()A.1B.C.D.5【分析】根据向量的坐标即可求出的坐标,进而求出的值.【解答】解:∵,∴.故选:D.【点评】本题考查了向量坐标的减法运算,根据向量的坐标求向量长度的方法,考查了计算能力,属于基础题.5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.C.D.log2a<log2b【分析】直接利用不等式的性质求出结果.【解答】解:对于A,D:当a<b<0时,不等式不成立.对于B:a=0或b=0,关系式没有意义.故错误.对于C:由于b<a,且y=()x为单调递减函数,则:()b<()b,故C正确.故选:C.【点评】本题考查的知识要点:不等式的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.(5分)为了丰富学生的寒假生活,某学校为了学生推荐了《论语》、《红楼梦》、《乡土中国》和《巴黎圣母院》4部名著.小明准备从中任意选择2部进行阅读,那么选择的2部名著中包括外国名著的概率为()A.B.C.D.【分析】小明准备从中任意选择2部进行阅读,基本事件总数n==6,选择的2部名著中包括外国名著包含的基本事件个数m==3,由此能求出选择的2部名著中包括外国名著的概率.【解答】解:某学校为了学生推荐了《论语》、《红楼梦》、《乡土中国》和《巴黎圣母院》4部名著.小明准备从中任意选择2部进行阅读,基本事件总数n==6,选择的2部名著中包括外国名著包含的基本事件个数m==3,∴选择的2部名著中包括外国名著的概率为P=.故选:C.【点评】本题考查概率的求法,考査古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.(5分)已知函数f(x)=mx2+x+1有两个零点,则实数m的取值范围是()A.B.C.D.【分析】条件转化为方程mx2+x+1=0有两个不等根,结合根的判别式列出不等式即可【解答】解:函数有两个零点等价于关于x的一元二次方程mx2+x+1=0有两个不等根,则,解得m<且m≠0,即m∈(﹣∞,0)∪(0,),故选:B.【点评】本题考查函数零点与方程根的关系,涉及二次函数根的判别式,属于中档题.8.(5分)已知y=f(x)是定义在R上的偶函数,当x≥0时,y=f(x)的图象如图所示,则下列关系正确的是()A.f(1)>f(﹣2)>f(3)B.f(3)>f(1)>f(﹣2)C.f(1)>f(3)>f(﹣2)D.f(﹣2)>f(1)>f(3)【分析】根据题意,由偶函数的性质可得f(﹣2)=f(2),由函数的图象分析函数的单调性,可得f(1)>f(2)>f(3),综合可得答案.【解答】解:根据题意,y=f(x)是定义在R上的偶函数,则f(﹣2)=f(2),又由函数图象可得:f(x)在(0,+∞)上为减函数,即有f(1)>f(2)>f(3),则有f(1)>f(﹣2)>f(3),故选:A.【点评】本题考查函数的奇偶性与单调性的综合应用,注意偶函数的性质,属于基础题.9.(5分)设,是非零向量,则“,共线”是“|+|=||+||”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】“|+|=||+||”⇒“,共线”,反之不成立,例如.【解答】解:“|+|=||+||”⇒“,共线”,反之不成立,例如.∴,是非零向量,则“,共线”是“|+|=||+||”的必要不充分条件.故选:B.【点评】本题考查了向量共线定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.10.(5分)“里氏震级”反映的地震释放出来的能量大小的一种度量.里氏震级M地震释放的能量E(单位:焦耳)之间的关系为:.1988年云南澜沧发生地震为里氏7.6级,2008年四川汶川发生的地震为里氏8级.若云南澜沧地震与四川地震释放的能量分别为E1,E2,则的值为()A.10﹣0.6B.10﹣0.4C.100.4D.100.6【分析】分别把云南澜沧发生地震的里氏等级与四川汶川发生的地震的里氏等级代入,然后利用对数的运算性质求解的值.【解答】解:∵云南澜沧发生地震为里氏7.6级,∴7.6=,即;①∵四川汶川发生的地震为里氏8级,∴,即.②①﹣②得:,即,∴.故选:A.【点评】本题考查根据实际问题选择函数模型,考查对数的运算性质,是基础题.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)已知命题p:∀x∈R,x2+x+1≥0,¬p为∃x0∈R,x02+x0+1<0.【分析】利用全称命题的否定是特称命题,直接写出命题的否定即可.【解答】解:因为全称命题的否定是特称命题,所以命题p:∀x∈R,x2+x+1≥0,则¬p是:∃x0∈R,x02+x0+1<0.故答案为:∃x0∈R,x02+x0+1<0.【点评】本题考查命题的否定,全称命题与特称命题的否定关系,注意量词的变化.12.(5分)已知幂函数f(x)=xα(α为常数)的图象经过点(4,2),则f(x)=(x ≥0).【分析】把点的坐标代入幂函数解析式,求出α的值.【解答】解:幂函数f(x)=xα的图象经过点(4,2),则4α=2,解得α=,所以f(x)=(x≥0).故答案为:(x≥0).【点评】本题考查了幂函数的定义与解析式的求法问题,是基础题.13.(5分)在某社区举行的“讲文明,树新风”答题竞赛中,根据甲、乙两组选手的成绩,绘制的茎叶图如图所示,甲组成绩的25%分位数为70;设甲、乙两组成的方差分别为s甲2,s乙2,那么s甲2>s乙2.(填“>”或“<”或“=”)【分析】由茎叶图得甲组成绩从小到大排列,由25%×12=3,得到甲组成绩的25%分位数为第3个数和第4个数的平均数,由茎叶图得甲组成绩相对分散,乙组成绩相对集中,从而s甲2>s乙2.【解答】解:由茎叶图得甲组成绩从小到大为65,67,69,71,75,77,80,83,85,89,93,95,25%×12=3,∴=70,由茎叶图得甲组成绩相对分散,乙组成绩相对集中,∴s甲2>s乙2.故答案为:70,>.【点评】本题考查25%分位数的求法,考查方差的求法及应用,考查茎叶图的性质等基础知识,考查运算求解能力,是基础题.14.(5分)向量,,在正方形网格中的位置如图所示,若=λ+μ(λ,μ∈R),则λ+μ=0.【分析】建坐标系,可得,,的坐标,由=λ+μ可得关于λμ的方程组,解之相加可得.【解答】解:以向量,的公共点为坐标原点,建立如图直角坐标系,可得=(3,0),=(0,4),可得=(3,﹣4)∵=λ+μ,∴,解之得λ=1,μ=﹣1,∴λ+μ=0.故答案为:0.【点评】本题考查平面向量基本定理及其意义,建系是解决问题的关键,属中档题.15.(5分)已知函数,则f(0)=1;能说明“方程f(x)﹣a=0有两个实根”为真命题的实数a的一个值为1(答案不唯一).【分析】直接把变量代入对应的解析式求出第一个空,结合图象求解第二个空.【解答】解:因为函数,则f(0)=e0=1;函数的大致图象为:故能说明“方程f(x)﹣a=0有两个实根”为真命题的实数a的取值范围是(0,1];故答案为:1,1(答案不唯一).【点评】本题考查了求分段函数的函数值的问题,以及数形结合思想的应用,属于基础题.16.(5分)若函数f(x)满足下面三个条件:①f(x)在其定义域上图象不间断;②f(x)是偶函数;③f(x)恰有3个零点.请写出一个满足上述条件的函数f(x)=(x2﹣1)|x|.【分析】由题意同时满足3个条件的函数可得为f(x)=(x2﹣1)|x|.【解答】解:由题意可得满足条件的函数f(x)=(x2﹣1)|x|.故答案为:f(x)=(x2﹣1)|x|.【点评】本题考查函数的零点与方程根的关系,及函数的奇偶性的性质,属于基础题.三、解答题(本大题共5小题,共70分.解答应写文字说明,证明过程或演算步骤)17.(14分)某校为了调查高一年级学生的体育锻炼情况,从2000名高一学生中随机抽取100名学生,收集了他们周平均锻炼时间(单位:小时),将数据按照[3,5),[5,7)[7,9),[9,11),[11,13]分成5组,制成了如图所示的频率分布直方图.(Ⅰ)求图中a的值;(Ⅱ)估计高一年级全体学生周平均锻炼时间不低于7小时的人数;(Ⅲ)假设同组中的每个数据可用该区间的中点值代替,试估计高一年级全体学生周平均锻炼时间的平均数落在哪一个区间.(只需写出结论)【分析】(Ⅰ)因为频率分布直方图所有矩形的面积之和为1,即为频率之和为1,解得a.(Ⅱ)先从抽取的100人中,算出周平均锻炼时间不低于7小时的人数所占比例,再估计高一年级全体学生周平均锻炼时间不低于7小时的人数2000×60%=1200.(Ⅲ)每条的中点横坐标乘以面积,全加一起.【解答】解:(Ⅰ)因为频率分布直方图所有矩形的面积之和为1,所以(0.02+0.05+0.1+a+0.18)×2=1,解得a=0.15.(Ⅱ)抽取的100人中,周平均锻炼时间不低于7小时的人数所占比例为(a+0.1+0.05)×2=0.6=60%.因此估计高一年级全体学生周平均锻炼时间不低于7小时的人数所占比例也为60%.估计所求人数为2000×60%=1200.(Ⅲ)4×0.02×2+6×0.18×2+8×0.15×2+10×0.1×2+12×0.05×2=7.92,所以估计高一年级全体学生周平均锻炼时间的平均数落在[7,9)内.【点评】本题考查频率分布直方图中频率,平均数的求法,属于基础题.18.(14分)如图,在长方形ABCD中,E为边DC的中点,F为边BC上一点,且.设=.(Ⅰ)试用基底{,},表示;(Ⅱ)若G为长方形ABCD内部一点,且.求证:E,G,F三点共线.【分析】(Ⅰ)根据题意,由平面向量的线性运算法则即可用基底{,},表示;(Ⅱ)考虑三点共线时,=+(1﹣λ),经检验═+,∵,∴E,G,F三点共线.【解答】解:(Ⅰ)由题,=+=+=+=,=+=+=﹣=﹣.(Ⅱ)=+=+=+,=()+(+)=+,∵,∴E,G,F三点共线.【点评】本题考查平面向量的线性运算的应用及平面向量基本定理的应用,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.19.(14分)为了解甲、乙两名运动员的射击成绩,从两人近一年的射击成绩中各随机抽取一个容量为20的样本,经过处理,得到两人击中环数的频数如图所示.(Ⅰ)试估计甲射击一次,击中环数不低于8环的概率;(Ⅱ)从上述两个样本中各随机抽取一次,求甲、乙两人中恰有1人击中环数为10环的概率.【分析】(Ⅰ)由两人击中环数的频数折线图得甲2次击中7环,2次击中8环,10次击中9环,6次击中10环,由此能估计甲射击一次,击中环数不低于8环的概率.(Ⅱ)由两人击中环数的频数统计图得甲在20次射击有6次击中10环,乙在20次射击有8次击中10环,从上述两个样本中各随机抽取一次,利用相互独立事件概率乘法公式能求出甲、乙两人中恰有1人击中环数为10环的概率.【解答】解:(Ⅰ)由两人击中环数的折线图得:甲2次击中7环,2次击中8环,10次击中9环,6次击中10环,∴估计甲射击一次,击中环数不低于8环的概率p=1﹣=.(Ⅱ)由两人击中环数的频数统计图得:甲在20次射击有6次击中10环,乙在20次射击有8次击中10环,从上述两个样本中各随机抽取一次,基本事件总数n=20×20=400,甲、乙两人中恰有1人击中环数为10环包含的基本事件个数m=6×12+14×8=184,∴甲、乙两人中恰有1人击中环数为10环的概率为:P==.【点评】本题考查概率的求法,考査折线图、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.20.(14分)为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C(单位:万元)与太阳能电池面积x(单位:平方米)之间的函数关系为(m为常数).已知太阳能电池面积为5平方米时,每年消耗的电费为12万元.安装这种供电设备的工本费为0.5x(单位:万元).记F(x)为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和.(Ⅰ)写出F(x)的解析式;(Ⅱ)当x为多少平方米时,F(x)取得最小值?最小值是多少万元?【分析】(Ⅰ)把x=5,C(x)=12代入C(x)=,求得m值,可得C(x)的解析式,再由题意写出F(x)的解析式;(Ⅱ)分段求解(Ⅰ)中函数的最小值,取最小值得答案.【解答】解:(Ⅰ)当0≤x≤5时,C(x)=,由题意,12=,即m=80.∴C(x)=.则F(x)==;(Ⅱ)当0≤x≤10时,F(x)=160﹣7.5x(0≤x≤10),当x=10时,F(x)min=85;当x>10时,F(x)==40,当且仅当,即x=40平方米时上式等号成立,故当x为40平方米时,F(x)取得最小值,最小值是40万元.【点评】本题考查根据实际问题选择函数模型,训练了利用基本不等式求最值,考查计算能力,是中档题.21.(14分)对于任意的有限集合P,Q定义:①;②P*Q={x|f p(x)•f Q(x)=1};③card(P)表示集合P的元素个数.已知集合A={x|x=k,k∈N*,1≤k≤2020},B={x|x=2k,k∈N*,1≤k≤2020}.(Ⅰ)求f A(2019),f B(2019)的值;(Ⅱ)求card(A*B)的值;(Ⅲ)对于任意的有限集合M,设n=card(M*A)+card(M*B),求n的最小值.【分析】(Ⅰ)直接根据定义,写出f A(2019),f B(2019).的值.(Ⅱ)card(A*B)={x|f A(x)•f B(x)=1},分两种情况当f A(x)=2且f B(x)=时,当f A(x)=且f B(x)=2时,x取值,即可得出答案.(Ⅲ)列举法写出A∪B,A∩B={2,4,6,…2020},所以M中的元素a∈A∪B且a∉A ∩B,所以当集合M为A∪B的子集与集合A∩B的并集时,n的值最小.【解答】(Ⅰ)f A(2019)=2,f B(2019)=,(Ⅱ)card(A*B)={x|f A(x)•f B(x)=1}当f A(x)=2且f B(x)=时,所以x∈A且x∉B,那么x取值为:1,3,5,…,2019,共有=1010个,当f A(x)=且f B(x)=2时,所以x∉A且x∈B,那么x取值为:2022,2024,…4040,共有=1010个,所以card(A*B)=1010+1010=2020个.(Ⅲ)A={1,2,3,4,…,2020},B={2,4,6,…,2020,2022,…4040},A∪B={1,2,3,…,2020,2022,…4040},A∩B={2,4,6,…2020}共1010个元素所以M中的元素a∈A∪B且a∉A∩B,所以当集合M为A∪B的子集与集合A∩B的并集时,n=card(M*A)+card(M*B)的值最小,最小值为1011.【点评】本题属于新定义题,结合集合的交集并集,即可分析出答案,属于中档题.。
北京市昌平区2020届九年级上学期期中考试数学试题一、选择题(共8 道小题,每小题2 分,共16 分)下列各题均有四个选项,其中只有一个是符合题意的...1.如右图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则s inB的值等于4 3343545A.B.C.D.CBA第1题第4题的最小值是B.7 第5题D.5x 5272.二次函数yA .7C .53.已知⊙O的半径是4,OP的长为3,则点P与⊙O的位置关系是A.点P在圆内B.点P在圆上C.点P在圆外4.三角形在正方形网格纸中的位置如图所示,则cos 的值是D.不能确定3 4433545A.B.C.D.5.如图所示,C 是⊙O 上一点,若C 40,则AO B的度数为A. 20°B.40°C. 80°D. 140°6.如图,河堤横断面迎水坡的坡度是的长度是C. ,堤高A. ,则坡面B. D.x 2x m的图象与轴没有交点,则m的取值范围是x7.若函数y2A.m>1 B.m<1 C.m≤1D.m=1 8.如图,△ABC内接于⊙O,BD是⊙O 的直径.若D B C 33,二、填空题(共 8 道小题,每小题 2 分,共 16 分) D3 9.如果cos A,那么锐角A 的度数为______.2A O10.如右图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点, 若∠BAD =105°,则∠DCE 的度数是11.一个扇形的半径为 6 ㎝,圆心角为 900,则这个扇形的弧长为_______,这个面积为BCE..12.将抛物线y 5x 2先向右平移 3 个单位,再向下平移 4 个单位,可以得到新的抛物线是_______________________ 13.比较大小:cos 45∘ cos 55∘(用“>”或“<”填空).所对的圆心角为 80°,则弦所对的圆周角的度数是14 .若 ⊙ 的弦_________y x bx c 的部分图象如图所示,由图象可知,15.二次函数2 y不等式x 2b xc 0 的解集为___________________.16.⊙O 的直径为 10cm ,弦 AB∥CD ,且AB = 8cm ,CD = 6cm , x则弦 AB 与 CD 之间的距离为.三、解答题(共 6 道小题,每小题 5 分,共 30 分)17.计算:2sin 453 t an 30 2 t an 60c o s 3018.如图,在⊙O 中,弦AC 与BD 交于点E ,AB =8,AE =6,ED =4, 求CD 的长.BCE ODA19.如图所示,在 求的值.中, ,垂足是 .若 , , .20.《九章算术》中记载了这样一道题:“今有圆材,埋在壁中,不知大小,以锯锯之,深 AB 一寸,锯道长一尺,问径几何?”用现代的语言表述为:“如果 为⊙ 的直径,弦OE AE 1C D AB 于 ,AB寸,C D 10 寸,那么直径 的长为多少寸?”请你补全示意AB 图,并求出 的长.21.如果二次函数 y=ax 2+bx+c 的图象经过点(1,0),(2,-1),(0,3), (1)求二次函数解析式,(2)写出二次函数的对称轴和顶点坐标.22.如图,AB 是⊙O 的直径,⊙O 过 BC 的中点 D ,DE⊥AC 于 E ,求证:△BDA∽△CED.CDE AOB四、解答题(共 4 道小题,每小题 6 分,共 24 分) m23.如图,一次函数y kx b 与反比例函数 的图象交于 A (2,1),B (-1, )两点. y n x(1)反比例函数和一次函数的解析式;m (2)结合图象直接写出不等式 的解集.kx b 0ym xxyy k x b A 11O2xBn24.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46 米到达B 后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)DA B C25.某工厂设计了一款产品,成本为每件20 元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足(20≤x≤40),设销y2x80售这种产品每天的利润为W(元).(1)求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式.(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少元?1 26.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα= ,3求sin2α的值.小娟是这样给小芸讲解的:如图1,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°.设∠BAC=α,则sinα=B C AB1= .易得∠BOC=2α.设BC=x,则AB=3x,则AC= x.作CD⊥AB于D,求出223C DCD= (用含x的式子表示),可求得sin2α= = .O C3【问题解决】已知,如图2,点M,N,P为⊙O上的三点,且∠P=β,sinβ= ,求sin2β5的值.P P M MCA BO D N N图1图图2五、解答题(共 2 道小题,各 7 分,共 14 分)27.已知抛物线y = x 2 + (a − 2)x − 2a (a 为常数,且 a>0). (1)求证:抛物线与 x 轴有两个公共点;(2)设抛物线与 x 轴的两个公共点分别为 A ,B (A 在 B 左侧),与 y 轴的交点为 C. 当 AC=2√5时,求抛物线的表达式.28.在平面直角坐标系 中,⊙O 的半径为 1,P 是坐标系内任意一点,点 P 到⊙O 的距 xOy 离 的定义如下:若点 P 与圆心 O 重合,则S 为⊙O 的半径长;若点 P 与圆心 O 不重合,S PP作射线 OP 交⊙O 于点 A ,则 为线段 的长度.S AP P图 1 为点 P 在⊙O 外的情形示意图.yy 1P 1 A 1xO 1xO图 1 备用图 21 1,0C 1,1 , 0, S S (1)若点 B , D ,则 ___; S ___; ___; 3C BD x b M 2,求 的取值范围;b(2)若直线 y 上存在点 ,使得S MP R(3)已知点 , 在 x 轴上, 为线段 P Q 上任意一点.若线段 P Q 上存在一点 ,T Q..S 满足 T 在⊙O 内且 S,直接写出满足条件的线段 长度的最大值.P Q . TRy1 xO1北京市昌平区2020 届初三上学期期中考试数学试题(答案)一、选择题题号 1D 2B3A4D5C6D7A8B答案二、填空题:9.30°.13. >10. 105°11. 3π,9π15. X<-1, x>512. y=5(x-3) -42 14. 40°,140°16. 1,717. √2+√3−318. CD=16/319. 12/1320. 2621. (1)y=x -4x+3 (2)对称轴x=2,顶点(2,-1)222.略23.(1) y=2/x, y=x-1; (2)-1<x<0,x>224. 23√3+2325.(1)w=-2x +120x-1600; (2)30 元,最大利润200 元226. 2√2x; 4√2; 24/259327(1)略(2)y=x -4228.(1) 0, , 2/3;(2)−3√2≤b≤3√2;(3)4五、解答题(共 2 道小题,各 7 分,共 14 分)27.已知抛物线y = x 2 + (a − 2)x − 2a (a 为常数,且 a>0). (1)求证:抛物线与 x 轴有两个公共点;(2)设抛物线与 x 轴的两个公共点分别为 A ,B (A 在 B 左侧),与 y 轴的交点为 C. 当 AC=2√5时,求抛物线的表达式.28.在平面直角坐标系 中,⊙O 的半径为 1,P 是坐标系内任意一点,点 P 到⊙O 的距 xOy 离 的定义如下:若点 P 与圆心 O 重合,则S 为⊙O 的半径长;若点 P 与圆心 O 不重合,S PP作射线 OP 交⊙O 于点 A ,则 为线段 的长度.S AP P图 1 为点 P 在⊙O 外的情形示意图.yy 1P 1 A 1xO 1xO图 1 备用图 21 1,0C 1,1 , 0, S S (1)若点 B , D ,则 ___; S ___; ___; 3C BD x b M 2,求 的取值范围;b(2)若直线 y 上存在点 ,使得S MP R(3)已知点 , 在 x 轴上, 为线段 P Q 上任意一点.若线段 P Q 上存在一点 ,T Q..S 满足 T 在⊙O 内且 S,直接写出满足条件的线段 长度的最大值.P Q . TRy1 xO1北京市昌平区2020 届初三上学期期中考试数学试题(答案)一、选择题题号 1D 2B3A4D5C6D7A8B答案二、填空题:9.30°.13. >10. 105°11. 3π,9π15. X<-1, x>512. y=5(x-3) -42 14. 40°,140°16. 1,717. √2+√3−318. CD=16/319. 12/1320. 2621. (1)y=x -4x+3 (2)对称轴x=2,顶点(2,-1)222.略23.(1) y=2/x, y=x-1; (2)-1<x<0,x>224. 23√3+2325.(1)w=-2x +120x-1600; (2)30 元,最大利润200 元226. 2√2x; 4√2; 24/259327(1)略(2)y=x -4228.(1) 0, , 2/3;(2)−3√2≤b≤3√2;(3)4。
2019-2020学年北京市昌平区九年级(上)期末数学试卷一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱2.已知∠A是锐角,tan A=1,那么∠A的度数是()A.15°B.30°C.45°D.60°3.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A.B.C.D.4.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40°B.60°C.80°D.100°5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB 平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)6.二次函数y=x2+bx+c的图象如图所示,若点A(0,y1)和B(﹣3,y2)在此函数图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定7.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区B.2区C.3区D.4区8.如图,抛物线y=﹣x2+2x+m交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=﹣1,则b=4;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中结论正确的序号是()A.①②B.①②③C.①②④D.②③④二、填空题(共8道小题,每小题2分,共16分)9.已知抛物线y=x2+c,过点(0,2),则c=.10.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数y=(k>0)的图象与正方形OABC的边有交点,请写出一个符合条件的k值.11.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为.12.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为.14.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为.15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为m.16.如图,抛物线y=x2+2x+2和抛物线y=x2﹣2x﹣2的顶点分别为点M和点N,线段MN 经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是,MN平移到PQ 扫过的阴影部分的面积是.三、解答题(共6道小题,每小题5分,共30分)17.计算:sin30°+2cos60°×tan60°﹣sin245°.18.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.19.已知二次函数y=﹣x2﹣2x+3.(1)将二次函数化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中画出y=﹣x2﹣2x+3的图象;(3)结合函数图象,直接写出y>0时x的取值范围.20.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.21.如图,A,B,C是⊙O上的点,sin A=,半径为5,求BC的长.22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图1所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)如图2在下边的图形中,画出所有符合题意的图形;(2)求BF的长.四、解答题(共4道小题,每小题6分,共24分)23.材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB 水平,主索最低点为点P,点P距离桥面为2m;为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如图4:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:如图5,以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?24.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.25.如图1,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为y1cm,P,D两点之间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507.008.00 y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1.530.00 y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)如图2,在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y2的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.五、解答题(共2道小题,每小题7分,共14分)27.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.28.对于平面直角坐标系xOy中,已知点A(﹣2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.(1)①如图1,在点P1(3,6),P2(﹣2,﹣5),P3(2,2)中,线段AB的可视点是;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=﹣x+m上存在线段AB的正可视点,直接写出m的取值范围.参考答案一、选择题(共8道小题,每小题2分,共16分)下列各题均有四个选项,其中只有一个是符合题意的.1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.解:俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.2.已知∠A是锐角,tan A=1,那么∠A的度数是()A.15°B.30°C.45°D.60°【分析】直接利用特殊角的三角函数值得出答案.解:∵∠A是锐角,tan A=1,∴∠A的度数是:45°.故选:C.3.随着国民经济快速发展,我国涌现出一批规模大、效益高的企业,如大疆、国家核电、华为、凤凰光学等,以上四个企业的标志是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.4.如图,AB为⊙O的直径,弦CD⊥AB于点E,连接AC,OC,OD,若∠A=20°,则∠COD的度数为()A.40°B.60°C.80°D.100°【分析】先根据垂径定理得到=,然后根据圆周角得到∠BOD和∠BOC的度数,从而得到∠COD的度数.解:∵弦CD⊥AB,∴=,∴∠BOD=∠BOC=2∠A=2×20°=40°,∴∠COD=40°+40°=80°.故选:C.5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB 平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()A.(4,2)B.(4,3)C.(6,2)D.(6,3)【分析】根据A点的坐标及对应点的坐标可得线段AB向右平移1个单位,向上平移了1个单位,然后可得B′点的坐标;解:∵A(1,0)平移后得到点A′的坐标为(2,1),∴向右平移1个单位,向上平移了1个单位,∴B(3,2)的对应点坐标为(4,3),故选:B.6.二次函数y=x2+bx+c的图象如图所示,若点A(0,y1)和B(﹣3,y2)在此函数图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据抛物线的对称性,在对称轴同侧的可根据增减性由自变量x的大小得出函数值y的大小,在对称轴一侧的可根据离对称轴的远近和抛物线的增减性进行判断.解:点A(0,y1)和B(﹣3,y2)在抛物线对称轴x=﹣2的两侧,且点A比点B离对称轴要远,因此y1>y2,故选:A.7.如图所示的网格是正方形网格,图中△ABC绕着一个点旋转,得到△A'B'C',点C的对应点C'所在的区域在1区∼4区中,则点C'所在单位正方形的区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点P即为旋转中心,从而得出线段AB和点C是绕着P点逆时针旋转90°,据此可得答案.解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点P即为旋转中心,由图可知,线段AB和点C绕着P点逆时针旋转90°,∴点C逆时针旋转90°后所得对应点C′落在4区,故选:D.8.如图,抛物线y=﹣x2+2x+m交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=﹣1,则b=4;④抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2.其中结论正确的序号是()A.①②B.①②③C.①②④D.②③④【分析】①根据抛物线与y轴的交点坐标的求法即可判断;②当m=0时,可得抛物线与x轴的两个交点坐标和对称轴即可判断;③根据抛物线与x轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断;④根据二次函数图象当x1<1<x2,且x1+x2>2,则y1>y2.解:①∵抛物线与y轴的交点坐标为(0,m),∴C(0,m),故①正确;②当m=0时,抛物线与x轴的两个交点坐标分别为(0,0)、(2,0),对称轴方程为x=1,∴△ABD是等腰直角三角形,故②正确;③当a=﹣1时,抛物线与x轴的一个交点坐标为(﹣1,0),∵对称轴x=1,∴另一个交点坐标为(3,0),∴b=﹣3,故③错误;④观察二次函数图象可知:当x1<1<x2,且x1+x2>2,则y1>y2.故④正确.故选:C.二、填空题(共8道小题,每小题2分,共16分)9.已知抛物线y=x2+c,过点(0,2),则c=2.【分析】把点(0,2)代入y=x2+c即可得到结论.解:∵抛物线y=x2+c,过点(0,2),∴0+c=2,∴c=2,故答案为:2.10.如图,已知正方形OABC的三个顶点坐标分别为A(2,0),B(2,2),C(0,2),若反比例函数y=(k>0)的图象与正方形OABC的边有交点,请写出一个符合条件的k值k=1(满足条件的k值的范围是0<k≤4).【分析】把B(2,2)代入y=即可得到结论.解:∵反比例函数y=(k>0)的图象与正方形OABC的边有交点,∴把B(2,2)代入y=得,k=4,∴满足条件的k值的范围是0<k≤4,故k=1(答案不唯一),故答案为:k=1(满足条件的k值的范围是0<k≤4).11.如图,正方形ABCD内接于⊙O,⊙O的半径为6,则的长为3π.【分析】连接OB,CO,根据弧长公式即可求解.解:连接OB,OC,则OC=OB=6,∠BOC=90°,∴的弧长为π×6=3π,故答案为3π.12.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长20tanα.【分析】直接利用正切的定义求解.解:在△ABC中,∠C=90°,tan A=,所以BC=AC tan A=20tanα.故答案为20tanα.13.如图,PA,PB是⊙O的切线,切点分别是点A和B,AC是⊙O的直径.若∠P=60°,PA=6,则BC的长为2.【分析】连接AB,根据切线长定理得到PA=PB,根据等边三角形的性质得到AB=PA =6,∠PAB=60°,根据切线的性质得到∠PAC=90°,根据正切的定义计算即可.解:连接AB,∵PA,PB是⊙O的切线,∴PA=PB,∵∠P=60°,∴△PAB为等边三角形,∴AB=PA=6,∠PAB=60°,∵PA是⊙O的切线,∴∠PAC=90°,∴∠CAB=30°,∵AC是⊙O的直径,∴∠ABC=90°,在Rt△ABC中,BC=AB•tan∠CAB=6×=2,故答案为:2.14.平面直角坐标系中,点A,B的坐标分别是A(2,4),B(3,0),在第一象限内以原点O为位似中心,把△OAB缩小为原来的,则点A的对应点A'的坐标为(1,2).【分析】根据位似变换的性质解答.解:以原点O为位似中心,把△OAB缩小为原来的,A(2,4),∴A的对应点A'的坐标为(2×,4×),即(1,2),故答案为:(1,2).15.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为25m.【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r的值.解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m.故答案为:25.16.如图,抛物线y=x2+2x+2和抛物线y=x2﹣2x﹣2的顶点分别为点M和点N,线段MN 经过平移得到线段PQ,若点Q的横坐标是3,则点P的坐标是(1,5),MN平移到PQ扫过的阴影部分的面积是16.【分析】由抛物线解析式求得点M、N的坐标,然后根据平移的性质来求点P的坐标;阴影部分的面积=平行四边形PMNQ的面积.解:如图,连接PM,QN,MQ、PN.由y=x2+2x+2=(x+1)2+1,y=x2﹣2x﹣2=(x﹣1)2﹣3,知M(﹣1,1),N(1,﹣3).∵点Q的横坐标是3,点Q在抛物线y=x2﹣2x﹣2上,∴y=32﹣2×3﹣2=1.∴Q(3,1).∴线段MN先向上平移4个单位,然后向右平移2个单位得到线段PQ.∴点P的坐标是(1,5),∴PN⊥MQ,且PN与MQ相互平分,∴平行四边形PMNQ是菱形.根据平移的性质知,S阴影部分=S菱形PMNQ=PN•MQ=×4×8=16.故答案是:(1,5);16.三、解答题(共6道小题,每小题5分,共30分)17.计算:sin30°+2cos60°×tan60°﹣sin245°.【分析】将特殊角的三角函数值代入求解.解:sin30°+2cos60°×tan60°﹣sin245°=,=.18.如图,在Rt△ABC中,∠C=90°,tan A=,BC=2,求AB的长.【分析】根据直角三角形的边角关系,求出AC,再根据勾股定理求出AB.解:∵在Rt△ABC中,∠C=90°,∴tan A==.∵BC=2,∴=,AC=6.∵AB2=AC2+BC2=40,∴AB=.19.已知二次函数y=﹣x2﹣2x+3.(1)将二次函数化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中画出y=﹣x2﹣2x+3的图象;(3)结合函数图象,直接写出y>0时x的取值范围.【分析】(1)利用配方法可把抛物线解析式化顶点式;(2)先解方程﹣x2﹣2x+3=0得抛物线与x轴的交点坐标为(﹣3,0),(1,0),再确定抛物线的顶点坐标和与y轴的交点坐标,然后利用描点法画二次函数图象;(3)结合函数图象,写出抛物线在x轴上方所对应的自变量的范围即可.解:(1)y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)=﹣(x+1)2+4;(2)抛物线的顶点坐标为(﹣1,4),当x=0时,y=﹣x2﹣2x+3=3,则抛物线与y轴的交点坐标为(0,3);当y=0时,﹣x2﹣2x+3=0,解得x1=1,x2=﹣3,则抛物线与x轴的交点坐标为(﹣3,0),(1,0);如图,(3)﹣3<x<1.20.下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角)(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.【分析】(1)根据要求画出图形即可.(2)利用圆周角定理证明∠OAP=∠OBP=90°即可.解:(1)补全图形如图.(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=90°(直径所对的圆周角是直角),∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.故答案为90,直径所对的圆周角是直角.21.如图,A,B,C是⊙O上的点,sin A=,半径为5,求BC的长.【分析】构造直径三角形,利用垂径定理,圆周角定理解决问题即可.【解答】证明:方法Ⅰ:连接OB,OC,过点O作OD⊥BC,如图1∵OB=OC,且OD⊥BC,∴∠BOD=∠COD=∠BOC,∵∠A=∠BOC,∴∠BOD=∠A,sin A=sin∠BOD=,∵在Rt△BOD中,∴sin∠BOD==,∵OB=5,∴=,BD=4,∵BD=CD,∴BC=8.方法Ⅱ:作射线BO,交⊙O于点D,连接DC,如图2.∵BD为⊙O的直径,∴∠BCD=90°,∵∠BDC=∠A,∴sin A=sin∠BDC=,∵在Rt△BDC中,∴sin∠BDC==.∵OB=5,BD=10,∴=,∴BC=8.22.课堂上同学们借助两个直角三角形纸板进行探究,直角三角形纸板如图1所示,分别为Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm.当边AC与DE重合,且边AB和DF在同一条直线上时:(1)如图2在下边的图形中,画出所有符合题意的图形;(2)求BF的长.【分析】(1)按题意画出图形即可;(2)分两种情况,由勾股定理求出BC,AB,则可得出答案.解:(1)补全图形如图:(2)情况Ⅰ,如图1:∵在Rt△ACF中,∠F=∠ACF=45°,∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(+2)cm.情况Ⅱ,如图2:∵在Rt△ACF中,∠F=∠ACF=45°,∴AF=AC=2cm.∵在Rt△ACB中,∠B=30°,∴BC=4,AB=.∴BF=(﹣2)cm.四、解答题(共4道小题,每小题6分,共24分)23.材料1:如图1,昌平南环大桥是经典的悬索桥,当今大跨度桥梁大多采用此种结构.此种桥梁各结构的名称如图2所示,其建造原理是在两边高大的桥塔之间,悬挂着主索,再以相应的间隔,从主索上设置竖直的吊索,与桥面垂直,并连接桥面承接桥面的重量,主索几何形态近似符合抛物线.材料2:如图3,某一同类型悬索桥,两桥塔AD=BC=10m,间距AB为32m,桥面AB 水平,主索最低点为点P,点P距离桥面为2m;为了进行研究,甲、乙、丙三位同学分别以不同方式建立了平面直角坐标系,如图4:甲同学:以DC中点为原点,DC所在直线为x轴,建立平面直角坐标系;乙同学:如图5,以AB中点为原点,AB所在直线为x轴,建立平面直角坐标系;丙同学:以点P为原点,平行于AB的直线为x轴,建立平面直角坐标系.(1)请你选用其中一位同学建立的平面直角坐标系,写出此种情况下点C的坐标,并求出主索抛物线的表达式;(2)距离点P水平距离为4m和8m处的吊索共四条需要更换,则四根吊索总长度为多少米?【分析】(1)根据选择的坐标系,可以直接写出点C的坐标,然后设出主索抛物线的表达式,再根据点C和点P都在抛物线上,即可求得主索抛物线的表达式;(2)根据求出的抛物线解析式,将x=4和8代入解析式中,即可求得四根吊索的长度,从而可以求得四根吊索总长度为多少米.解:当选择甲同学的坐标系时,(1)由图可知,点C的坐标为(16,0),设抛物线的表达式为y=ax2+c(a≠0),由题意可知,C点坐标为(16,0),P点坐标为(0,﹣8),,解得,∴主索抛物线的表达式为y=x2﹣8;(2)x=4时,y=×42﹣8=,此时吊索的长度为10﹣=(m),由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=×82﹣8=﹣6,此时吊索的长度为10﹣6=4(m),x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.当选择乙同学的坐标系时,(1)由图可知,点C的坐标为(16,10),设抛物线的表达式为y=ax2+c(a≠0),由题意可知,C点坐标为(16,10),P点坐标为(0,2),解得.∴主索抛物线的表达式为y=x2+2;(2)x=4时,y=×42+2=,此时吊索的长度为m,由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=x2+2=4,此时吊索的长度为4m,x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.当选择丙同学的坐标系时,(1)由图可知,点C的坐标为(16,8),设抛物线的表达式为y=ax2(a≠0)162×a=8,解得a=,∴主索抛物线的表达式为y=x2;(2)x=4时,y=×42=,此时吊索的长度为(m),由抛物线的对称性可得,x=﹣4时,此时吊索的长度也为m,同理,x=8时,y=×82=2,此时吊索的长度为2+2=4(m),x=﹣8时,此时吊索的长度也为4m,∵++4+4=13(米),∴四根吊索的总长度为13米.24.如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.【分析】(1)如图,连接OD.根据已知条件得到∠AOD=∠BOD=90°,根据等腰三角形的性质得到∠ODC=∠OCD.推出FC⊥OC,于是得到结论;(2)根据三角函数的定义得到=,根据相似三角形的性质即可得到结论.【解答】(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.25.如图1,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为y1cm,P,D两点之间的距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 3.20 4.00 5.00 6.00 6.507.008.00y1/cm0.00 1.04 2.09 3.11 3.30 4.00 4.41 3.46 2.50 1.530.00y2/cm 6.24 5.29 4.35 3.46 3.30 2.64 2.00m 1.80 2.00 2.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)如图2,在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点,并画出函数y2的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为 4.54.【分析】(1)通过取点、画图、测量可求解;(2)根据题意作图即可;(3)由题意可得PD=AD,画出y=x,交曲线AD的值为所求,即可求解.解:(1)通过取点、画图、测量,可得m=1.73,(2)如图(3)∵当AD=2PD,∴PD=AD,在(2)中图象中作出y=x的图象,并测量两个函数图象交点得:AD=4.54,故答案为:4.54.26.在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)①直接写出抛物线的对称轴是直线x=1;②用含a的代数式表示b;(2)横、纵坐标都是整数的点叫整点.点A恰好为整点,若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有1个整点,结合函数的图象,直接写出a 的取值范围.【分析】(1)①A与B关于对称轴x=1对称;②A(0,c)向右平移2个单位长度,得到点B(2,c),代入解析式即可求得;(2)分两种情况a>0和a<0讨论,结合图象确定有1个整数点时a的最大和最小值,进而确定a的范围.解:(1)①∵A与B关于对称轴x=1对称,∴抛物线对称轴为直线x=1,故答案为直线x=1;②∵抛物线y=ax2+bx+c与y轴交于点A,∴A(0,c)点A向右平移2个单位长度,得到点B(2,c),∵点B在抛物线上,∴4a+2b+c=c,∴b=﹣2a.(2)方法一:如图1,若a>0,∵A(0,c),B(2,c),∴区域内(不含边界)恰有1个整点D的坐标为(1,c﹣1),则理另一个整点E(1,c ﹣2)不在区域内,∵把x=1代入抛物线y=ax2+bx+c得y=a+b+c=﹣a+c,∴根据题意得,解得1<a≤2,如图2,若a<0,同理可得,解得﹣2≤a<﹣1综上,符合题意的a的取值范围为﹣2≤a<﹣1或1<a≤2.方法二:∵AB=2,点A是整点,∴点C到AB的距离大于1并且小于等于2.∵点C到AB的距离表示为c﹣a,减去c的差的绝对值,∴1<|c﹣a﹣c|≤2,即1<|a≤2,∴﹣2≤a<﹣1或1<a≤2.五、解答题(共2道小题,每小题7分,共14分)27.已知等边△ABC,点D为BC上一点,连接AD.(1)若点E是AC上一点,且CE=BD,连接BE,BE与AD的交点为点P,在图(1)中根据题意补全图形,直接写出∠APE的大小;(2)将AD绕点A逆时针旋转120°,得到AF,连接BF交AC于点Q,在图(2)中根据题意补全图形,用等式表示线段AQ和CD的数量关系,并证明.【分析】(1)根据全等三角形性质和三角形外角的性质即可得到结论;(2)根据全等三角形的性质得到∠BAD=∠CBE,根据三角形的外角的性质得到∠APE =∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.根据旋转的性质得到AF=AD,∠DAF=120°.根据全等三角形的性质得到AQ=QE,于是得到结论.【解答】(1)补全图形图1,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE.∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°;(2)补全图形图2,,证明:在△ABD和△BEC中,∴△ABD≌△BEC(SAS)∴∠BAD=∠CBE,∵∠APE是△ABP的一个外角,∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.∵AF是由AD绕点A逆时针旋转120°得到,∴AF=AD,∠DAF=120°.∵∠APE=60°,∴∠APE+∠DAP=180°.∴AF∥BE,∴∠1=∠F,∵△ABD≌△BEC,∴AD=BE.∴AF=BE.在△AQF和△EQB中,△AQF≌△EQB(AAS),∴AQ=QE,∴,∵AE=AC﹣CE,CD=BC﹣BD,且AE=BC,CD=BD.∴AE=CD,∴.28.对于平面直角坐标系xOy中,已知点A(﹣2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当PA=PB时,称点P为线段AB的正可视点.(1)①如图1,在点P1(3,6),P2(﹣2,﹣5),P3(2,2)中,线段AB的可视点是P2,P3;②若点P在y轴正半轴上,写出一个满足条件的点P的坐标:P(0,3)(答案不唯一).(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=﹣x+m上存在线段AB的正可视点,直接写出m的取值范围.【分析】(1)①如图1,以AB为直径作圆G,则点P在圆上,则∠APB=90°,若点P在圆内,则∠APB>90°,以C(,)为圆心,AC为半径作圆,在点P优弧上时,∠APB=45°,点P在优弧内,圆G外时,45°<∠APB<90°;以D(,﹣)为圆心,AD为半径作圆,在点P优弧上时,∠APB=45°,点P 在优弧内,圆G外时,45°<∠APB<90°;分别判断点P1,P2,P3的位置即可求解;②观察图象可求解;(2)分别求出直线y=x+b与圆C,圆D相切时,b的值,即可求解;(3)线段AB的正可视点的定义,可得线段CQ和线段DW上的点为线段AB的正可视点,将点的坐标代入可求解.解:(1)①如图1,以AB为直径作圆G,则点P在圆上,则∠APB=90°,若点P在圆内,则∠APB>90°,以C(,)为圆心,AC为半径作圆,在点P优弧上时,∠APB=45°,点P在优弧内,圆G外时,45°<∠APB<90°;以D(,﹣)为圆心,AD为半径作圆,在点P优弧上时,∠APB=45°,点P 在优弧内,圆G外时,45°<∠APB<90°;∵点P1(3,6),P2(﹣2,﹣5),P3(2,2)∴P1C=>=AC,则点P1在圆C外,则∠AP1B<45°,P2D==AC,则点P2在圆D上,则∠AP2B=45°,P3G==BG,点P3在圆G上,则∠AP3B=90°,∴线段AB的可视点是P2,P3,故答案为:P2,P3;②由图1可得,点P的坐标:P(0,3)(答案不唯一,纵坐标y p范围:≤y p≤6).(2)如图2,设直线y=x+b与圆C相切于点H,交x轴于点N,连接BH,∵∠HNB=∠HBN=45°,∴NH=BH,∠NHB=90°,且NH是切线,∴BH是直径,∴BH=5,∴BN=10,∴ON=7,∴点N(﹣7,0)∴0=﹣7+b,∴b=7,当直线y=x+b与圆D相切同理可求:b=﹣8∴﹣8≤b≤7(3)如图3,作AB的中垂线,交⊙C于点Q,交⊙D于点W,∵直线y=﹣x+m上存在线段AB的正可视点,∴线段CQ和线段DW上的点为线段AB的正可视点.∵点C(,),点D(,﹣),点Q(,+),点W(,﹣﹣)分别代入解析式可得:∴m=3,m=+3,m=﹣2,m=﹣2﹣,∴m的取值范围:或.。
2019-2020学年北京市昌平区九年级上学期期中考试数学试卷一、选择题(每小题2分,共24分)1.(2分)下列判定正确的是( )A .对角线互相垂直的四边形是菱形B .两条对角线相等且互相垂直的四边形是正方形C .四边相等且有一个角是直角的四边形是正方形D .一组对边平行,一组对边相等的四边形是平行四边形【解答】解:A 、对角线互相平分且互相垂直的四边形是菱形,故A 错误;B 、两条对角线相等且平分且互相垂直的四边形是正方形,故B 错误;C 、四边相等且有一个角是直角的四边形是正方形,故C 正确;D 、一组对边平行,一组对边相等的四边形可能是平行四边形、可能是等腰梯形,故D 错误;故选:C .2.(2分)方程x 2=2x 的解是( )A .x =0B .x =2C .x 1=0 x 2=2D .x 1=0 x 2=√2【解答】解:移项得x 2﹣2x =0,x (x ﹣2)=0,x =0,x ﹣2=0,x 1=0,x 2=2,故选:C .3.(2分)从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是( )A .0B .13C .23D .1【解答】解:共有6种情况,积是正数的有2种情况,故概率为13,故选:B .4.(2分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A .AD DF =BC CEB .BC CE =DF AD C .CD EF =BC BE D .CD EF =AD AF【解答】解:由平行线分线段成比例可知是被平行线所截的线段才有可能是对应线段,∴CD 、EF 不是对应线段,故C 、D 不正确;∵BC 和AD 对应,CE 和DF 对应,∴AD DF =BC CE ,故A 正确;故选:A .5.(2分)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选:D .6.(2分)如图是我们学过的反比例函数图象,它的函数解析式可能是( )。
2019-2019学年北京市西城区九年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.52.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.4.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9 5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°6.如图,在平面直角坐标系xOy中,点A的坐标为(﹣1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.(﹣2,4)B.(,1)C.(2,﹣4)D.(2,4)7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A.40海里B.40tan37°海里C.40cos37°海里D.40sin37°海里8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8 B.﹣10 C.﹣42 D.﹣24二、填空题(本题共18分,每小题3分)11.若,则的值为.12.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1y2.(填“>”,“<”或“=”)13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°•tan60°﹣sin245°.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.19.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?22.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n <t,直接写出m的取值范围.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB 于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.26.阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2=交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;(2)构造函数,画出图象设y3=x2+4x﹣1,y4=,在同一坐标系中分别画出这两个函数的图象.双曲线y4=如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(3)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为;(4)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为.27.(7分)如图,在平面直角坐标系xOy中,二次函数y=﹣+bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣+bx+c的图象分别交于B,C两点,点B在第一象限.(1)求二次函数y=﹣+bx+c的表达式;(2)连接AB,求AB的长;(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.28.(7分)在△ABC中,∠ACB=90°,AC=BC=4,M为AB的中点.D是射线BC 上一个动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED,N为ED的中点,连接AN,MN.(1)如图1,当BD=2时,AN=,NM与AB的位置关系是;(2)当4<BD<8时,①依题意补全图2;②判断(1)中NM与AB的位置关系是否发生变化,并证明你的结论;(3)连接ME,在点D运动的过程中,当BD的长为何值时,ME的长最小?最小值是多少?请直接写出结果.29.(8分)在平面直角坐标系xOy中,过⊙C上一点P作⊙C的切线l.当入射光线照射在点P处时,产生反射,且满足:反射光线与切线l的夹角和入射光线与切线l的夹角相等,点P称为反射点.规定:光线不能“穿过”⊙C,即当入射光线在⊙C外时,只在圆外进行反射;当入射光线在⊙C内时,只在圆内进行反射.特别地,圆的切线不能作为入射光线和反射光线.光线在⊙C外反射的示意图如图1所示,其中∠1=∠2.(1)自⊙C内一点出发的入射光线经⊙C第一次反射后的示意图如图2所示,P1是第1个反射点.请在图2中作出光线经⊙C第二次反射后的反射光线;(2)当⊙O的半径为1时,如图3,①第一象限内的一条入射光线平行于x轴,且自⊙O的外部照射在其上点P处,此光线经⊙O反射后,反射光线与y轴平行,则反射光线与切线l的夹角为°;②自点A(﹣1,0)出发的入射光线,在⊙O内不断地反射.若第1个反射点P1在第二象限,且第12个反射点P12与点A重合,则第1个反射点P1的坐标为;(3)如图4,点M的坐标为(0,2),⊙M的半径为1.第一象限内自点O出发的入射光线经⊙M反射后,反射光线与坐标轴无公共点,求反射点P的纵坐标的取值范围.2019-2019学年北京市西城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.二次函数y=(x﹣5)2+7的最小值是()A.﹣7 B.7 C.﹣5 D.5【考点】二次函数的最值.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣5)2+7∴当x=5时,y有最小值7.故选B.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x 的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.2.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得AB的长,根据锐角的余弦等于邻边比斜边,可得答案.【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理,得AB==5.cosA==,故选:A.【点评】本题考查了锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.【考点】切线的性质.【分析】连接CP,由切线的性质可得CP⊥AO,再由切线长定理可得∠POC=45°,进而可得△POC是等腰直角三角形,利用勾股定理即可求出OC的长.【解答】解:连接CP,∵OA边与⊙C相切于点P,∴CP⊥AO,∵⊙C与∠AOB的两边分别相切,∠AOB=90°,∴∠POC=45°,∴OP=CP=6,∴OC==6,故选C.【点评】本题考查了切线的性质定理、切线长定理以及勾股定理的运用,能够正确的判定△POC是等腰直角三角形是解题关键.4.将二次函数y=x2﹣6x+5用配方法化成y=(x﹣h)2+k的形式,下列结果中正确的是()A.y=(x﹣6)2+5 B.y=(x﹣3)2+5 C.y=(x﹣3)2﹣4 D.y=(x+3)2﹣9【考点】二次函数的三种形式.【分析】运用配方法把一般式化为顶点式即可.【解答】解:y=x2﹣6x+5=x2﹣6x+9﹣4=(x﹣3)2﹣4,故选:C.【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.5.若一个扇形的半径是18cm,且它的弧长是12π cm,则此扇形的圆心角等于()A.30°B.60°C.90°D.120°【考点】弧长的计算.【分析】把弧长公式进行变形,代入已知数据计算即可.【解答】解:根据弧长的公式l=,得n===120°,故选:D.【点评】本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.6.如图,在平面直角坐标系xOy中,点A的坐标为(﹣1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为()A.(﹣2,4)B.(,1)C.(2,﹣4)D.(2,4)【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A1的坐标.【解答】解:∵点A的坐标为(﹣1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(﹣2,4).故选:A.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.7.如图,一艘海轮位于灯塔P的南偏东37°方向,距离灯塔40 海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的正东方向上的B处.这时,B处与灯塔P的距离BP的长可以表示为()A.40海里B.40tan37°海里C.40cos37°海里D.40sin37°海里【考点】解直角三角形的应用﹣方向角问题.【分析】根据已知条件得出∠BAP=37°,再根据AP=40海里和正弦定理即可求出BP的长.【解答】解:∵一艘海轮位于灯塔P的南偏东37°方向,∴∠BAP=37°,∵AP=40海里,∴BP=AP•sin37°=40sin37°海里;故选D.【点评】本题考查解直角三角形,用到的知识点是方位角、直角三角形、锐角三角函数的有关知识,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.8.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A.30°B.45°C.50°D.70°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据三角形的内角和定理得到∠A=80°,根据圆周角定理得到∠D=∠A=80°,根据等腰三角形的内角和即可得到结论.【解答】解:∵∠ABC=70°,∠ACB=30°,∴∠A=80°,∴∠D=∠A=80°,∵D是的中点,∴,∴BD=CD,∴∠DBC=∠DCB==50°,故选C.【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,等腰三角形的性质,熟练掌握圆周角定理是解题的关键.9.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)【考点】根据实际问题列二次函数关系式.【分析】根据降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.【解答】解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.【点评】此题主要考查了根据实际问题列二次函数解析式,关键是正确理解题意,找出题目中的等量关系,再列函数解析式.10.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x 轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8 B.﹣10 C.﹣42 D.﹣24【考点】二次函数的性质.【分析】根据抛物线顶点式得到对称轴为直线x=2,在7<x<8这一段位于x轴的上方,利用抛物线对称性得到抛物线在0<x<1这一段位于x轴的上方,而图象在1<x<2这一段位于x轴的下方,于是可得抛物线过点(﹣2,0),(6,0),然后把(﹣2,0)代入y=2x2﹣8x+m可求出m的值.【解答】解:∵抛物线y=2x2﹣8x+m=2(x﹣2)2﹣8+m的对称轴为直线x=2,而抛物线在﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方∴抛物线过点(﹣2,0),(6,0),把(﹣2,0)代入y=2x2﹣8x+m得8+16+m=0,解得m=﹣24.故选D.【点评】本题考查了抛物线与x轴的交点以及抛物线的轴对称性:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本题共18分,每小题3分)11.若,则的值为.【考点】比例的性质.【分析】已知的比值,根据比例的合比性质即可求得.【解答】解:根据比例的合比性质,已知=,则=.【点评】熟练应用比例的合比性质.12.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1>y2.(填“>”,“<”或“=”)【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣3、2时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y1=x2﹣5x=24;当x=2时,y2=x2﹣5x=﹣6;∵24>﹣6,∴y1>y2.故答案为:>.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.13.△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,则△DEF的周长为90.【考点】相似三角形的性质.【分析】由△ABC的三边长分别为5,12,13,与它相似的△DEF的最小边长为15,即可求得△AC的周长以及相似比,又由相似三角形的周长的比等于相似比,即可求得答案.【解答】解:∵△ABC的三边长分别为5,12,13,∴△ABC的周长为:5+12+13=30,∵与它相似的△DEF的最小边长为15,∴△DEF的周长:△ABC的周长=15:5=3:1,∴△DEF的周长为:3×30=90.故答案为90.【点评】此题考查了相似三角形的性质.熟练掌握相似三角形的周长比等于相似比是解题关键.14.如图,线段AB和射线AC交于点A,∠A=30°,AB=20.点D在射线AC上,且∠ADB是钝角,写出一个满足条件的AD的长度值:AD=10.【考点】含30度角的直角三角形.【分析】过B作BE⊥AC于E,由∠A=30°,AB=20,得到AE=10,推出∠ADB >∠AEB,即可得到结论.【解答】解:过B作BE⊥AC于E,∵∠A=30°,AB=20,∴AE=10,∵∠ADB是钝角,∴∠ADB>∠AEB,∴0<AD<10,∴AD=10,故答案为:10.【点评】本题考查了含30°角的直角三角形的性质,熟记直角三角形的性质是解题的关键.15.程大位所著《算法统宗》是一部中国传统数学重要的著作.在《算法统宗》中记载:“平地秋千未起,踏板离地一尺.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”【注释】1步=5尺.译文:“当秋千静止时,秋千上的踏板离地有1尺高,如将秋千的踏板往前推动两步(10尺)时,踏板就和人一样高,已知这个人身高是5尺.美丽的姑娘和才子们,每天都来争荡秋千,欢声笑语终日不断.好奇的能工巧匠,能算出这秋千的绳索长是多少吗?”如图,假设秋千的绳索长始终保持直线状态,OA是秋千的静止状态,A是踏板,CD是地面,点B是推动两步后踏板的位置,弧AB是踏板移动的轨迹.已知AC=1尺,CD=EB=10尺,人的身高BD=5尺.设绳索长OA=OB=x尺,则可列方程为102+(x﹣5+1)2=x2.【考点】由实际问题抽象出一元二次方程.【分析】设绳索有x尺长,此时绳索长,向前推出的10尺,和秋千的上端为端点,垂直地面的线可构成直角三角形,根据勾股定理列出方程.【解答】解:设绳索长OA=OB=x尺,由题意得,102+(x﹣5+1)2=x2.故答案为:102+(x﹣5+1)2=x2.【点评】本题考查了由实际问题抽象出一元二次方程,考查学生理解题意能力,关键是能构造出直角三角形,用勾股定理来求解.16.阅读下面材料:在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:尺规作图:过圆外一点作圆的切线.已知:P为⊙O外一点.求作:经过点P的⊙O的切线.小敏的作法如下:如图,(1)连接OP,作线段OP的垂直平分线MN交OP于点C;(2)以点C为圆心,CO的长为半径作圆,交⊙O于A,B两点;(3)作直线PA,PB.所以直线PA,PB就是所求作的切线.老师认为小敏的作法正确.请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端,且与半径垂直的直线是圆的切线.【考点】作图—复杂作图;切线的判定.【分析】分别利用圆周角定理以及切线的判定方法得出答案.【解答】解:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是:直径所对的圆周角是90°;由此可证明直线PA,PB都是⊙O的切线,其依据是:经过半径外端,且与半径垂直的直线是圆的切线.故答案为:直径所对的圆周角是90°;经过半径外端,且与半径垂直的直线是圆的切线.【点评】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:4cos30°•tan60°﹣sin245°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=4××﹣()2=6﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.如图,△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,求tanC的值.【考点】解直角三角形.【分析】根据在△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,可以求得BD、AD、CD的长,从而可以求得tanC的值.【解答】解:∵△ABC中,AB=12,BC=15,AD⊥BC于点D,∠BAD=30°,∴∠ADB=∠ADC=90°,∴AB=2BD,∴BD=6,∴CD=BC﹣BD=15﹣6=9,∴AD=,∴tanC=.即tanC的值是.【点评】本题考查解直角三角形,解题的关键是计算出题目中各边的长,找出所求问题需要的条件.19.已知抛物线y=﹣x2+2x+3与x轴交于A,B两点,点A在点B的左侧.(1)求A,B两点的坐标和此抛物线的对称轴;(2)设此抛物线的顶点为C,点D与点C关于x轴对称,求四边形ACBD的面积.【考点】抛物线与x轴的交点.【分析】(1)令y=0解方程即可求得A和B的横坐标,然后利用配方法即可求得对称轴和顶点坐标;(2)首先求得D的坐标,然后利用面积公式即可求解.【解答】解:(1)令y=0,则﹣x2+2x+3=0,解得:x1=﹣1,x2=3.则A的坐标是(﹣1,0),B的坐标是(3,0).y=﹣x2+2x+3=﹣(x﹣1)2+4,则对称轴是x=1,顶点C的坐标是(1,4);(2)D的坐标是(1,﹣4).AB=3﹣(﹣1)=4,CD=4﹣(﹣4)=8,则四边形ACBD的面积是:AB•CD=×4×8=16.【点评】本题考查了待定系数法求函数解析式以及配方法确定二次函数的对称轴和顶点坐标,正确求得A和B的坐标是关键.20.如图,在四边形ABCD中,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB;(2)若AB=12,AD=8,CD=15,求DB的长.【考点】相似三角形的判定与性质.【分析】(1)根据平行线的性质,可得∠ADB与∠DBC的关系,根据两个角对应相等的两个三角形相似,可得答案;(2)根据相似三角形的性质,可得答案.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠DBC.∵∠A=∠BDC,∴△ABD∽△DCB;(2)∵△ABD∽△DCB,AB=12,AD=8,CD=15,∴=,即=,解得DB=10,DB的长10.【点评】本题考查了相似三角形的判定与性质,利用了两个角对应相等的两个三角形相似,利用相似三角形的对应边成比例是解题关键.21.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?【考点】一元二次方程的应用.【分析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8﹣2x,根据两块绿地的面积之和为60平方米,列方程求解.【解答】解:设人行道的宽度为x米,由题意得,2××(8﹣2x)=60,解得:x1=2,x2=9(不合题意,舍去).答:人行道的宽度为2米.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n <t,直接写出m的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)抛物线与x轴只有一个公共点,则判别式△=0,据此即可求得k 的值;(2)把C1化成顶点式的形式,利用函数平移的法则即可确定;(3)首先求得t的值,然后求得等y=t时C2中对应的自变量的值,结合函数的性质即可求解.【解答】解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.【点评】本题考查抛物线与x轴的交点的个数的确定,以及函数的平移方法,根据函数的性质确定m的范围是关键.23.如图,AB是⊙O的一条弦,且AB=.点C,E分别在⊙O上,且OC⊥AB 于点D,∠E=30°,连接OA.(1)求OA的长;(2)若AF是⊙O的另一条弦,且点O到AF的距离为,直接写出∠BAF的度数.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出AD的长,根据圆周角定理求出∠AOD的度数,运用正弦的定义解答即可;(2)作OH⊥AF于H,根据勾股定理和等腰直角三角形的性质求出∠OAF的度数,分情况计算即可.【解答】解:(1)∵OC⊥AB,AB=,∴AD=DB=2,∵∠E=30°,∴∠AOD=60°,∠OAB=30°,∴OA==4;(2)如图,作OH⊥AF于H,∵OA=4,OH=2,∴∠OAF=45°,∴∠BAF=∠OAF+∠OAB=75°,则∠BAF′=∠OAF′﹣∠OAB=15°,∴∠BAF的度数是75°或15°.【点评】本题考查的是垂径定理、圆周角定理和勾股定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键,注意分情况讨论思想的应用.24.奥林匹克公园观光塔由五座高度不等、错落有致的独立塔组成.在综合实践活动课中,某小组的同学决定利用测角仪测量这五座塔中最高塔的高度(测角仪高度忽略不计).他们的操作方法如下:如图,他们先在B处测得最高塔塔顶A 的仰角为45°,然后向最高塔的塔基直行90米到达C处,再次测得最高塔塔顶A 的仰角为58°.请帮助他们计算出最高塔的高度AD约为多少米.(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据已知条件求出BD=AD,设DC=x,得出AD=90+x,再根据tan58°=,求出x的值,即可得出AD的值.【解答】解:∵∠B=45°,AD⊥DB,∴∠DAB=45°,∴BD=AD,设DC=x,则BD=BC+DC=90+x,∴AD=90+x,∴tan58°===1.60,解得:x=150,∴AD=90+150=240(米),答:最高塔的高度AD约为240米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.25.如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.(1)求证:∠PCE=∠PEC;(2)若AB=10,ED=,sinA=,求PC的长.【考点】切线的性质.【分析】(1)由弦切角定理可知∠PCA=∠B,由直角所对的圆周角等于90°可知∠ACB=90°.由同角的余角相等可知∠AED=∠B,结合对顶角的性质可知∠PCE=∠PEC;(2)过点P作PF⊥AC,垂足为F.由锐角三角函数的定义和勾股定理可求得AC=8,AE=,由等腰三角形三线合一的性质可知EF=,然后证明△AED∽△PEF,由相似三角形的性质可求得PE的长,从而得到PC的长.【解答】解:(1)∵PC是圆O的切线,∴∠PCA=∠B.∵AB是圆O的直径,∴∠ACB=90°.∴∠A+∠B=90°.∵PD⊥AB,∴∠A+∠AED=90°.。
2019学年北京市昌平区九年级上学期期末考试数学试
卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. 已知∠A为锐角,且sinA=,那么∠A等于()
A.15° B.30° C.45° D.60°
2. 下列图形中,既是轴对称图形又是中心对称图形的是()
A.等边三角形 B.等腰直角三角形 C.正方形 D.正五边形
3. 如图,等边三角形ABC内接于⊙O,那么∠BOC的度数是()
A.150° B.120° C.90° D.60°
4. 如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=1,DB=2,则△ADE的面积与△ABC的面积的比等于()
A. B. C. D.
5. 如图,在△ABC中,D为AC边上一点,若∠DBC=∠A,BC=,AC=3,则CD的长为()
A.1 B. C.2 D.
6. 如图,点P是第二象限内的一点,且在反比例函数的图象上,PA⊥x轴于点A ,
△PAO的面积为3,则k的值为()
A.3 B.- 3 C.6 D.-6
7. 如图,AB为⊙O的弦,半径O D⊥AB于点C.若AB=8,CD=2,则⊙O的半径长为()
A. B.3 C.4 D.5
8. 如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2
=y,则表示y与x的函数关系的图象大致为()
A. B. C. D.
二、填空题
9. 抛物线的顶点坐标是.
10. 已知关于x 的一元二次方程有两个不相等的实数根,则m的取值范
围是.
11. 如图,点P是⊙的直径BA的延长线上一点,PC切⊙于点C,若,PB=6,则PC等于.
12. 如图,在平面直角坐标系中,已知点A(3,0),B(0,4),记Rt△OAB为三角形①,按图中所示的方法旋转三角形,依次得到三角形②,③,④,……,则三角形⑤的直角顶
点的坐标为;三角形⑩的直角顶点的坐标为;第2015个三角形的直角
顶点的坐标为.
三、计算题
13. 计算:.
四、解答题
14. 解方程:.
15. 已知△ABC如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC绕点C顺
时针旋转90°,得到△.
(1)在网格中画出△;
(2)直接写出点B运动到点所经过的路径的长.
16. 如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数的
图象交于A(-1,4),B(2,m)两点.
(1)求一次函数和反比例函数的解析式;
(2)直接写出不等式的解集.
17. 如图,在△ABC和△CDE中,∠B =∠D=90°,C为线段BD上一点,且AC⊥CE.AB=3,DE=2,BC=6.求CD的长.
18. 如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,DC=, AC=3.
(1)求∠B的度数;
(2)求AB及BC的长.
19. 已知抛物线.
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线的一个交点在y轴上,求m的值.
20. 如图,在修建某条地铁时,科技人员利用探测仪在地面A、B两个探测点探测到地下C 处有金属回声.已知A、B两点相距8米,探测线AC,BC与地面的夹角分别是30°和45°,试确定有金属回声的点C的深度是多少米?
21. 已知:如图,在Rt△ABC中,∠ C=90°,BD平分∠ABC,交AC于点D,经过B、D两
点的⊙O交AB 于点E,交BC于点F, EB为⊙O的直径.
(1)求证:AC是⊙O的切线;
(2)当BC=2,cos∠ABC=时,求⊙O的半径.
22. 已知,正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,且∠EDF=45°.
(1)利用画图工具,在右图中画出满足条件的图形;
(2)猜想tan∠ADF的值,并写出求解过程.
23. 已知:如图,一次函数的图象与反比例函数的图象交于A、B两点,
且点A的坐标为(1,m).
(1)求反比例函数的表达式;
(2)点C(n,1)在反比例函数的图象上,求△AOC的面积;
(3)在x轴上找出点P,使△ABP是以AB为斜边的直角三角形,请直接写出所有符合条件的点P的坐标.
24. 如图,已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,
AD=AE.连接BD交AE于M,连接CE交AB于N,BD与CE交点为F,连接AF.
(1)如图1,求证:BD⊥CE;
(2)如图1,求证:FA是∠CFD的平分线;
(3)如图2,当AC=2,∠BCE=15°时,求CF的长.
25. 如图,二次函数的图象与x轴交于点A(﹣1,0),B(2,0),与y 轴相交于点C.
(1)求二次函数的解析式;
(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;
(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第7题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】
第24题【答案】
第25题【答案】。