2012年湖南省岳阳市中考数学试题
- 格式:doc
- 大小:326.00 KB
- 文档页数:6
岳阳市2016年初中毕业学业考试数学试卷、选择题(本题共 32分,每小题4分)下面各题均有四个选项,其中只有一个 是符合题意的.A. 圆柱 B .圆锥 C.球 D .长方体()6.下列长度的三根小木棒能构成三角形的是A . 2cm , 3cm , 5cmB . 7cm , 4cm , 2cmC . 3cm , 4cm , 8cmD. 3cm , 3cm , 4cm()7 .下列说法错误的是A. 角平分线上的点到角的两边的距离相等B. 直角三角形斜边上的中线等于斜边的一半C. 菱形的对角线相等D. 平行四边形是中心对称图形()&对 于实数a , b ,我们定义符号max{a , b}的意 义为:当a > b 时,max{a , b}=a ;当 a V b 时,max{a , b]=b ;女口 : max{4 , - 2}=4 , max{3 , 3}=3 ,若关于 x 的函数为y=max{x+3 , - x+1},则该函数的最小值是 A . 0B . 2C. 3D . 4、填空题(本大题共 8小题,每小题4分,共32分)9. _______________________________________________________________ 如图所示,数轴上点A 所表示的数的相反数是 _____________________________________________________________210. __________________________________________ 因式分解:6x - 3x= .11 .在半径为6cm 的圆中,120°的圆心角所对的弧长为 _______________________________ cm . 12. 为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 ________________________________ 元. 13. 如图,四边形ABCD 为O O 的内接四边形,已知/ BCD=110 , 贝U / BAD= __________________ 度.(((((1.下列各数中为无理数的是B .C. nD. 02. 3.下列运算结果正确的是八235L /2\36—A . a +a =aB . ( a ) =aC . 函数y=中自变量x 的取值范围是A . x > 0B . x > 4a 2?a 3=a 6C. x V 44 .某小学校足球队22名队员年龄情况如下: 年龄(岁)人数1211 10则这个队队员年龄的众数和中位数分别是 A . 5.如 D . 3a - 2a=1D . x > 41011, 10B . 11 , 11C . 10 , 9 图是某几何体的三视图,则该几何体可能是D . 10 , 11414. 如图,一山坡的坡度为i=1 :,小辰从山脚A 出发,沿山坡向上走了 200米到达点B , 则小辰上升了 米. 15 .如图,一次函数y=kx+b ( k 、b 为常数,且k 丰0)和反比例函数y= ( x > 0)的图象交 于A 、B 两点,利用函数图象直接写出不等式v kx+b 的解集是 ___________________________________________________________ .16. 如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P i , P 2, P 3,…, 均在格点上,其顺序按图中“ T ”方向排列,如:P ( 0, 0) , P 2 ( 0, 1) , P 3 ( 1 , 1 ), P 4 ( 1 , - 1 ) , P 5 ( - 1 , - 1 ) , P 6 ( - 1 , 2 )•••根据这个规律,点 P 2016 的坐标为 ________________________________________________ .三、解答题(本大题共 8小题,共64分) 17. ( 6 分)计算:()-1 - +2tan60 ° -18. (6分)已知:如图,在矩形 ABCD 中,点E 在边 AB 上,点F 在边BC 上,且BE=CF , EF 丄DF, 求证:BF=CD .19. ( 8分)已知不等式组(1 )求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的 方法求积为正数的概率.20. ( 8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足 活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人 员骑自行车的平均速度是学生步行平均速度的倍,服务人员与学生同时从学校出发, 到达君山岛时,服务人员所花时间比学生少用了小时,求学生步行的平均速度是多少 千米/小时.21. ( 8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机 抽取了 80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表.请根据图 表中提供的信息解答下列问题:201 - 300 重度污染 2 300以上严重污染2(1 )统计表中m= ___________ , n= _______ .扇形统计图中,空气质量等级为“良”的天数 占 ________ %;(2 )补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良” 的天数共多少天 (2 -)AQI 指数 0 - 50 51 - 100 101 - 150151 - 200 质量等级优 良 轻度污染 中度污染 天数(天)m 44 n(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22. (8 分)已知关于x 的方程x2- ( 2m+1) x+m ( m+1) =0 .(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m- 1) 2+ ( 3+m) ( 3 - m) +7m - 5的值(要求先化简再求值).23. ( 10分)数学活动-旋转变换(1 )如图①,在△ ABC中,/ ABC=130 , 将△ ABC绕点C逆时针旋转50°得至U△ A B' C, 连接BB',求/ A B' B的大小;(2 )如图②,在△ ABC中,/ ABC=150 , AB=3 , BC=5,将△ ABC绕点C逆时针旋转60°得到△ A B' C,连接BB ,以A'为圆心,A B'长为半径作圆.(I )猜想:直线BB 与O A的位置关系,并证明你的结论;(n )连接A B,求线段A B的长度;(3)如图③,在△ ABC 中,/ ABC a ( 90°v a v 180°) , AB=m, BC=n ,将△ ABC 绕点C逆时针旋转23角度(0°v 23 v 180°)得到△ A B' C,连接A B和BB , 以A'为圆心,A B'长为半径作圆,问:角a与角3满足什么条件时,直线BB'与O A 相切,请说明理由,并求此条件下线段A B的长度(结果用角a 或角3的三角函数及字母m、n所组成的式子表示)24. ( 10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F i交x轴于另一点B ( 1 , 0).(1 )求抛物线F i所表示的二次函数的表达式;(2)若点M是抛物线F i位于第二象限图象上的一点,设四边形MAOC和△ BOC的面积分别为S四边形MAOC和S A BOC,记S = S四边形MAOC - S^ BOC ,求S最大时点M的坐标及S的最大值;(3 )如图②,将抛物线F i沿y轴翻折并"复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A' 、B' 、M ,过点M作M E丄x轴于点E,交直线A C于点D,在x轴上是否存在点P,使得以A、D、P为顶点的三角形与厶AB C相似若存在,请求出点P的坐标;若不存在,请说明理由.参考答案、选择题(共8个小题,每小题3分,共24 分)三、解答题(共6道小题,每小题5分,共30分)17. 解:原式=3 - 2+2 - 1=218. 证明:•/四边形ABCD是矩形,••• / B=Z C=9C° ,•/ EF丄DF, •/ EFD=90 ,•/ EFB+/ CFD=90 ,•/ / EFB+/ BEF=90 ,•/ BEF=/ CFD在△ BEF和△ CFD中,•△ BEF^ △ CFD( ASA) , • BF=CD19. 解:(1 )由①得:x > - 2,由②得:x w 2,•不等式组的解集为:-2 v x< 2,•它的所有整数解为:-1 , 0 , 1 , 2 ;(2)画树状图得:•••共有12种等可能的结果,积为正数的有2种情况,•积为正数的概率为:=•20. 解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时千米,根据题意:-=,解得:x=4 ,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21. 解:(1) 20 , 8 , 55 ;2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365X( 25%+55%) =292 (天)(3)建议不要燃放烟花爆竹.22. 解:(1) •••关于x 的一元二次方程x - ( 2m+1 ) x+m ( m+1) =0 .• △ = ( 2m+1) 2- 4m ( m+1) =1 > 0 , •方程总有两个不相等的实数根;(2) •/ x=0是此方程的一个根,•把x=0代入方程中得到m ( m+1) =0 , • m=0或m=- 1,2 2 2 2(2m- 1) + ( 3+m) ( 3 - m) +7m - 5=4m - 4m+1+9 - m +7m - 5=3m +3m+5 ,3) 如图②, 由 题意知: M (), B (- 1, 0), A ( 3, 0) • AB =2,设直线A ' C 的解析式为:y=kx+b ,把 A ( 3, 0) 和 C ( 0 , 4)代 入 y=kx+b , 得 :, • • y=- x+4 ,令 x= 代 入 y= - x+4 , • y=2 •由 勾股定理分 别可求 得: AC=5,DA =设 P ( m , 0) 当 m v 3 时 , 此 时 点P 在 A 的左边, • Z DA P=Z CAB ,当=时,△ DA 2 △ CAB ,此时,=(3 - m ), 解得: m=2, • P ( 2, 0)当=时,△ DA P ^ △ B' AC , 此时,=(3 - m ) m=- , • P ( - , 0)当m > 3时,此时,点P 在A 右边,由于/ CB 0^ Z DA E ,• Z AB 8 Z DA P•••此情况,△ DA P 与△ B ' AC 不能相似, 综上所述,当以A ' 、D 、P 为顶点的三角形与△ AB C 相似时,点P 的坐标 为( 2, 0) 或 ( - , 0).23. 解 :1) 22把 m=0 代 入 3m 2+3m+5 得 : 3m 2+3m+5=5 ; 22把 m=- 1 代入 3m +3m+5 得:3m +3m+5=3< 1 - 如 图①中 , • /3+5=5 .• Z CBB =Z CB B,- Z BCB =50°,•Z CBB =Z CBB=65°•Z A B B=Z A B C - Z BB C=65°.(I ) 结论 : 直 线BB 与O A 相 切.理由 : 如图②中, •/ Z A B C=Z ABC=15°0 , CB=CB•Z CBB =Z CB B,- Z BCB =60°, • Z CBB =Z CB B=60°,•Z A B B=Z A B C - Z BB C=90°.• AB 丄 BB , 直线 BB 与O A '相切.(n )•/ 在 Rt △ ABB 中, •/ Z AB B=90° , BB =BC=5, AB =AB=3,•A B==.( 3) 如图 ③中, 当 a - +3 =180°时 , 直 线BB 与O A 相切.理由 :•/ Z A B 'C=Z ABC=a , CB=CB ,•Z CBB =Z CB B,- Z BCB =23 ,•Z CBB =Z CB B=,•Z A B B=Z A BC - Z BB C=a - 90° +3 =180° -90° =90°.• AB 丄 BB , •直线 BB 与O A '相切.=n , B==24. 解 :1) y=0 代 入 y=x+4 , x=0 , 代 入 y=x+4x= - 3 , • y=4, 令 令设 抛 物 线 F 1 的 解 析 式 为 : y=a 把 C (0, 4)代入上式得, a= 2) A ( - 3, 0),• C ( 0, 4), x+3 )( x - 1 )2, • y=- x - -3 v a v 0 0C=4 •• S △ BOC =OB?OC=2 x+4 ,如图①,设点M ( a ,- a 2 - a+4 )其中 ••• B ( 1 , 0), C ( 0, 4) , • 0B=1 (过点M 作MPL x 轴于点P ,2• MP=- a - a+4 , AP=a+3 , OP=- a ,二 S 四边形 MAOC =AP?MP ( MP+0C ) ?OP =AP ?MP +OP ?MP +OP ?OC =+=+22=x 3 ( - a - a+4 ) +x 4X( - a ) = - 2a - 6a+6 22•• S=S 四边形 MAOC - S △ BOC = ( - 2a - 6a+6 ) - 2= - 2a - 6a+4=• 当 a= - 时 , S 有 最 大 值 , 最 大 值 为 此 时 , M ( - , 5 );a+)2+2) / BCB =23 , ••• BB =2? nsinRt △ A BB 中,A AB •/ △ A ' B 'C 是由△ ABC 旋转得到C=Z ABC=130 ,在△ CBB 中,•/ CB=CB 在CB=CB ,。
湖南各市2012年中考数学试题分类解析汇编专题8:平面几何基础一、选择题1. (2012湖南长沙3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是【】A.B.C.D.【答案】A。
【考点】轴对称图形和中心对称。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、是轴对称图形,也是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误。
故选A。
2. (2012湖南长沙3分)下列四个角中,最有可能与70°角互补的是【】A.B.C.D.【答案】D。
【考点】补角。
【分析】根据互补的两个角的和等于180°求出70°角的补角,然后结合各选项即可选择:70°角的补角=180°﹣70°=110°,是钝角,结合各选项,只有D选项是钝角,所以,最有可能与70°角互补的是D选项的角。
故选D。
3. (2012湖南长沙3分)现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】构成三角形的三边的条件。
【分析】四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9,根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,只有3,7,9和4,7,9能组成三角形。
故选B。
4. (2012湖南益阳4分)下列图案中是中心对称图形但不是轴对称图形的是【】A.B.C.D.5. (2012湖南益阳4分)下列命题是假命题的是【】A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径【答案】A。
2012年湖南省株洲市中考数学试卷2012年湖南省株洲市中考数学试卷一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分)1.(2009•临沂)﹣9的相反数是()A.9B.﹣9C.D.﹣2.(2012•株洲)在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是()A.138B.183C.90D.933.(2012•株洲)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(2012•株洲)如图,已知直线a∥b,直线c与a、b分别交于A、B;且∠1=120°,则∠2=()A.60°B.120°C.30°D.150°5.要使二次根式有意义,那么x的取值范围是()A.x>2B.x<2C.x≥2D.x≤26.(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,则该抛物线与x轴的另一交点坐标是()A.(﹣3,0)B.(﹣2,0)C.x=﹣3D.x=﹣27.(2012•株洲)已知关于x的一元二次方程x2﹣bx+c=0的两根分别为x1=1,x2=﹣2,则b与c的值分别为()A.b=﹣1,c=2B.b=1,c=﹣2C.b=1,c=2D.b=﹣1,c=﹣28.(2012•株洲)如图,直线x=t(t>0)与反比例函数的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3B.C.D.不能确定二、填空题(本题共8小题,每小题3分,共24分)9.(2009•钦州)分解因式:a2﹣2a=_________.10.(2012•株洲)已知:如图,在⊙O中,C在圆周上,∠ACB=45°,则∠AOB=_________.11.(2012•株洲)依法纳税是中华人民共和国公民应尽的义务.2011年6月30日,十一届全国人大常委会第二十一次会议表决通过关于修改个人所得税的决定,将个人所得税免征额由原来的2000元提高到3500元.用科学记数法表示3500元为_________元.12.一次函数y=x+2的图象不经过第_________象限.13.(2012•株洲)数学实践探究课中,老师布置同学们测量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度是_________米.14.(2012•株洲)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合15.(2012•株洲)若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)=_________.16.(2012•株洲)一组数据为:x,﹣2x2,4x3,﹣8x4,…观察其规律,推断第n个数据应为_________.三、解答题(本大题共8小题,共52分)17.(2012•株洲)计算:2﹣1+cos60°﹣|﹣3|.18.(2012•株洲)先化简,再求值:(2a﹣b)2﹣b2,其中a=﹣2,b=3.19.(2012•株洲)在学校组织的游艺晚会上,掷飞标游艺区游戏规则如下:如图掷到A区和B区的得分不同,A区为小圆内部分,B区为大圆内小圆外的部分(掷中一次记一个点).现统计小华、小芳和小明掷中与得分情况如下:小华:77分小芳75分小明:_________分(1)求掷中A区、B区一次各得多少分?(2)依此方法计算小明的得分为多少分?20.(2012•株洲)如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA;(2)求线段OM的长度.21.(2012•株洲)学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求:(1)此班这次上交作品共_________件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程)22.(2012•株洲)如图,已知AD为⊙O的直径,B为AD延长线上一点,BC与⊙O切于C点,∠A=30°.求证:(1)BD=CD;(2)△AOC≌△CDB.23.(2012•株洲)如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.24.(2012•株洲)如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.2012年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题有且只有一个正确答案,本题共8小题,每小题3分,共24分)1.(2009•临沂)﹣9的相反数是()A.9B.﹣9C.D.﹣考点:相反数。
岳阳中考数学试题卷及答案第一部分选择题本部分共20小题,每小题5分,共100分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将其编码填涂在答题卡上。
1. 已知数集A={2, 4, 6, 8},B={4, 6, 8, 10},则A∪B的元素个数是()A. 2B. 4C. 6D. 82. 化简:5a + 2b + 3a - b的结果是()A. 2a + 3bB. 3a - bC. 8a + bD. 6a + b3. 某数学竞赛报名共有120人参加,其中男生占总人数的四分之三,女生人数是男生人数的两倍,那么女生人数为()A. 20B. 40C. 60D. 804. 直角三角形的两条直角边分别为3厘米和4厘米,那么斜边的长度是()A. 5厘米B. 6厘米C. 7厘米D. 8厘米5. 若x+4=7,则x的值等于()A. 3B. 4C. 7D. 11(略去第6题至第20题)第二部分解答题本部分共5个题目,共70分。
21. 已知等差数列的首项为a,公差为d,若前n项和为Sn,则Sn=()解:Sn=n/2(2a+(n-1)d)22. 一组数据:28, 35, 27, 32, 30, 29, 31, 34,求这组数据的方差。
解:首先计算平均值,再计算每个数据与平均值之差的平方,最后求平均值。
23. 若2x+3y=19,3x-2y=7,则x+y=()解:通过联立方程求解x和y的值后,将x和y相加。
24. 已知正方形ABCD的边长为6cm,点E为边CD的中点,连接AE并延长,若AE与BD相交于点F,则三角形ADF的面积是()解:计算三角形ADF的底和高后,应用正方形的性质求面积。
25. 设点P(x, y)在坐标轴上,且△PAB的面积为12,点A(-4, 0),点B(0, 6),则点P的坐标是()解:计算△PAB的底和高,应用△面积公式求解P的坐标。
附:选择题答案1. B2. A3. B4. A5. A第二部分解答题答案21. Sn=n/2(2a+(n-1)d)22. 解答省略23. x+y=624. 解答省略25. P(-1, 3)本次试题涵盖了中考数学试题的不同题型,包括选择题和解答题。
①②③④北东2012年岳阳市乐斗教育中考模拟考试数学试卷2一.选择题1. 下列事件中是必然事件的是 ( )A.早晨的太阳一定从东方升起B.岳阳的中秋节晚上一定能看到月亮C.打开电视机,正在播少儿节目D.张琴14岁了,她一定是初中学生2.以下电脑显示的时间或日期中是轴对称图形,但不是中心对称图形的是( )A、B、C、D、3. 在同一天的四个不同时刻,某学校旗杆的影子如下图所示,按时间先后顺序排列的是( )A. ①②③④B.②③④①C. ③④①②D.④③①② 4.某物体的三视图如右所示,那么该物体形状可能是( )A 、长方体B 、圆锥体C 、立方体D 、圆柱体5.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看 信号灯时,是黄灯的概率是( )。
A 、125 B 、31 C 、121 D 、21 6.夏天,一杯开水放在桌上,杯中水的温度T(℃)随时间t 变化关系的图象是( )7.如图,△ABC 中,DE ∥BC ,EF ∥AB , DE=6且AD ∶DB=3∶2,则FC 为( ) A 、2 B 、3 C 、4 D 、58.若ab ≠1且① 2a 2-199a +3=0和 ②3b 2-199b +2=0成立,则b a的值是( ) A 、3199 B 、1993 C 、32 D 、239. 下图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是( ) 正视图左视图俯视图4号袋2号袋3号袋 1号袋BDACE Ft t t t O T(℃) O T(℃) O T(℃) O T(℃) A B C D二、填空题:10.-21的绝对值是 ,-3.5的相反数是 ,⎪⎭⎫⎝⎛-212的倒数是 。
11. 如图,如果 所在位置的坐标为(-2,-1),所在位置的坐标为(1,-1), 那么, 所 在位置的坐标为 .12.函数12-+=x x y 中x 的取值范围是 。
2012年湖南省岳阳市中考数学试卷一、选择题(本大题共8小题,每题3分,共24分,在每小题给出的四个选项中,选出符合要求的一项)1.(2012•岳阳)岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是()+=2+5.(2012•岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()6.(2012•岳阳)如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()7.(2012•岳阳)如图,两个边长相等的正方形ABCD 和EFGH ,正方形EFGH 的顶点E 固定在正方形ABCD 的对称中心位置,正方形EFGH 绕点E 顺时针方向旋转,设它们重叠部分的面积为S ,旋转的角度为θ,S 与θ的函数关系的大致图象是( )8.(2012•岳阳)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE •CD ;②AD+BC=CD ;③OD=OC ;④S梯形ABCD=CD •OA ;⑤∠DOC=90°,其中正确的是( )二、填空题(本大题共8小题,每题3分,满分共24分) 9.(2012•岳阳)计算:|﹣2|= _________ . 10.(2012•岳阳)分解因式:x 3﹣x= _________.11.(2012•岳阳)圆锥底面半径为,母线长为2,它的侧面展开图的圆心角是 _________ .12.(2012•岳阳)若关于x 的一元二次方程kx 2+2(k+1)x+k ﹣1=0有两个实数根,则k 的取值范围是 _________ . 13.(2012•岳阳)“校园手机”现象受社会普遍关注,某校针对“学生是否可带手机”的问题进行了问卷调查,并绘制了扇形统计图.从调查的学生中,随机抽取一名恰好是持“无所谓”态度的学生的概率是 _________ .14.(2012•岳阳)如图,在Rt △ABC 中,∠B=90°,沿AD 折叠,使点B 落在斜边AC 上,若AB=3,BC=4,则BD= _________ .15.(2012•岳阳)图中各圆的三个数之间都有相同的规律,据此规律,第n个圆中,m=_________(用含n的代数式表示).16.(2012•岳阳)如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为_________.三、解答题(本大题共10道小题,满分共72分,解答应写出文字说明、证明过程或演算步骤)17.(2012•岳阳)计算:3﹣+()﹣1﹣(2012﹣π)0+2cos30°.18.(2012•岳阳)解不等式组,并将解集在数轴上表示出来.19.(2012•岳阳)先化简,再求值:(﹣)÷,其中x=.20.(2012•岳阳)九(一)班课题学习小组,为了了解大树生长状况,去年在学校门前点A处测得一棵大树顶点C 的仰角为30°,树高5m;今年他们仍在原点A处测得大树D的仰角为37°,问这棵树一年生长了多少m?(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.732)21.(2012•岳阳)如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.22.(2012•岳阳)岳阳楼、君山岛去年评为国家5A级景区.“十•一”期间,游客满员,据统计绘制了两幅不完整的游客统计图(如图①、图②),请你根据图中提供的信息解答下列问题:(1)把图①补充完整;(2)在图②中画出君山岛“十•一”期间游客人次的折线图;(3)由统计可知,岳阳楼、君山岛两景点“十一”期间共接待游客149000人次,占全市接待游客总数的40%,求全市共接待游客多少人次(用科学记数法表示,保留两位有效数字)23.(2012•岳阳)游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水﹣﹣清洗﹣﹣灌水”中水量y(m3)与时间t(min)之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?24.(2012•岳阳)岳阳王家河流域综合治理工程已正式启动,其中某项工程,若由甲、乙两建筑队合做,6个月可以完成,若由甲、乙两队独做,甲队比乙队少用5个月的时间完成.(1)甲、乙两队单独完成这项工程各需几个月的时间?(2)已知甲队每月施工费用为15万元,比乙队多6万元,按要求该工程总费用不超过141万元,工程必须在一年内竣工(包括12个月).为了确保经费和工期,采取甲队做a个月,乙队做b个月(a、b均为整数)分工合作的方式施工,问有哪几种施工方案?25.(2012•岳阳)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D运动至等边△ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.26.(2012•岳阳)我们常见的炒菜锅和锅盖都是抛物线面,经过锅心和盖心的纵断面是两端抛物线组合而成的封闭图形,不妨简称为“锅线”,锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直接坐标系如图①所示,如果把锅纵断面的抛物线的记为C1,把锅盖纵断面的抛物线记为C2.(1)求C1和C2的解析式;(2)如图②,过点B作直线BE:y=x﹣1交C1于点E(﹣2,﹣),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的△PBC与△BOE相似,求出P点的坐标;(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得△EBQ的面积最大?若存在,求出Q的坐标和△EBQ面积的最大值;若不存在,请说明理由.2012年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题3分,共24分,在每小题给出的四个选项中,选出符合要求的一项)、=2+,故本选项正确;,x+1=,××,,即阴影部分的面积始终等于正方形面积的.是解AB,可得出梯形面积为=,即AB AB二、填空题(本大题共8小题,每题3分,满分共24分),=.,.故答案为:.AD=AB,=,即=,解得x=,即=,,=,即=,=××,∴(,×三、解答题(本大题共10道小题,满分共72分,解答应写出文字说明、证明过程或演算步骤)+3×+31+,+)××x=×=1==5×)由=,利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,利用两对对应角相等)证明:∵==,即COE=×cmAC=2AE=2=××(﹣解得:解得:+=,xx﹣x EBO=),即∠=BP:,;(,;(﹣,((﹣,y=x+b=x(,﹣):的距离:;x+b=x(﹣,):的距离:(﹣,)××=d=。
2014年岳阳中考数学试卷及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
湖南省岳阳市2012年中考数学仿真模拟试卷1总分:120分 时量:120分钟一、选择题:(本题共7小题,每小题3分,共21分)将下列各题唯一正确的答案代号A 、B 、C 、D 填到题后的括号内.1.上升5cm,记作+5cm,下降6cm,记作( ) A.6cm B.-6cm C.+6cm D.负6cm2.在平面直角坐标系中,属于第二象限的点是 ( ) A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3)3.在Rt △ABC 中,∠C=90°,c=5,a=4,则cosA 的值是( ) A.35 B.45 C.34 D.434.关于x 的方程2x 2+mx-n=0的二根是-1和3,则2x 2+mx-n 因式分解的结果是( ) A.(x+1)(x-3) B.2(x+1)(x-3) C.(x-1)(x+3) D.2(x-1)(x+3) 5.⊙O 1和⊙O 2半径分别为4和5,O 1O 2=7,则⊙O 1和⊙O 2的位置关系是( ) A.外离 B.相交 C.外切 D.内含6.圆锥的母线长为3,底圆半径为1,则圆锥的侧面积为( ) A.3π B.4π C.π D.2π7.一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的函数关系(从爸爸开始登山时计时).根据图象,下列说法错误..的是( ) A.爸爸开始登山时,小军已走了50米; B.爸爸走了5分钟,小军仍在爸爸的前面 C.小军比爸爸晚到山顶; D.10分钟后小军还在爸爸的前面二、填空题:(本题共7小题,每小题3分,共21分) 8.│-1│的结果是________. 9.方程x 2-2x-3=0的解是_________.10.函数,自变量x 的取值范围是_________. 11.圆心角为30°,半径为6的扇形的弧长为________.12.如图,PC 是⊙O 的切线,切点为C,PAB 为⊙O 的割线,交⊙O 于点A 、B,PC=2,•PA=1,则PB 的长为________.B13.若a ∥b,b ∥c,证明a ∥c.用反证法证明的第一步是______________________. 14.设α和β是方程x 2-4x+5=0的二根,则α+β的值为________.三、解答题(本题共5小题,其中15、16题各8分,17、18、19题各10分,•20•题各12分,共58分. 15.如图,在等腰梯形ABCD 中,已知∠B=44°,上底AD 长为4,梯形的高为2,•求梯形底边BC 的长(精确到0.1).DCBA16.已知关于x 的方程x 22-k+2=0,为判别这个方程根的情况,•一名同学的解答过程如下:“解:△2-4×1×(k 2-k+2)=-k 2+4k-8 =(k-2)2+4.∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0. ∴原方程有两个不相等的实数根.”请你判断其解答是否正确,若有错误,请你写出正确解答.17.某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树.18.已知反比例函数y=kx的图象与一次函数y=kx+m 的图象相交于点(2,1). (1)分别求出这两个函数的解析式;(2)试判断点P(-1,-5)是否在一次函数y=kx+m 的图象上,并说明原因.19.如图4,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长BA 交圆于E.求证:EF=FGGFEDCB A20.当今,青少年视力水平的下降已引起全社会的广泛关注,•为了了解某初中毕业年级300名学生的视力情况,从中抽出了一部分学生的视力情况作为样本,•进行数据处理,可得到的频率分布表和频率分布直方图如下.频率分布表:(1)填写频率分布表中部分数据;(2)在这个问题中,总体是_______;所抽取的样本的容量是_______.(3)若视力在4.85以上属正常,不需矫正,试估计毕业年级300名学生中约有多少名学生的视力不需要矫正.四、解答题(共20分)21.蛇的体温随外部环境温度的变化而变化.图5•表现了一条蛇在两昼夜之间体温变化情况.问题: (1)第一天,蛇体温的变化范围是什么?•它的体温从最低上升到最高需要多少时间? (2)第一天什么时间范围内蛇的体温是上升的?在什么时间范围内蛇的体温是下降的? (3)如果以后一天环境温度没有什么变化,请你画出这条蛇体温变化的大致图象.22.如图6,以△ACF 的边AC 为弦的圆交AF 、CF 于点B 、E,连结BC,且满足AC 2=CE ·CF.求证:△ABC 为等腰三角形.23.已知二次函数的图象是经过点A(1,0),B(3,0),E(0,6)三点的一条抛物线.(1)求这条抛物线的解析式;(2)如图,设抛物线的顶点为C,对称轴交x 轴于点D,在y 轴正半轴上有一点P,•且以A 、O 、P 为顶点的三角形与△ACD 相似,求P 点的坐标.FECBA参考答案一、1.B 2.C 3.A 4.B 5.B 6.A 7.D二、8.1 9.x1=3,x2=-1 10.x≥3 11.π 12.4 13.假设a与c不平行 14.4三、15.解:过A、D两点分别作AE⊥BC,DF⊥BC,垂足为E、F.∵梯形ABCD,∴AD∥BC,又∵AE⊥BC,DF⊥BC,∴AE∥DF,∴四边形AEFD是矩形.∴AD=EF,AE=DF=2.又∵等腰梯形ABCD,∴AB=CD,∠B=∠C,∴△ABE≌△DCF,∴BE=CF.∵在Rt△ABE中,cotB=BE AE,∴BE=AEcotB=2cot44°,∴BC=2BE+AD=4cot44°+4≈8.1.答:梯形底边BC的长为8.1. 16.解:解答过程不正确△=-k2+4k-8=-(k2-4k+8)=-[(k-2)2-4+8]=-(k-2)2-4∵(k-2)2≥0,∴-(k-2)2≤0∴-(k-2)2-4<0即△<0,所以方程没有实数根. 17.解:设原计划每天栽树x棵根据题意,得96962x x-+=4整理,得x2+2x-48=0解得x1=6,x2=-8经检验x1=6,x2=-8都是原方程的根,但x2=-8不符合题意(舍去) 答:原计划每天栽树6棵.18.解:(1)∵y=kx经过(2,1),∴2=k.∵y=kx+m 经过(2,1),∴1=2×2+m, ∴m=-3.∴反比例函数和一次函数的解析式分别是:y=2x和y=2x-3. (2)当x=-1时,y=2x-3=2×(-1)-3=-5. 所以点P(-1,-5)在一次函数图像上. 19.证明:连结AG.∵A 为圆心,∴AB=AG. ∴∠ABG=∠AGB.∵四边形ABCD 为平行四边形. ∴AD ∥BC.∠AGB=∠DAG,∠EAD=∠ABG. ∴∠DAG=∠EAD.∴ EFFG =. 20.解:频率分布表:(1)(2)总体某初中毕业年级300名学生的视力情况.样本容量:50. (3)1950×300=114(名). 答:300名学生中约有114名不需矫正. 四、21.(1)变化范围是:35℃~40℃,12小时 (2)4时~16时 16时~24时. (3)略 22.证明:连结AE.∵AC 2=CE ·CF,∴AC CFCE AC= 又∵∠ACE=∠FCA.∴△ACE ∽△FCA.∴∠AEC=∠FAC. ∵ AC BC=.∴AC=BC,∴△ABC为等腰三角形.23.解:(1)设抛物线解析式为:y=a(x-1)(x-3).∵过E(0,6),∴6=a×3∴a=2, ∴ y=2x2-8x+6(2)y=2x2-8x+6=2(x2-4x+3)-2=2(x-2)2-2,∴C(2,-2).对称轴直线x=2,D(2,0).△ACD为直角三角形,AD=1,CD=2,OA=1.当△AOP∽△ACD时, OA OPAD CD=,112OP=,∴OP=2.∵ P在y轴正半轴上,∴P(0,2).当△PAO∽△ACD时, OA OPCD AD=,122OP=,OP=12P在y轴正半轴上,∴P(0, 12 ).。
2012年岳阳市九校(九年级第二次模拟考试)联考试题数 学命题人:刘 胜(岳阳市四中)温馨提示: 1. 本试卷共三道大题,26道小题,满分120分,考试时量120分钟。
2. 本试卷分为试题卷和答题卡两部分.所有答案都必须填涂或填写在答题卡规定的答题区域内。
一、选择题(本大题共8道小题.每小题3分,满分24分)1、下列各式:①)2(--;②2--;③22-;④2)2(--,计算结果为负数的个数有: A .4个 B .3个 C .2个 D .1个 2.下列运算正确的是:A .422743a a a =+B .22243a a a -=-C .221243a a a =∙ D .2222434)3(a a a =÷ 3.一个几何体的三视图如图所示,则这个几何体是 :4.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,岳阳市某中学九年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是: A .20、20 B .30、20 C .30、30 D .20、30 5.如图所示,在平面直角坐标系中,菱形MNPO 的顶点P 坐标是(3,4),则顶点M 、N 的坐标分 别是:A .M(5,0),N(8,4)B .M(4,0),N(8,4)C .M(5,0),N(7,4)D .M(4,0),N(7,4)第4题图 第五题图A B C D 主视图左视图俯视图(第3题)6.Rt ABC △中,90ACB AC BC ∠===°,若把Rt ABC △绕边AB 所在直线旋转一周,则所得几何体的表面积为:A .4π B. C.8π D.7、下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆 ③相等的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有:A .0个B .1个C .2个D .3个8. 抛物线c bx ax y ++=2图像如图所示,则一次函数24b ac bx y +--=与反比例函数a b c y x ++=在同一坐标系内的图像大致为:第15题图第8题图二、填空题(本大题共8道小题.每小题3分,满分24分) 9.分解因式:2xy x -=.10.函数y =的自变量x 的取值范围是 . 11. 日本东部大地震造成日本国内经济损失约2350亿美元,其中2350保留两个有效数字用科学记数法表示为 亿美元.12.随着人们节能意识的增强,节能产品的销售量逐年增加。