七年级数学试卷(第一章)(时间100分钟,满分120分)
- 格式:doc
- 大小:154.00 KB
- 文档页数:4
第一章检测卷时间:100分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(本大题有12小题,1~8小题各3分,9~12小题各2分,共32分)1.-2016的倒数是( )A .-2016B .-12016 C.12016D .2016 2.今年我省某一天的天气预报中,张家口市的最低气温为-6℃,石家庄市的最低气温为2℃,那么,这一天张家口市的气温比石家庄市低( )A .8℃B .-8℃C .6℃D .2℃3.有四盒精包装的“行唐大枣”,每盒以标准克数(1000克)为基准,超过的记作正数,不足的记作负数,以下是记录结果,其中实际克数最接近标准克数的是( )4.下列各组数中,互为相反数的一组是( )A .-(-2)与2B .(-1)2与1C .-|1|与1D .-52与-55.如果a 的倒数是-1,那么a 2等于( )A .1B .-1C .3D .-36.大于-2.5而小于3.5的非负整数共有( )A .3个B .4个C .5个D .6个7.-413与523的差的绝对值与-5的和是( ) A .-10 B .5 C .0 D .-10138.某公司产品去年第一季度亏损12万元,第二季度盈利18万元,第三季度盈利16万元,第四季度亏损9万元,则该公司去年总的盈亏情况为( )A .亏损13万元B .盈利13万元C .亏损19万元D .盈利37万元9.在数轴上,点A 表示的数是3,如果点B 到点A 的距离为4,则点B 表示的数是( )A .5B .-1C .7D .-1或710.现定义一种新运算“※”,对任意有理数a ,b ,规定a ※b =ab +a -b ,例如:1※2=1×2+1-2=1,则2※(-3)等于( )A .-3B .-2C .-1D .011.如果|a |=5,|b |=7,且a >b ,则a -b 的值为( )A .12B .-12C .2D .2或1212.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:甲:b -a <0;乙:a +b >0;丙:|a |<|b |;丁:b a>0.其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁二、填空题(每小题3分,共12分)13.如图,数轴上的点A 向左移动2个单位长度得到点B ,则点B 表示的数是________.14.比较大小:-1________-34. 15.已知(a -3)2与|b -1|互为相反数,则式子a 2+b 2的值为________.16.观察算式:1+3=(1+3)×22,1+3+5=(1+5)×32,1+3+5+7=(1+7)×42,… 按规律填空:1+3+5+7+…+99=________.三、解答题(共76分)17.(8分)在数轴上表示下列各数,并按从小到大的顺序用“<”把这些数连接起来:72,-3.5,0,|-2|,-1,-85,-23.18.(12分)计算(能简算就简算):(1)635+417+(-535)-(-667);(2)(1112-76+34)×(-24);(3)-18÷(-3)2+8×(-12)3-(-15)÷5.19.(10分)计算6÷(-12+13),方方同学的计算过程如下,原式=6÷(-12)+6÷13=-12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20.(10分)如果规定符号“*”的意义是a *b =ab a +b,求[2*(-3)]*4的值.21.(10分)已知|a +2|+(b +1)2=0.(1)求a ,b 的值;(2)求b 2016-(a 2)2017的值.22.(12分)某检修小组乘汽车沿翠竹路检修线路,约定前进为正,后退为负,某天从七中出发到收工时所走路线为(单位:千米):+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)求收工时,是前进了还是后退了,距七中多远;(2)若每千米耗油0.2升,从七中出发到收工时共耗油多少升?23.(14分)小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下面各题: -3 -5 0 +3 +4(1)从中取出2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中取出4张卡片,用学过的运算方法,使结果为24.如何抽取?写出运算式子(一种即可).参考答案与解析1.B 2.A 3.A 4.C 5.A 6.B7.B 8.B 9.D 10.C 11.D 12.C13.-1 14.< 15.1016.2500 解析:根据题中材料可知规律为:第一个数与最后一个数的和再乘以第一个数与最后一个数的和的一半,再除以2,即1+3+5+7+ (99)(1+99)×502=2500. 17.解:如图所示:(4分)-3.5<-85<-1<-23<0<|-2|<72.(8分) 18.解:(1)原式=12;(4分)(2)原式=-12;(8分)(3)原式=0.(12分)19.解:方方的计算过程不正确.(2分)正确的计算过程是:原式=6÷(-36+26)=6÷⎝⎛⎭⎫-16=-36.(10分)20.解:[2*(-3)]*4=2×(-3)2+(-3)*4=6*4=6×46+4=2.4.(10分) 21.解:(1)因为|a +2|+(b +1)2=0,|a +2|≥0,(b +1)≥0.(2分)所以a +2=0,b +1=0,a =-2,b =-1;(5分)(2)由(1)知a =-2,b =-1,故b 2016-(a 2)2017=(-1)2016-⎝⎛⎭⎫-222017=1-(-1)=2.(10分)22.解:(1)+10+(-3)+4+2+(-8)+13+(-2)+12+8+5=41(千米).(5分)答:收工时,前进了,距七中41千米;(6分)(2)|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-2|+|+12|+|+8|+|+5|=67(千米),(9分)67×0.2=13.4(升).(11分)答:从七中出发到收工共耗油13.4升.(12分)23.解:(1)抽取的2张卡片是-3,-5,此时的乘积最大,最大值为15;(7分)(2)抽取的4张卡片是-3,-5,+3,+4,(7分)算24的式子为-3×4×(-5+3).(14分)初中数学试卷马鸣风萧萧。
第一章有理数章末检测卷(人教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.数据“175****0000”用科学记数法表示为()A .81.7510⨯B .817.510⨯C .91.7510⨯D .101.7510⨯2.下列说法正确的是()A .-1的相反数是1B .-1的倒数是1C .-1的绝对值是±1D .-1是最小的负整数3.如图所示的是某用户微信支付情况,100-表示的意思是()A .发出100元红包B .收入100元C .余额100元D .抢到100元红包4.下列说法中正确的是()A .正分数和负分数统称为分数B .正整数、负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数5.已知有理数a ,b 在数轴上表示的点如图所示,则下列结论中正确的是()A .0a b ->B .0a b +>C .ab小于1-D .0ab >6.若()22m -与3n +互为相反数,则()2021m n +的值是()A .-1B .1C .2021D .-20217.计算1234567820172018-+-+-+-+⋅⋅⋅+-的结果是()A .-1009B .-2018C .0D .-18.如图,在一个由6个圆圈组成的三角形里,把-25到-30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是()A .-84B .-85C .-86D .-879.定义:如果x a N =(0a >,且1a ≠),那么x 叫做以a 为底N 的对数,记做log a x N =.例如:因为2749=,所以7log 492=;因为35125=,所以5log 1253=.下列说法:①6log 636=;②3log 814=;③若4log (14)2a +=,则2a =;④222log 64log 32+log 2=;正确的序号有()A .①③B .②③C .①②③D .②③④10.有两个正数a 和b ,满足a <b ,规定把大于等于a 且小于等于b 的所有数记作[a ,b ],例如大于等于0且小于等于5的所有数记作[0,5].如果m 在[5,15]中,n 在[20,30]中,则mn的一切值所在的范围是()A .13,64⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .4,63⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.若a ,b 互为相反数,则(a +b ﹣1)2016=_____.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.13.比较大小:56⎛⎫+- ⎪⎝⎭__________89--.14.某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .15.定义一种新运算“⊕”:2x yx y x -⊕=.如:()()32273233-⨯-⊕-==,则()248⊕⊕=______.16.使得521n ⋅+是完全平方数的整数n 的值是_________.17.若()()42530x x y y ++-⋅+-≤,()x y +的最大值和最小值的差__________.18.如图,数轴上A 、B 两点之间的距离AB =12,有一根木棒PQ ,PQ 在数轴上移动,当Q 移动到与A 、B 其中一个端点重合时,点P 所对应的数为5,且点P 始终在点Q 的左侧,当Q 移动到线段AB 的中点时,点P 所对应的数为__________.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.把下列各数分别填入相应的集合里.-3,23--,0,227,-3.14,20,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…};20.计算题:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)231152525424-⨯+⨯-⨯;(4)2141420.8263553⎛⎫+-+-- ⎪⎝⎭.21.综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点,,,O A B C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点,,,O A B C 的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?22.已知a ,b ,c 在数轴上的对应点如图所示.(1)判断正、负,用“>”“<”填空:a +b 0,c -a 0,b +c 0,b -c 0,a -b0;(2)化简:|a |+|a +b |+|c -a |-2|b +c |-|b -c |+|a -b |.23.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为;点B 表示的数为;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离(用t 表示).24.在平面直角坐标系xOy 中,对于任意两点M ,N ,给出如下定义:点M ,N 的横坐标之差的绝对值与纵坐标之差的绝对值的和叫做这两点之间的“直角距离”,记作:MN d ,即点()11,M x y 与点()22,N x y 之间的“直角距离”为1212MN x x d y y -+-=.已知点()3,2A -,点()2,1B .(1)A 与B 两点之间的“直角距离”AB d =______;(2)点()0,C t 为y 轴上的一个动点,当t 的取值范围是______时,AC BC d d +的值最小;(3)若动点P 位于第二象限,且满足AP BP d d ≥,请在图中画出点P 的运动区域(用阴影表示).25.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,(3)(3)(3)(3)-÷-÷-÷-记作4(3)-,读作“3-的4次商”.一般地,我们把n 个(0)a a ≠相除记作n a ,读作“a 的n 次商”.初步探究(1)直接写出结果:32=________;(2)关于除方,下列说法错误的是_________.①任何非零数的2次商都等于1;②对于任何正整数n ,(1)1n -=-;③4334=;④负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算能够转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?例:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式4(3)-=_______;517⎛⎫= ⎪⎝⎭_______.(4)想一想:将一个非零有理数a 的n 次商写成幂的形式等于___________;(5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭________.26.在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.材料一:我们知道|a |的几何意义是:数轴上表示数a 的点到原点的距离;|a ﹣b |的几何意义是:数轴上表示数a ,b 的两点之间的距离;|a +b |的几何意义是:数轴上表示数a ,﹣b 的两点之间的距离;根据绝对值的几何意义,我们可以求出以下方程的解.(1)|x ﹣3|=4解:由绝对值的几何意义知:在数轴上x表示的点到3的距离等于4∴x1=3+4=7,x2=3﹣4=﹣1(2)|x+2|=5解:∵|x+2|=|x﹣(﹣2)|,∴其绝对值的几何意义为:在数轴上x表示的点到﹣2的距离等于5.∴x1=﹣2+5=3,x2=﹣2﹣5=﹣7材料二:如何求|x﹣1|+|x+2|的最小值.由|x﹣1|+|x+2|的几何意义是数轴上表示数x的点到表示数1和﹣2两点的距离的和,要使和最小,则表示数x的这点必在﹣2和1之间(包括这两个端点)取值.∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把数轴上表示x的点记为点P,由绝对值的几何意义知:当﹣2≤x≤1时,|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,则点P必在﹣2的左边或1的右边,且到表示数﹣2或1的点的距离均为0.5个单位.故方程|x﹣1|+|x+2|=4的解为:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.阅读以上材料,解决以下问题:(1)填空:|x﹣3|+|x+2|的最小值为;(2)已知有理数x满足:|x+3|+|x﹣10|=15,有理数y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.(3)试找到符合条件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此时的最小值及x的取值范围.第一章有理数章末检测卷(人教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.数据“175****0000”用科学记数法表示为()A .81.7510⨯B .817.510⨯C .91.7510⨯D .101.7510⨯【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时.要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:175****0000=1.75×1010故选D【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.下列说法正确的是()A .-1的相反数是1B .-1的倒数是1C .-1的绝对值是±1D .-1是最小的负整数【答案】A【分析】根据相反数和倒数以及绝对值的概念求解即可.【详解】解:A 、-1的相反数是1,故选项正确,符合题意;B 、-1的倒数是-1,故选项错误,不符合题意;C 、-1的绝对值是1,故选项错误,不符合题意;D 、-1是最大的负整数,故选项错误,不符合题意.故选:A .【点睛】此题考查了-1的相反数和倒数以及绝对值的概念,解题的关键是熟练掌握相反数和倒数的概念.3.如图所示的是某用户微信支付情况,100-表示的意思是()A .发出100元红包B .收入100元C .余额100元D .抢到100元红包【答案】A【分析】根据用正负数表示两种具有相反意义的量解答即可.【详解】解:如图某用户微信支付情况,−100表示的意思是发出100元红包故选:A .【点睛】本题考查了正数和负数,解题的关键是明确用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.4.下列说法中正确的是()A .正分数和负分数统称为分数B .正整数、负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数【答案】A【分析】按照正负,有理数分为正数、0、负数;按照整数分数,有理数分为整数、分数;以此查看选项作答即可.【详解】A .正分数和负分数统称为分数,说法正确,故本选项符合题意;B .正整数、零和负整数统称为整数,原说法错误,故本选项不符合题意;C .零既不是正整数,也不是负整数,原说法错误,故本选项不符合题意;D .零是有理数,但零既不是正数,也不是负数,原说法错误,故本选项不符合题意;故选:A .【点睛】本意考查有理数的分类,解决本题的关键是不能混淆整数和正数,注意0的划分范围.5.已知有理数a ,b 在数轴上表示的点如图所示,则下列结论中正确的是()A .0a b ->B .0a b +>C .ab小于1-D .0ab >【答案】A【分析】由数轴上,右边的数总是大于左边的数,得到a >0>b ,且a b <,再根据有理数的运算法则解答.【详解】解:根据数轴可知a >0>b ,且a b <,0a b ∴->,0a b +<,故A 正确,B 错误,∴10ab-<<,故C 错误,0ab ∴<,故D 错误,故选:A .【点睛】本题考查数轴上两数比较大小及有理数的运算法则,掌握数形结合的思想是解题关键.6.若()22m -与3n +互为相反数,则()2021m n +的值是()A .-1B .1C .2021D .-2021【答案】A【分析】由偶次幂及绝对值的非负性可知2m =,3n =-,然后代入求解即可.【详解】解:∵()22m -与3n +互为相反数,∴()22m -30n ++=,∴20m -=,30n +=,∴2m =,3n =-,∴()()20212021231m n +=-=-;故选A .【点睛】本题主要考查有理数的乘方运算、绝对值的非负性及代数式的值,掌握偶次幂及绝对值的非负性是解题的关键.7.计算1234567820172018-+-+-+-+⋅⋅⋅+-的结果是()A .-1009B .-2018C .0D .-1【答案】A【分析】利用加法的结合律将原式整理成(12)(34)(20172018)-+-+⋅⋅⋅+-即可求解.【详解】解:1234567820172018-+-+-+-+⋅⋅⋅+-,(12)(34)(56)(78)(20172018)=-+-+-+-+⋅⋅⋅+-,(1)(1)(1)(1)(1)=-+-+-+-+⋅⋅⋅+-,1009=-,故选:A .【点睛】本题考查了有理数的加减法,解题的关键是掌握相应的运算法则.8.如图,在一个由6个圆圈组成的三角形里,把-25到-30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是()A .-84B .-85C .-86D .-87【答案】A【分析】三个顶角分别是−29,−30,−28,−29与−30之间是−-25,−29和−28之间是−27,−30和−28之间是−26,这样每边的和才能相等并且S 有最小值.【详解】解:如图,由图可知S =−29+(−25)+(−30)=−84.故选∶A .【点睛】本题考查了有理数的加法,解题关键是三角形的三个顶点的数字是−25~−30这6个数最小的三个数字.9.定义:如果x a N =(0a >,且1a ≠),那么x 叫做以a 为底N 的对数,记做log a x N =.例如:因为2749=,所以7log 492=;因为35125=,所以5log 1253=.下列说法:①6log 636=;②3log 814=;③若4log (14)2a +=,则2a =;④222log 64log 32+log 2=;正确的序号有()A .①③B .②③C .①②③D .②③④【答案】D【分析】由新定义可得:2777log 49log 2,==利用新定义逐一计算判断,从而可得答案.【详解】解:根据新定义可得:6log 61,=故①不符合题意;4333log 81log 4,==故②符合题意; 4log (14)2a +=,2144,a \+=解得:2,a =故③符合题意;6222log 64log 6,==5222222log 32+log 2log log 516,=+=+=∴222log 64log 32+log 2=,故④符合题意,故选D【点睛】本题考查的新定义运算,有理数的乘方运算的含义,正确理解新定义,运用新定义解决问题是解本题的关键.10.有两个正数a 和b ,满足a <b ,规定把大于等于a 且小于等于b 的所有数记作[a ,b ],例如大于等于0且小于等于5的所有数记作[0,5].如果m 在[5,15]中,n 在[20,30]中,则mn的一切值所在的范围是()A .13,64⎡⎤⎢⎥⎣⎦B .11,42⎡⎤⎢⎥⎣⎦C .4,63⎡⎤⎢⎥⎣⎦D .13,24⎡⎤⎢⎥⎣⎦【答案】A【分析】根据m 在[5,15]内,n 在[20,30]内,可得m n的最小值与最大值.【详解】解:∵m 在[5,15]内,n 在[20,30]内,∴5≤m ≤15,20≤n ≤30,∴m n 的最小值为51=306,最大值为153=204∴m n 的一切值所在的范围是13,64⎡⎤⎢⎥⎣⎦.故选:A .【点睛】本题考查了新定义的有理数运算,关键是得到5⩽m ⩽15,20⩽n ⩽30,求出m n 的最大与最小值.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.若a ,b 互为相反数,则(a +b ﹣1)2016=_____.【答案】1【分析】根据相反数的性质得a +b =0,再代入进行计算即可.【详解】解:∵a ,b 互为倒数,∴a +b =0,∴(a +b ﹣1)2016=20162016(01)(1)1-=-=,故答案为:1.【点睛】此题主要考查相反数的性质和有理数的乘方,关键是正确理解相反数的性质.12.已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.【答案】1或-3##-3或1【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,可以得到a +b =0,cd =1,m =±2,然后代入所求式子计算即可.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a +b =0,cd =1,m =±2,当m =2时,()()2202120112020a b m cd ++-=+-=;当m =﹣2时,()()2202120132020a b m cd ++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a +b =0,cd =1,m =±2.13.比较大小:56⎛⎫+- ⎪⎝⎭__________89--.【答案】>【分析】根据正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的其值反而小,比较即可.【详解】解:∵5566⎛⎫+-=- ⎪⎝⎭,8899--=-,且832530936636=>=,∴5869->-,∴5869⎛⎫+->-- ⎪⎝⎭.故答案为:>【点睛】本题考查了有理数大小比较,绝对值的性质,要熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.14.某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .【答案】西5【分析】将五次行驶的记录数据相加即可得到答案.【详解】∵798655-+--=-,∴在A 地西边5千米处.故答案为:西;5.【点睛】本题考查了有理数的加减法,能够将实际问题和有理数的加减相结合,并且能够准确计算出结果是解决本题的关键.15.定义一种新运算“⊕”:2x y x y x -⊕=.如:()()32273233-⨯-⊕-==,则()248⊕⊕=______.【答案】4【分析】根据2x y x y x-⊕=,可以计算出()248⊕⊕的值.【详解】解:∵2x y x y x -⊕=,∴()248⊕⊕=42822(3)2(2(3)442-⨯-⨯-⊕=⊕-==.故答案为:4.【点睛】本题考查了有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.16.使得521n ⋅+是完全平方数的整数n 的值是_________.【答案】4【分析】由5×2n +1是完全平方数,可设5×2n +1=m 2(其中m 为正整数),可得5×2n =m 2-1=(m +1)(m -1),即可得m 为奇数,然后设m =2k -1(其中k 是正整数),即可得方程组,解方程组即可求得答案.【详解】解:设5×2n +1=m 2(其中m 为正整数),则5×2n =m 2-1=(m +1)(m -1),∵5×2n 是偶数,∴m 为奇数,设m =2k -1(其中k 是正整数),则5×2n =4k (k -1),即5×2n -2=k (k -1).显然k >1,∵k 和k -1互质,∴25211n k k -⎧=⨯⎨-=⎩或2512n k k -=⎧⎨-=⎩或2215n k k -⎧=⎨-=⎩,解得:k =5,n =4.因此,满足要求的整数n 为4.故答案为:4.【点睛】此题考查了完全平方数的知识.此题难度较大,解题的关键是将原式变形,可得5×2n =m 2-1=(m +1)(m -1),然后得到m 为奇数,则可设m =2k -1(其中k 是正整数),从而得到方程组.17.若()()42530x x y y ++-⋅+-≤,()x y +的最大值和最小值的差__________.【答案】11【分析】根据426,55x x y y ++-≥+-≥,而()()42530x x y y ++-⋅+-≤,求出42,05x y -≤≤≤≤,分别计算x+y 的最大值和最小值,即可得到答案.【详解】解:∵426,55x x y y ++-≥+-≥,∴()()42530x x y y ++-⋅+-≥,而()()42530x x y y ++-⋅+-≤,∴()()42530x x y y ++-⋅+-=,∴42,05x y -≤≤≤≤,∴当x =2,y =5时,x+y 有最大值2+5=7,当x=-4,y=0时,x+y有最小值-4+0=-4,∴x+y的最大值和最小值的差为7-(-4)=11,故答案为:11.【点睛】此题考查了绝对值最值问题,根据式子讨论得到字母的取值范围进行计算是解题的关键.18.如图,数轴上A、B两点之间的距离AB=12,有一根木棒PQ,PQ在数轴上移动,当Q移动到与A、B其中一个端点重合时,点P所对应的数为5,且点P始终在点Q的左侧,当Q移动到线段AB的中点时,点P所对应的数为__________.【答案】11或-1##-1或11【分析】设PQ的长度为m,当点Q与点A重合时,此时点P对应的数为5,则点A对应的数为m+5,点B对应的数为m+17,由此即可求解;当点Q与点B重合时,同理可得,点B对应的数为m+5,点A对应的数为m-7,由此即可求解.【详解】解:设PQ的长度为m,当点Q与点A重合时,此时点P对应的数为5,则点A对应的数为m+5,点B对应的数为m+17∴当点Q到AB中点时,点P此时对应的数为:()1755112m m+-++=,当点Q与点B重合时,同理可得,点B对应的数为m+5,点A对应的数为m-7,∴点Q到AB中点时,点P此时对应的数为:()57512m m+---=-,故答案为:11或-1.【点睛】此题综合考查了数轴上两点的距离,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.把下列各数分别填入相应的集合里.-3,23--,0,227,-3.14,20,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…};【答案】(1)22,20,1.88,7⎧⎭+⎫⎨⎬⎩ (2)()23,,3.14,5,3---⎧-⎭-+⎫⎨⎬⎩ (3)(){}3,0,20,5,--+ (4)222,,3.14,1.88,37-⎧-⎭-+⎫⎨⎬⎩ 【分析】(1)根据正数的概念即可得;(2)根据负数的概念即可得;(3)根据整数的概念即可得;(4)根据分数的概念即可得.(1)解:2233--=-,(5)5-+=-,正数集合:22,20,1.88,7⎧⎭+⎫⎨⎬⎩ .(2)解:负数集合:()23,,3.14,5,3---⎧-⎭-+⎫⎨⎬⎩ .(3)解:整数集合:(){}3,0,20,5,--+ .(4)解:分数集合:222,,3.14,1.88,37-⎧-⎭-+⎫⎨⎬⎩ .【点睛】本题考查了正数与负数、整数与分数、化简绝对值,熟记各概念和绝对值的性质是解题关键.20.计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)231152525424-⨯+⨯-⨯;(4)2141 420.826 3553⎛⎫+-+--⎪⎝⎭.【答案】(1)8(2)-1(3)-12.5(4)15.2【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=3+2-6 =-1 (3)解:231152525424 -⨯+⨯-⨯=311 252525424 -⨯+⨯-⨯=311 25424⎛⎫-⨯-+⎪⎝⎭=1 252 -⨯=-12.5 (4)解:2141 420.826 3553⎛⎫+-+--⎪⎝⎭=21441 4226 35553+-++=21144(46(22)33555++-+=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.21.综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点,,,O A B C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点,,,O A B C 的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?【答案】(1)见解析(2)7.5千米(3)不能同时到达,小琪先到达【分析】(1)根据题意在数轴上表示出点O ,A ,B ,C 的位置即可;(2)由(1)得,小琪家在饭店西2千米处,小刚家在饭店东5.5千米处,根据数轴即可计算;(3)分别计算出两人所行的距离及所用时间,再进行比较,即可得答案.(1)根据已知,以饭店为原点,以向东为正方向,用1个单位长度表示1千米,外卖员骑电动车从饭店出发,向西走了2千米,即为-2,到达小琪家,然后又向东走了4千米,即为242-+=,到达小莉家,继续向东走了3.5千米,即为2 3.5 5.5+=,到达小刚家,最后回到饭店,所以,点O ,A ,B ,C 的位置如图所示:;(2)由数轴可得,22, 5.5OC OB =-==,2 5.57.5BC ∴=+=,所以,即小刚家距小琪家有7.5千米;(3)由数轴可得, 5.52 3.5AB =-=,∴小莉用时为3.550.7h ÷=,小琪用时为7.5150.5h ÷=,0.70.5> ,∴两人不能同时到达,小琪先到达.【点睛】本题考查了数轴的简单应用,明确数轴的表示方法及数轴上的点与点所表示的数的关系及绝对值等概念,是解题的关键.22.已知a ,b ,c 在数轴上的对应点如图所示.(1)判断正、负,用“>”“<”填空:a +b 0,c -a0,b +c 0,b -c 0,a -b 0;(2)化简:|a |+|a +b |+|c -a |-2|b +c |-|b -c |+|a -b |.【答案】(1)<,<,<,>,>;(2)2a -b +2c【分析】(1)根据数轴确定字母的符号以及大小,即可判断;(2)根据字母和式子的符号,求解绝对值,化简即可.【详解】解:(1)由数轴可得:0c b a <<<,且b a<-∴0a b +<,0c a -<,0b c +<,0b c ->,0a b ->故答案为:<,<,<,>,>(2)||||||||2||a a b c a b c b c a b +--++-+--+22a a b c a b c b c a b=---+++-++-22a b c=-+【点睛】此题考查了数轴的应用,以及绝对值的化简,解题的关键是根据数轴判断出字母以及各式子的符号.23.如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为;点B 表示的数为;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离(用t 表示).【答案】(1)-2;6(2)103或14(3)甲球与原点的距离为:t +2;当03t时,乙球到原点的距离为62t -;当3t >时,乙球到原点的距离为26t -【分析】(1)根据非负数的性质求得a =-2,b =6;(2)分C 点在线段AB 上和线段AB 的延长线上两种情况讨论即可求解;(3)甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:①当0<t ≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;②当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离.(1)解:∵|a +2|+|b −6|=0,∴a +2=0,b −6=0,解得,a =−2,b =6,∴点A 表示的数为−2,点B 表示的数为6.故答案为:−2;6.(2)设数轴上点C 表示的数为c ,∵AC =2BC ,∴|c −a |=2|c −b |,即|c +2|=2|c −6|,∵AC =2BC >BC ,∴点C 不可能在BA 的延长线上,则C 点可能在线段AB 上和线段AB 的延长线上,①当C 点在线段AB 上时,则有−2⩽c ⩽6,得c +2=2(6−c ),解得:c =103;②当C 点在线段AB 的延长线上时,则有c >6,得c +2=2(c −6),解得c =14,故当AC =2BC 时,c =103或c =14;故答案为:103或14.(3)∵甲球运动的路程为:1⋅t =t ,OA =2,∴甲球与原点的距离为:t +2;乙球到原点的距离分两种情况:①当0<t ⩽3时,乙球从点B 处开始向左运动,直到原点O ,∵OB =6,乙球运动的路程为:2⋅t =2t ,乙到原点的距离:6−2t (0⩽t ⩽3);②当t >3时,乙球从原点O 处开始一直向右运动,此时乙球到原点的距离为:2t −6(t >3).【点睛】本题主要考查数轴、数轴上两点之间的距离、绝对值的非负数的性质,解题的关键是掌握数轴、绝对值的非负数的性质,注意分类讨论.24.在平面直角坐标系xOy 中,对于任意两点M ,N ,给出如下定义:点M ,N 的横坐标之差的绝对值与纵坐标之差的绝对值的和叫做这两点之间的“直角距离”,记作:MN d ,即点()11,M x y 与点()22,N x y 之间的“直角距离”为1212MN x x d y y -+-=.已知点()3,2A -,点()2,1B .(1)A 与B 两点之间的“直角距离”AB d =______;(2)点()0,C t 为y 轴上的一个动点,当t 的取值范围是______时,AC BC d d +的值最小;(3)若动点P 位于第二象限,且满足AP BP d d ≥,请在图中画出点P 的运动区域(用阴影表示).【答案】(1)6(2)12t ≤≤(3)见解析【分析】(1)根据定义即可求得;(2)根据定义可得215AC BC d d t t +=-+-+,再分段讨论即可求得(3)AP BP d d ≥,则0AP BP d d -≥,根据定义,计算出AP BP d d -即可.(1)解:根据题意得:3221516AB d =--+-=+=,故答案为:6;(2)解:根据题意得:AC BCd d +302201t t=--+-+-+-215t t =-+-+当<1t 时,2<0t -,1<0t -,()()21528AC BC d d t t t +=----+=-+,故此时不存在最小值,当12t ≤≤时,20t -≤,10t -≥,()()2156AC BC d d t t +=--+-+=,故此时的最小值为6,当>2t 时,2>0t -,1>0t -,()()21522AC BC d d t t t +=-+-+=+,故此时不存在最小值,综上,当12t ≤≤时,AC BC d d +的值最小;故答案为:12t ≤≤;(3)设点P (x ,y )∵点P 在第二象限,∴x <0,y >032AP d x y=--+-21BP d x y=-+-3221AP BP d d x y x y-=--+-----=3221x x y y----+---①当0<y ≤1时3221AP BP d d x x y y-=----+---=321x x ----+若x <-3,则原式=(-3-x )-(2-x )+1=-4(不符合题意)若-3<x <0,则原式=(x +3)-(2-x )+1=2x +2∵AP BPd d ≥∴0AP BP d d -≥,即2x +2≥0,解得:x ≥-1当0<y ≤1时,x ≥-1,如图;②当1<y ≤2时3221AP BP d d x x y y-=----+---=3232x x y----+-若x <-3,则原式=(-3-x )-(2-x )+3-2y =-2-2y (不符合题意)若-3<x <0,则原式=(x +3)-(2-x )+3-2y =2x -2y +4∵AP BPd d ≥∴0AP BP d d -≥,即2x -2y +4≥0,整理得:y ≤x +2当1<y ≤2时,y ≤x +2,如图③当y >2时3221AP BP d d x x y y-=----+---=321x x -----若x <-3,则原式=(-3-x )-(2-x )-1=-6(不符合题意)若-3<x <0,则原式=(x +3)-(2-x )-1=2x ,∵x <0,∴2x <0,(不符合题意)综上:点P的运动范围如图所示.【点睛】本题考查了新定义运算,理解题目中新定义运算的概念是解题的关键,在去掉绝对值符号时,注意分清楚绝对值符号里面的正负,若不知道正负,则应该分类讨论.25.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,(3)(3)(3)(3)-÷-÷-÷-记作4(3)-,读作“3-的4次商”.一般地,我们把n 个(0)a a ≠相除记作n a ,读作“a 的n 次商”.初步探究(1)直接写出结果:32=________;(2)关于除方,下列说法错误的是_________.①任何非零数的2次商都等于1;②对于任何正整数n ,(1)1n -=-;③4334=;④负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算能够转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?例:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式4(3)-=_______;517⎛⎫= ⎪⎝⎭_______.(4)想一想:将一个非零有理数a 的n 次商写成幂的形式等于___________;(5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________.【答案】(1)12;(2)②③;(3)213⎛⎫- ⎪⎝⎭,37;(4)21n a -⎛⎫ ⎪⎝⎭;(5)314-【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义分别判断即可;(3)利用题中的新定义计算即可表示成幂的形式;(4)根据题干和(1)(2)(3)的规律总结即可;(5)将算式中的除方部分根据(4)中结论转化为幂的形式,再根据有理数的混合运算法则计算即可.【详解】解:(1)3122222=÷÷=;(2)当a ≠0时,a 2=a ÷a =1,因此①正确;对于任何正整数n ,当n 为奇数时,(1)(1)(1)...(1)1n -=-÷-÷÷-=-,当n 为偶数时,(1)(1)(1)...(1)1n -=-÷-÷÷-=,因此②错误;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③错误;负数的奇数次商结果是负数,负数的偶数次商结果是正数,因此④正确;故答案为:②③;(3)4(3)-=(3)(3)(3)(3)-÷-÷-÷-=111(3)333⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭213⎛⎫- ⎪⎝⎭,5111111777777⎛⎫=÷÷÷÷ ⎪⎝⎭=177777⨯⨯⨯⨯=37;(4)由题意可得:将一个非零有理数a 的n 次商写成幂的形式等于21n a -⎛⎫ ⎪⎝⎭;(5)2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()()()23112344÷-⨯-+-⨯=()12714⨯--=314-【点睛】此题考查了有理数的混合运算,理解题中除方的运算法则是解本题的关键.26.在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.材料一:我们知道|a |的几何意义是:数轴上表示数a 的点到原点的距离;|a ﹣b |的几何意义是:数轴上表示数a ,b 的两点之间的距离;|a +b |的几何意义是:数轴上表示数a ,﹣b 的两。
七年级数学上册第一章《有理数》综合测试卷-人教版(含答案)时间:90分钟,满分:120分一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)点A在数轴上表示的数为-3,若一个点从点A向左移动4个单位长度,此时终点所表示的数是()A.-7B.1C.7D.-12.(本题3分)一个两位小数精确到十分位是5.0,这个数最小是()A.4.99B.5.1C.4.94D.4.953.(本题3分)下列说法不正确的是()A.0既不是正数,也不是负数B.1是绝对值最小的正数C.一个有理数不是整数就是分数D.0的绝对值是04.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1035.(本题3分)2021年4月底,印度爆发式的疫情冲击,全球面临新冠病毒变异危机,我国将再出手拯救全球疫情.据卫生局4月26日公布,在过去的一天内,印度新增确诊病例超过353000例,至此,印度已经连续五天新增病例超过30万例,并多次突破全球每日新增病例的最高记录.数据353000用科学记数法表示为()A.3.53×104B.3.53×105C.0.353×106D.353×1036.(本题3分)下列各对数中,互为相反数的是()A.﹣(+4)与+(﹣4)B.﹣(﹣4)与|﹣4|C.﹣22与(﹣2)2D.﹣23与(﹣2)37.(本题3分)如图,在数轴上有A、B、C、D四个点,分别表示不同的四个数,使得其余三点表示的数中有两个负数和一个正数,则这个点是()A.点A B.点B C.点C D.点D8.(本题3分)实数a在数轴上的对应点的位置如图所示,若实数b满足0+>,则b的值可以是()a bA .1-B .0C .1D .29.(本题3分)实数a ,b 在数轴上对应的点的位置如图所示,下列结论正确的是( )A .a b >B .a b -<C .a b >-D .a b >10.(本题3分)在423(4),|2|,1,(,3)(2)------这五个数中,正数的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作____m 12.(本题3分)已知|a |=6,|b |=4,且ab <0,则a +b 的值为 ___.13.(本题3分)数轴上到表示数-413点距离为312的点所表示的数为_________ 14.(本题3分)绝对值小于2021的所有的整数的和是___.15.(本题3分)计算:()()291223⎛⎫-⨯-+-÷= ⎪⎝⎭__________. 16.(本题3分)如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是___.17.(本题3分)母亲节来临之际,小凡同学打算用自己平时节省出来的50元钱给母亲买束鲜花,已知花店里鲜花价格如表:小凡想用妈妈喜欢的百合、玫瑰、康乃馨这三种花组成一个花束,若三种花都要购买且50元全部花净,请给出一种你喜欢的组成方式,百合、玫瑰、康乃馨的支数分别为_______.18.(本题3分)如图,每个图形中的三个数之间均具有相同的规律.根据此规律,若图形中11m =,12n =,则M的值为________.19.(本题3分)小云计划户外徒步锻炼,每天有“低强度”“高强度”“休息”三种方案,下表对应了每天不同方案的徒步距离(单位:km).若选择“高强度”要求前一天必须“休息”(第一天可选择“高强度”).则小云5天户外徒步锻炼的最远距离为_______km.20.(本题3分)小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是_______;当输入数据是n时,输出的数据是_____三、解答题(本大题共8小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题12分)计算:(1)185(0.25)4⎛⎫+----⎪⎝⎭(2)554(10)845⎛⎫⎛⎫-⨯-+-⨯⎪ ⎪⎝⎭⎝⎭(3)2313369412⎛⎫-⨯-+⎪⎝⎭(4)1|3 4.5|9342-+-+--22.(本题4分)在数轴上点A表示的数为﹣1,点B和点A的距离为3,点B、C表示的两数和为0,求点C在数轴上表示的数.23.(本题8分)如图,(1)写出各点表示的数:A________,B________,C________,D________,E________;(2)用“<”将A.B、C、D、E表示的数连接起来.24.(本题10分)把下列各数填在相应的括号内:-16,26,-12,-0.92,35,0,314,0.100 8,-4.9正数集合:{ ⋯};负数集合:{ ⋯};整数集合:{ ⋯};正分数集合:{ ⋯};负分数集合:{ ⋯};25.(本题9分)国庆放假时,小明一家三口开车去探望爷爷、奶奶和外公、外婆,早上从家里出发,向东行了5千米到超市买东西,然后又向东行了2千米到爷爷家,下午从爷爷家出发向西行了10千米到外公家,晚上开车返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和外公家相距多少千米?(3)若该汽车每千米耗油0.08升,求小明一家从出发到返回家,汽车的耗油量.26.(本题9分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-4,+9,-10,+10,-5,-12.问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.08L/km,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米1.5元,则小李这天上午共得车费多少元?27.(本题8分)阅读下列材料:计算:1111 243412⎛⎫÷-+⎪⎝⎭解法一:原式= 111111111113412 243244241224242424÷-÷+÷=⨯-⨯+⨯=解法二:原式= 111112116 2434122412244⎛⎫÷-+=÷=⨯=⎪⎝⎭解法三:原式的倒数=1111111111242424244 34122434123412⎛⎫⎛⎫-+÷=-+⨯=⨯-⨯+⨯= ⎪ ⎪⎝⎭⎝⎭所以,原式= 14.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:113224261437⎛⎫⎛⎫-÷--+⎪ ⎪⎝⎭⎝⎭参考答案1.A【解析】解:根据题意得:-3-4=-7,此时终点所表示的数是-7,故选:A .2.D【解析】解:一个两位小数精确到十分位是5.0,这个数最小是4.95.故选:D .3.B【解析】解:A 、0既不是正数,也不是负数,正确,不符合题意;B 、1是绝对值最小的正数,错误,符合题意;C 、一个有理数不是整数就是分数,正确,不符合题意;D 、0的绝对值是0,正确,不符合题意.故选:B .4.B【解析】解析:353000=3.53×105.故选:B5.B【解析】解析:353000=3.53×105.故选:B6.C【解析】解:A 、﹣(+4)=﹣4,+(﹣4)=﹣4,故A 选项不符合题意;B 、﹣(﹣4)=4,|﹣4|=4,故B 选项不符合题意;C 、﹣22=﹣4,(﹣2)2=4,故C 选项符合题意;D 、﹣23=﹣8,(﹣2)3=﹣8,故D 选项不符合题意,故选:C .7.C【解析】解:A .当A 为原点,则剩余三个点表示的数均是正数,故A 不合题意. B .当B 为原点,则A 表示负数,C 与D 表示正数,故B 不符合题意.C .当C 为原点,则A 与B 表示负数,D 表示正数,故C 符合题意.D .当D 为原点,A 、B 与C 表示负数,故D 不符合题意.故选:C .8.D【解析】解:⋯0a b +>,21a -<<-,⋯0b >,而且1b a >>,⋯1>->,b a符合条件是D,b=2.故选:D.9.D【解析】解:如图所示,⋯数a在原点的左边,数b在原点的右边,⋯a<-1,1>b>0,且|a|>1,|b|<1,>,a<b,⋯a b⋯A不符合题意;⋯D符合题意;⋯|a|>1,⋯-a>1,⋯-a>b,⋯B不符合题意;⋯1>b>0,⋯-1<b<0,⋯a<-b,⋯C不符合题意;故选D.10.C--=,是正数;【解析】()44-=,是正数;224-=-,是负数;11()239-=,是正数;()328-=-,是负数;⋯正数又3个;故选C.11.3-【解析】解:根据题意可得,高于正常水位记作“+”,则低于正常水位记作“-”,-m,则低于正常水位3m时,应记作3-故答案为:312.2-或2【解析】解:⋯64a b ==,⋯6,4a b =±=±又⋯0ab <⋯64a b =⎧⎨=-⎩或64a b =-⎧⎨=⎩ ⋯2a b +=或2a b +=-故答案为2-或213.−476或−56 【解析】解:距离点数−413为312个单位长度的点有两个,它们分别是−413+312=−56,−413−312=−476, 故答案为−476或−56. 14.0 【解析】绝对值小于2021是所有正数为0,1,22020±±⋯±,, ∴()()202010120200-+⋯+-+++⋯+= 故答案为:015.0 【解析】解:()()291223⎛⎫-⨯-+-÷ ⎪⎝⎭=66-=0.故答案为:0.16.-1、0、1、2【解析】解:由数轴可知:被污染的部分的数为-1.3<x <2.9的整数,⋯被污染的整数为:-1、0、1、2,故答案为:-1、0、1、2.17.1,4,6(答案不唯一)【解析】⋯12×1+5×4+3×6=50,⋯可买百合1支、玫瑰4支、康乃馨6支,故答案为:1,4,6.(本题答案不唯一,符合要求即可)18.143【解析】解:⋯1×(2+1)=3,3×(4+1)=15,5×(6+1)=35,⋯右下圆圈内的数=上方圆圈内的数×(左下圆圈内的数+1),⋯M =m (n +1),⋯M =11×(12+1)=143.故答案为:143.19.36【解析】解:如果第二天和第三天选择低强度,则距离为6+6=12(km ),如果第三天选择高强度,则第二天休息,则距离为15km ,⋯12<15,⋯第二天休息,第三天选择高强度,如果第四天和第五天选择低强度,则距离为5+4=9(km ),如果第五天选择高强度,则第四天休息,则距离为8km ,⋯9>8,⋯第四天和第五天选择低强度,为保持最远距离,则第一天为高强度,⋯最远距离为12+0+15+5+4=36(km )故答案为36.20.256 ()2n -【解析】解:设输入数据为a ,输出数据为b ,则由题意可得:()2a b =-,所以:当输入数据是8时,输出的数据是()82256-=;当输入数据是n时,输出的数据是 ()2n-. 故答案为256;()2n -. 21.(1)3;(2)154;(3)19;(4)0;(5)18-;(6)-198 【解析】解:(1)原式()3750.254=---()320.254=-- 3=;(2)原式2554=445⎛⎫+-⨯ ⎪⎝⎭ ()2514=+- 154=; (3)原式8271336363612⎛⎫=-⨯-+⎪⎝⎭ 1913363612-⎛⎫=-⨯+ ⎪⎝⎭ 1933363636-⎛⎫=-⨯+ ⎪⎝⎭ 1633636-=-⨯ ()316=--19;(4)原式=1.5-9+7.5=0;22.4或-2【解析】解:⋯点A在数轴上表示的数为﹣1,且点B和点A的距离为3,⋯点B在数轴上表示的数为-4或2,又点B、C表示的两数和为0⋯点C在数轴上表示的数为4或-223.(1)5,﹣2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5【解析】解:(1)点A.B、C、D、E表示的数分别为5,-2.5,1,2.5,﹣4;故答案为5,-2.5,1,2.5,﹣4;(2)﹣4<﹣2.5<1<2.5<5.24.正数集合:{ 26,35,134,0.1008};负数集合:{-16,-12,-0.92,-4.9};整数集合:{-16,26,-12,0};正分数集合:{35,134,0.1008};负分数集合:{-0.92,-4.9}.【解析】解:根据有理数分为:正数、0、负数;有理数也可以分为:整数和分数.⋯正数有:26,35,134,0.1008;负数有:-16,-12,-0.92,-4.9;整数有:-16,26,-12,0;正分数有:3 5,134,0.1008;负分数有:-0.92,-4.9.⋯正数集合:{26,35,134,0.1008⋯};负数集合:{-16,-12,-0.92,-4.9⋯};整数集合:{-16,26,-12,0⋯};正分数集合:{35,134,0.1008⋯};负分数集合:{-0.92,-4.9 ⋯};25.(1)见解析;(2)8(千米);(3)1.6(升)【解析】解:(1)A、B、C的位置如图所示:(2)因为5−(−3)=8(千米)故答案为:8;(3)小明一家走的路程:5+2+10+3=20(千米),共耗油:0.08×20=1.6(升)答:小明一家从出发到返回家所经历路程小车的耗油量为1.6升.26.(1)西12km;(2)4L;(3)108元【解析】(1)491010512+-+---, 410512910=----++,3119=-+,12=-,答:小李在西12km 处.(2)491010512-+++-+++-+-, 491010512=+++++,50=,500.084)L ⨯=(,答:共耗油4L .(3)第一次车费:()1043 1.511.5+-⨯=(元), 第二次车费:()1093 1.519+-⨯=(元), 第三次车费:()10103 1.520.5+-⨯=(元), 第四次车费:()10103 1.520.5+-⨯=(元), 第五次车费:()1053 1.513+-⨯=(元), 第六次车费:()10123 1.523.5+-⨯=(元), 11.51920.520.51323.5108+++++=, 答:小李这天上午共得车费108元. 27.(1)一;(2)118【解析】解:(1)⋯除法无分配律⋯解法一是错误的故答案为:一;(2)方法一:原式1143442661414⎛⎫⎛⎫=-÷--+ ⎪ ⎪⎝⎭⎝⎭ 11142214⎛⎫⎛⎫=-÷-+ ⎪ ⎪⎝⎭⎝⎭ 13427⎛⎫⎛⎫=-÷- ⎪ ⎪⎝⎭⎝⎭ 118= 方法二:原式的倒数= 132216143742⎛⎫⎛⎫=--+÷- ⎪ ⎪⎝⎭⎝⎭ ()132********⎛⎫=--+⨯- ⎪⎝⎭()()()()13224242424261437=⨯--⨯--⨯-+⨯- 792812=-++-18=⋯原式=118。
2018-2019年度部编版七年级上侧数学单元测试试卷第一章有理数满分:100分;考试时间:120分钟学校:__________一、选择题1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是()A.(-3)×4-3×2-3×3 B.(-3)×(-4)-3×2-3×3C.(-3)×(-4)+3×2-3×3 D.(-3)×(-4)-3×2+3×3答案:D解析:D2.如图所示的 6 个数是按一定规律排列的,根据这个规律,括号内的数应是()A.27 B.56 C.43 D.30答案:B解析:B3.6-(+4)-(-7)+(-3)写成省略加号的和式是()A.6-4+7+3 B.6+4-7-3 C.6-4+7-3 D.6-4-7-3答案:C解析:C二、填空题4.上海浦东磁悬浮铁路全长30 km,单程运行时间约8 min,那么磁悬浮列车的平均速度用科学记数法表示约为 m/min.解析:3.75×1035.a、b是两个自然数,如果100+=,那么a与b 的积最大是.a b解析:25006.绝对值小于 4 的所有整数的积等于.解析:07.绝对值不大于3的整数有个,它们是.解答题解析:7;-3,-2,-1,0,1,2,38.中国国家图书馆藏书约2亿册,用科学记数法表示为册.解析:8210⨯9.填一填:(1) (-5) ×0.2= ;(2) (-8)× (-0.25)= ;(3) (132-)×(27-)= ;(4)0.1×(-0. 01) = ;(5) ( -59 )×0.01 ×0= ;(6)(-2)×( )=12 -;(7)(-1)×( )=15;(8) (13-)×( )=1.解析:(1)-1 (2)2 (3)1 (4)-0. 001 (5)0 (6)14(7)15- (8)-310.对于加法,我们有 3+5=5+3,11112332+=+,(-3) +(-0.5) = (-0. 5)+(-3),…,用字母可以表示成.解析:a+b=b+a三、解答题11.一支考古队在某地挖掘出一枚正方体古代金属印章,其棱长为 4.5厘米,质量为1069克,则这枚印章每立方厘米约重多少克(结果精确到0.01克)?解析:正方体的棱长为 4.5 厘米,所以其体积为34.5立方厘米.。
人教版数学七年级上学期 第一章有理数测试时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃2.-12017的相反数的倒数是( ) A 1B. -1C. 2017D. -20173.下列各式中,正确的是( ) A -|-4|>0B. |0.08|>|-0.08|C. |-23|<0 D. -13>-124.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1) B. 0.05(精确到百分位) C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)5.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( ) A. 甲乙B. 丙丁C. 甲丙D. 乙丁6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C -32-(-3)2=-9-9=-18D. 3×23-2×9=3×6-18=0 7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边8.地球平均半径约为6371000米,该数字用科学记数法可表示为( ) A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×1039.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 3710.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.12近似数2.30万精确到_____位.13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.15.若|a-4|+|b+1|=0,则b a=____.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.18.观察下面一列数:-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16……按照上述规律排下去,那么第10行从左边数第9个数是____.三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:售出件数7 6 3 5 4 5售价(元) +3 +2 +1 0 -1 -2请问该服装店售完这30件衣服后,赚了多少钱?25.观察下列三行数:2 6 18 54 162…①-1 3 15 51 159…②-1 -3 -9 -27 -81…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?答案与解析时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5℃,记作+5℃,保鲜室的温度零下7℃,记作( ) A. 7℃ B. -7℃C. 2℃D. -12℃【答案】B 【解析】试题分析:∵冰箱冷藏室的温度零上5℃,记作+5℃, ∴保鲜室的温度零下7℃,记作-7℃. 故选B .【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 2.-12017的相反数的倒数是( ) A. 1 B. -1C. 2017D. -2017【答案】C 【解析】12017-的相反数是12017, 12017的倒数是2017. 所以有理数12017-的相反数的倒数是2017.故选B.3.下列各式中,正确的是( ) A. -|-4|>0 B. |0.08|>|-0.08|C. |-23|<0 D. -13>-12【答案】D 【解析】分析:根据有理数的大小的方法是:负数<0<正数;两个负数,绝对值大的反而小,即可得出答案. 详解:A 、-|-4|=-4<0,故本选项错误;B 、∵|008|=0.08,|-0.08|=0.08,∴|0.08|=|-0.08|,故本选项错误;C 、|-23|=23>0,故本选项错误;D、∵13<12,∴-13>-12,故本选项正确.故选D.点睛:此题考查了有理数的大小比较,比较有理数的大小的方法是:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.4.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A 0.1(精确到0.1) B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.5.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b−a<0;乙:a+b>0;丙:|a|<|b|;丁:ba>0;其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁【答案】C【解析】【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.详解】甲:由数轴有,0<a<3,b<−3,∴b−a<0,甲的说法正确, 乙:∵0<a<3,b<−3, ∴a+b<0 乙的说法错误, 丙:∵0<a<3,b<−3, ∴|a|<|b|, 丙的说法正确, 丁:∵0<a<3,b<−3, ∴ba<0, 丁的说法错误; 故选C.【点睛】此题考查绝对值,数轴,解题关键在于结合数轴进行解答. 6.下列各式计算正确的是( ) A. 7-2×(-15)=5×(-15)=-1 B. -3÷7×17=-3÷1=-3 C. -32-(-3)2=-9-9=-18 D. 3×23-2×9=3×6-18=0【答案】C 【解析】分析:A 、原式先计算乘法运算,再计算减法运算得到结果,即可作出判断; B 、原式先计算除法,再计算乘法算得到结果,即可作出判断; C 、原式先算乘方,再算减法得到结果,即可作出判断;D 、原式先计算乘方,再计算乘法运算,最后计算加减运算得到结果,即可作出判断.详解:A. 7-2×(-15)=227+=755,故该选项错误; B 、-3÷7×17=11337749-⨯⨯=-,故该选项错误;C 、-32-(-3)2=-9-9=-18,故该选项正确;D 、3×23-2×9=3×8-18=24-18=6,故该选项错误. 故选C .点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点的位置应该在( )A. 点的左边B. 点与点之间C. 点与点之间D. 点的右边【答案】C【解析】【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.8.地球的平均半径约为6371000米,该数字用科学记数法可表示为()A. 0.6371×107B. 6.371×106C. 6.371×107D. 6.371×103【答案】B【解析】根据科学记数法的表示形式可得,6371000=6.371×106.故选B.9.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后,细胞存活的个数是( )A. 31B. 33C. 35D. 37【答案】B【解析】试题解析:根据题意可知,1小时后分裂成4个并死去1个,剩3个,3=2+1;2小时后分裂成6个并死去1个,剩5个,5=22+1;3小时后分裂成10个并死去1个,剩9个,9=23+1;…故5小时后细胞存活的个数是25+1=33个.故选B.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( )A. 5049B. 99!C. 9900D. 2!【答案】C【解析】【详解】根据题意可得:100!=100×99×98×97×...×1,98!=98×97× (1)∴100!1009998198!98971⨯⨯⨯⨯=⨯⨯⨯=100×99=9900,故选C.二、填空题(每小题3分,共24分)11.化简:-|-2|=____,-(-3)=____.【答案】(1). -2,(2). 3【解析】分析:由绝对值的性质及相反数的性质解答即可.详解:-|-2|=2;-(-3)=3点睛:主要考查了绝对值的概念及性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;12.近似数2.30万精确到_____位.【答案】百【解析】根据近似数的精确度,近似数2.30万精确到百位,故答案为百13.绝对值不大于3.14的所有有理数之和等于____;不小于-4而不大于3的所有整数之和等于____.【答案】(1). 0,(2). -4【解析】【分析】根据绝对值不大于3.14的有理数互为相反数,根据互为相反数的和为零,可得答案;根据不小于-4而不大于3的所有整数,可得加数,根据有理数的加法,可得答案.【详解】绝对值不大于3.14的所有有理数之和等于0;不小于-4而不大于3的所有整数之和(-4)+(-3)+(-2)+(-1)+0+1+2+3=-4,故答案为0,-4.【点睛】本题考查了有理数大小比较,有理数的加法,利用不小于-5而不大于4的所有整数得出加数是解题关键,注意互为相反数的和为零.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.【答案】-1或5【解析】【详解】试题分析:2-3=-1,2+3=5,所以到点A的距离等于3个单位长度的点所表示的数是-1或5.考点:1.数轴;2.有理数的加法;3.两点间的距离.15.若|a-4|+|b+1|=0,则b a=____.【答案】1【解析】分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.详解:由题意得,a-4=0,b+1=0,解得a=4,b=-1,所以,b a=(-1)4=1.故答案为1.点睛:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.根据下图所示的流程图计算,若输入x的值为1,则输出y的值为__________.【答案】7【解析】【分析】观察图形我们可以得出x和y的关系式为:y=3x2-5,因此将x的值代入就可以计算出y的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.【详解】解:依据题中的计算程序列出算式:12×3-5.由于12×3-5=-2,-2<0,∴应该按照计算程序继续计算,(-2)2×3-5=7,∴y=7.故本题答案为:7.17.现有4个有理数3,4,-6,10(每个数用且只用一次)进行加、减、乘、除运算,使其结果等于24,算式为____.【答案】10-(-6)×3-4=24(答案不唯一)【解析】分析:利用“24点”游戏规则列出算式,使其结果为24即可.详解:根据题意得:10-(-6)×3-4=24;(10-4)-3×(-6)=24;4-(-6)÷3×10=24;3×[4+10+(-6)]=24等.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.观察下面一列数:按照上述规律排下去,那么第10行从左边数第9个数是____.【答案】90【解析】分析:先从排列中总结规律,再利用规律代入求解.详解:根据题意,每一行最末的数字的绝对值是行数的平方,且奇数前带有负号,偶数前是正号;如第四行最末的数字是42=16,第9行最后的数字是-81,∴第10行从左边数第9个数是81+9=90.故答案为90.点睛:主要考查了学生的综合数学素质,要求能从所给数据中找到规律并总结规律,会利用所找到的规律进行解题三、解答题(共66分)19.把下列各数分别填入相应的大括号里:-3.1, 3.14159, -3, +31, -0.5, 0.618, -227, 0, -0.2020, |-1.56|.正数集合{}; 非负数集合{};整数集合{ }; 负分数集合{ }.【答案】见解析【解析】分析:根据整数,正数,非负数,负分数的定义可得出答案.详解:正数集合{3.14159,+31,0.618,|-1.56|};非负数集合{3.14159,+31,0.618,|-1.56|,0};整数集合{-3,+31,0};负分数集合{-3.1,-0.5,-227,-0.2020}.点睛:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.20.把下列各数表示在数轴上,再按从大到小的顺序用“>”号把这些数连接起来.|-3|, -5, 412, -212, -22, -(-1), 0.【答案】见解析【解析】【分析】数轴上的点与实数是一一对应的关系,画数轴要注意正方向,单位长度和原点,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.【详解】∵|-3|=3,-22=-4,-(-1)=1,∴以上各数在数轴上的位置如图所示:故412>|-3|>-(-1)>0>-2.12>-22>-5.【点睛】主要考查了数轴,数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.21.计算:(1)-21+(-14)-(-18)-15; (2)-3.5÷78×|-34|;(3)-14-(23-16)×13×[2-(-3)2]2.【答案】(1)-32;(2)-3;(3)556 -.【解析】分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算绝对值运算,再从左到右依次计算即可得到结果;(3)先乘方,再算括号里面的,最后得结果.详解:(1)原式=-21-14+18-15=-32;(2)原式=783274-⨯⨯=-3;(3)原式=-1-114923⨯⨯=-556.点睛:此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.【答案】(1)-1; (2)0.5 ;(3)-9【解析】分析:(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.详解:(1)点B表示的数为-5+6=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,则点E表示的数是-5-(-1+5)=-9.点睛:本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.24.某服装店老板以32元的价格购进30件衣服,针对不同的的顾客,30件衣服的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的记为负,记录结果如下表:请问该服装店售完这30件衣服后,赚了多少钱?【答案】472【解析】试题分析:首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.试题解析:解:售价=7×3+6×2+3×1+5×0+4×(-1)+5×(-2)=21+12+3+0-4-10=22;所以总售价=22+47×30=1432元;赚的钱=1432-30×32=1432-960=472元;点睛:本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.25观察下列三行数:(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.【答案】(1)每个数都等于它前面相邻的数的3倍(2)见解析;(3)726.【解析】分析:(1)观察不难发现,后一个数是前一个数字的3倍解答即可;(2)观察不难发现,第②行为第①行对应的数小3,第③行为第②行相应的数字除以-2;(3)根据各行的第n个数的表达式找出第6个数然后计算它们的和即可.详解:(1)每个数都等于它前面相邻的数的3倍(2)第②行数比第①行对应的数小3,第③行数是由第①行对应的数除以-2得到的.(3)第一行第6个数为:5;23=486第二行第6个数为:486-3=483;第三行第6个数为:486÷(-2)=-243;故每行第6个数的和为:486+483+(-243)=726.点睛:本题是对数字变化规律的考查,比较简单,观察出第①行后一个数字是前一个数字的3倍是解题的关键,也是本题的突破口.26.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?【答案】(1)收工时在A地的正东方向,距A地39km;(2)需加15升.【解析】【分析】(1)首先审清题意,明确“正”和“负”所表示的意义,计算结果是正数,说明收工时该检修小组位于A地向东多少千米,计算结果为负数,说明收工时该检修小组位于A地向西多少千米;(2)关键是计算出实际行走的路程所耗的油量,而耗油量应该是记录的所有数字的绝对值之和乘以3,相信你一定可以得到正确答案.【详解】(1)根据题意可得:向东走为“+”,向西走为“−”;则收工时距离等于(+15)+(−2)+(+5)+(−1)+(+10)+(−3)+(−2)+(+12)+(+4)+(−5)+(+6)=+39.故收工时在A地的正东方向,距A地39km.(2)从A地出发到收工时,汽车共走了|+15|+|−2|+|+5|+|−1|+|+10|+|−3|+|−2|+|+12|+|+4|+|−5|+|+6|=65km;从A地出发到收工时耗油量为65×3=195(升).故到收工时中途需要加油,加油量为195−180=15升.【点睛】此题考查正数和负数,有理数的加法,解题关键在于掌握其定义和运算法则.。
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)考前须知:1.本卷试题共24题,单选10题,填空6题,解答8题。
2.测试范围:第一章(沪科版2024)。
第Ⅰ卷一、单选题1.―12024的相反数是( )A .―2024B .12024C .―12024D .以上都不是【答案】B【分析】本题主要考查了相反数的定义,解题的关键是熟练掌握“只有符号不同的两个数互为相反数”.根据相反数的定义解答即可.【详解】解:―12024的相反数是12024,故选:B .2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .80.16×108B .8.016×109C .0.8016×1010D .80.16×1010【答案】B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:80.16亿=8.016×109,故选:B .3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤―a一定是负数,其中正确的个数是()A.1B.2C.3D.4【答案】B【分析】根据有理数的分类逐项分析判断即可求解.【详解】解:①一个有理数不是正数就是负数或0,故①不正确;②整数和分数统称为有理数,故②正确;③没有最小的有理数,故③不正确;④正分数一定是有理数,故④正确;⑤―a不一定是负数,故④不正确,故选:B.【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.4.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5 mm的零部件,其中(4.5±0.2)mm范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A.4.4mm B.4.5mm C.4.6mm D.4.8mm【答案】D【分析】本题考查正数和负数,根据正数和负数的实际意义求得合格尺寸的范围,然后进行判断即可,结合已知条件求得合格尺寸的范围是解题的关键.【详解】解:由题意可得合格尺寸的范围为4.3mm∼4.7mm,4.8mm不在尺寸范围内,故选:D.5.下列各组数相等的有()A.(―2)2与―22B.(―1)3与―(―1)2C.―|―0.3|与0.3D.|a|与a【答案】B【分析】根据负数的奇次幂是负数,负数的偶次幂是正数,可得答案.【详解】解∶ A.(―2)2=4,―22=―4,故(―2)2≠―22;B.(―1)3=―1,―(―1)2=―1,故(―1)3=―(―1)2;C.―|―0.3|=―0.3,0.3,故―|―0.3|≠0.3;D.当a小于0时,|a|与a不相等,;故选∶B.【点睛】本题考查了有理数的乘方,熟练求解一个数的乘方是解题的关键.6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.6cm”对应数轴上的数为()A.―1.4B.―1.6C.―2.6D.1.6【答案】C【分析】本题考查了数轴,熟练掌握在数轴上右边点表示的数减去左边点表示的数等于这两点间的距离是解题关键.利用点在数轴上的位置,以及两点之间的距离分析即可求解.【详解】解:设刻度尺上“5.6cm”对应数轴上的数的点在原点的左边,距离原点有5.6―3=2.6的单位长度,所以这个数是―2.6故选:C.7.观察下图,它的计算过程可以解释( )这一运算规律A.加法交换律B.乘法结合律C.乘法交换律D.乘法分配律【答案】D【分析】根据图形,可以写出相应的算式,然后即可发现用的运算律.【详解】解:由图可知,6×3+4×3=(6+4)×3,由上可得,上面的式子用的是乘法分配律,故选:D.【点睛】本题考查有理数的混合运算,熟练掌握运算律是解答本题的关键.8.如图,A、B两点在数轴上表示的数分别为a,b,有下列结论:①a―b<0;②a+b>0;>0.其中正确的有( )个.③(b―1)(a+1)>0;④b―1|a―1|A.4个B.3个C.2个D.1个【答案】A【分析】本题主要考查了数轴,有理数的加减,乘除运算.先根据a、b在数轴上的位置判断出a、b的取值范围,再比较出各数的大小即可.【详解】解:观察数轴得:―1<a<0<1<b,∴a―b<0,故①正确;a+b>0,故②正确;b―1>0,a+1>0,∴(b―1)(a+1)>0,故③正确;b―1>0故④正确.|a―1|故选:A9.定义运算:a⊗b=a(1―b).下面给出了关于这种运算的几种结论:①2⊗(―2)=6,②a⊗b=b⊗a,③若a+b=0,则(a⊗a)+(b⊗b)=2ab,④若a⊗b=0,则a=0或b=1,其中结论正确的序号是()A.①④B.①③C.②③④D.①②④【答案】A【分析】各项利用题中的新定义计算得到结果,即可做出判断.此题考查了新定义运算,以及整式的混合运算、以及有理数的混合运算,熟练掌握运算法则是解本题的关键.【详解】解:根据题目中的新定义计算方法可得,①2⊗(―2)=2×(1+2)=6,①正确;②a⊗b=a(1―b)=a―ab,b⊗a=b(1―a)=b―ab,故a⊗b与b⊗a不一定相等,②错误;③(a⊗a)+(b⊗b)=a(1―a)+b(1―b)=a+b―a2―b2≠2ab,③错误;④若a⊗b=a(1―b)=0,则a=0或b=1,④正确,故选:A.10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A.160B.128C.80D.48【答案】A【分析】先计算出6×6方格纸片中共含有多少个3×2方格纸片,再乘以4即可得.【详解】由图可知,在6×6方格纸片中,3×2方格纸片的个数为5×4×2=40(个)则n=40×4=160故选:A.【点睛】本题考查了图形类规律探索,正确得出在6×6方格纸片中,3×2方格纸片的个数是解题关键.第II卷(非选择题)二、填空题11.甲地海拔高度为―50米,乙地海拔高度为―65米,那么甲地比乙地.(填“高”或者“低”).【答案】高【分析】先计算甲地与乙地的高度差,再根据结果进行判断即可.【详解】解:由题意可得:(―50)―(―65)=―50+65=15>0,∴甲地比乙地高.故答案为:高【点睛】本题考查的是有理数的大小比较,有理数的减法运算的实际应用,理解题意是解本题的关键.12.绝对值大于1且不大于5的负整数有.【答案】―2,―3,―4,―5【分析】本题考查了绝对值的意义,根据绝对值的意义即可求解,掌握绝对值的意义是解题的关键.【详解】解:绝对值大于1且不大于5的负整数有―2,―3,―4,―5,故答案为:―2,―3,―4,―5.13.若(2a ―1)2与2|b ―3|互为相反数,则a b = .【答案】18【分析】本题考查相反数的概念及绝对值的知识.根据互为相反数的两个数的和为0,可得(2a ―1)2与2|b ―3|的和为0,再根据绝对值和偶次方的非负性即可分别求出a ,b .【详解】∵ (2a ―1)2与2|b ―3|互为相反数∴ (2a ―1)2+2|b ―3|=0∵ (2a ―1)2≥0,2|b ―3|≥0∴2a ―1=0,2|b ―3|=0∴ a =12,b =3∴ a b =(12)3=18.故答案为:18.14.电影《哈利•波特》中,小哈利波特穿越墙进入“934站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于―23,83处,AP =2PB ,则P 站台用类似电影的方法可称为“ 站台”.【答案】159或6【分析】先根据两点间的距离公式得到AB 的长度,再根据AP =2PB 求得AP 的长度,再用―23加上该长度即为所求.【详解】解:AB =|83――=103,AP =|103×22+1|=209,或AP =|103×2|=203,P :―23+209=149=159,或―23+203=183=6.故P 站台用类似电影的方法可称为“159站台”或者“6站台”.故答案为:159或6.【点睛】本题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,其中题干表达模糊,并没有明确指出P在AB中间,所以有两个答案(P在AB中间,或者P在AB的右侧).但题目需要用类似电影的方法表达,故而答案可以仅为“159站台”,这个题体现了数形结合的优点.15.若a|a|+b|b|+c|c|+d|d|=2,则|abcd|abcd的值为.【答案】-1【分析】先根据a|a|+b|b|+c|c|+d|d|=2,a|a|,b|b|,c|c|,d|d|的值为1或-1,得出a、b、c、d中有3个正数,1个负数,进而得出abcd为负数,即可得出答案.【详解】解:∵当a、b、c、d为正数时,a|a|,b|b|,c|c|,d|d|的值为1,当a、b、c、d为负数时,a|a|,b |b|,c|c|,d|d|的值为-1,又∵a|a|+b|b|+c|c|+d|d|=2,∴a、b、c、d中有3个正数,1个负数,∴abcd为负数,∴|abcd|abcd=-1.故答案为:-1.【点睛】本题主要考查了绝对值的意义和有理数的乘法,根据题意得出a、b、c、d中有3个正数,1个负数,是解题的关键.16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示―1的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字的点与数轴上表示2023的点重合.【答案】0【分析】圆周上的0点与―1重合,滚动到2023,圆滚动了2024个单位长度,用2024除以4,余数即为重合点.【详解】解:圆周上的0点与―1重合,2023+1=2024,2024÷4=506,圆滚动了506 周到2023,圆周上的0与数轴上的2023重合,故答案为:0.【点睛】本题考查了数轴,找出圆运动的规律与数轴上的数字的对应关系是解决此类题目的关键.三、解答题17.计算.(1)(―59)―(―46)+(―34)―(+73)(2)(―334)―(―212)+(―416)―(―523)―1【答案】(1)―120(2)―34【分析】本题考查了有理数的混合运算.(1)去括号,再计算加减即可.(2)去括号,通分,再计算加法即可.【详解】(1)(―59)―(―46)+(―34)―(+73)=―59+46―34―73=―120(2)(―334)―(―212)+(―416)―(―523)―1=―334―2―416―5―1=―54+32―1=―3418.计算:(1)4×―12―34+2.5―|―6|;(2)―14―(1―0.5)×13―2―(―3)2.【答案】(1)―1;(2)356.【分析】(1)利用乘法分配律、绝对值的性质分别运算,再合并即可;(2)按照有理数的混合运算的顺序进行计算即可求解;本题考查了有理数的混合运算,掌握有理数的运算法则和运算律是解题的关键.【详解】(1)解:原式=4×――4×34+4×2.5―6=―2―3+10―6,=―1;(2)解:原式=―1―12×13―(2―9)=―1―16+7,=6―16,=356.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是―3.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,―4,512,―212,|―1.5|,―(+1.6).【答案】(1)见解析,4(2)2或6(3)数轴表示见解析,―4<―212<―(+1.6)<|―1.5|<2.5<512【分析】本题主要考查了在数轴上表示有理数以及有理数的比较大小:(1)根据点A 表示―3即可得原点位置,进一步得到点B 所表示的数;(2)分两种情况讨论即可求解;(3)首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的有理数,右边的数总比左边的数大用“<”号把这些数连接起来即可.【详解】(1)如图,O 为原点,点B 所表示的数是4,故答案为:4;(2)点C 表示的数为4―2=2或4+2=6.故答案为:2或6;(3)|―1.5|=1.5,―(+1.6)=―1.6,在数轴上表示,如图所示:由数轴可知:―4<―212<―(+1.6)<|―1.5|<2.5<51220.(1)已知|a |=5,|b |=3,且|a ―b |=b ―a ,求a ―b 的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: x ―(a +b +cd )+a+b cd 的值.【答案】(1)―8或―2;(2)1或―3【分析】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解答本题的关键.(1)根据|a |=5,|b |=3,且|a ―b |=b ―a ,可以得到a 、b 的值,然后代入所求式子计算即可;(2)根据a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,可以得到a +b =0,cd =1,x =±2,然后代入所求式子计算即可.【详解】解:(1)∵|a |=5,|b |=3,∴a =±5,b =±3,∵|a ―b |=b ―a ,∴b ≥a ,∴a =―5,b =±3,当a =―5,b =3时,a ―b =―5―3=―8,当a =―5,b =―3时,a ―b =―5―(―3)=―5+3=―2,由上可得,a +b 的值是―8或―2;(2)∵a 与b 互为相反数,c 与d 互为倒数,x 的绝对值等于2,∴a +b =0,cd =1,x =±2,∴当x =2时,x ―(a +b +cd )+a +b cd=2―(0+1)+0=2―1=1;当x =―2时,x―(a+b+cd)+a+b cd=―2―(0+1)+0=―2―1=―3.综上所述,代数式的值为1或―3.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减+5―2―4+13―6+6―3(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?【答案】(1)四(2)19(3)14225【分析】(1)根据表格中的数据求解即可;(2)最高一天的产量减去最少一天的产量求解即可;(3)根据题意列出算式求解即可.【详解】(1)由表格可得,星期四生产的风筝数量是最多的,故答案为:四.(2)13―(―6)=19,∴产量最多的一天比产量最少的一天多生产19只风筝;(3)700+5―2―4+13―6+6―3=709(只)709×20+9×5=14225(元).∴该厂工人这一周的工资总额是14225元【点睛】本题考查了正数和负数,有理数的加减和乘法运算的实际应用.解决本题的关键是理解题意正确列式.22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.【答案】(1)4;3;(2)|x+1|,1或﹣3;(3)﹣1,0,1,2;(4)x=2时,y最小,最小值为4【分析】(1)根据两点间的距离的求解列式计算即可得解;(2)根据两点之间的距离表示列式并计算即可;(3)根据数轴上两点间的距离的意义解答;(4)根据数轴上两点间的距离的意义解答.【详解】解:(1)数轴上表示1和﹣3的两点之间的距离是:|1―(―3)|=1+3=4;数轴上表示﹣2和﹣5的两点之间的距离是:|―2―(―5)|=5―2=3;(2)∵A,B分别表示的数为x,﹣1,∴数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,则|x+1|=2,解得:x=1或﹣3;(3)当|x+1|+|x﹣2|取最小值时,﹣1≤x≤2,∴符合条件的整数x有﹣1,0,1,2;(4)当|x+1|+|x﹣2|+|x﹣3|取最小值时,x=2,∴当x=2时,y最小,即最小值为:|2+1|+|2﹣2|+|2﹣3|=4.故x=2时,y最小,最小值为4.【点睛】本题考查数轴与绝对值,熟练掌握数轴上两点之间距离的计算方法是解题的关键.23.观察下列三列数:―1、+3、―5、+7、―9、+11、……①―3、+1、―7、+5、―11、+9、……②+3、―9、+15、―21、+27、―33、……③(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;(3)若在每行取第k个数,这三个数的和正好为―101,求k的值.【答案】(1)+19;―21(2)存在,这三个数分别为85,―91,89(3)k=―49【分析】本题主要考查了数字规律,一元一次方程的应用,做题的关键是找出数字规律.(1)第①和②行规律进行解答即可;(2)设三个连续整数为(―1)n﹣1(2n―3)―2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,根据题意列出方程,即可出答案;(3)设k为奇数和偶数两种情况,分别列出方程进行解答.【详解】(1)解:根据规律可得,第①行第10个数是2×10―1=19;第②行第10个数是―(2×10+1)=―21;故答案为:+19;―21;(2)解:存在.理由如下:由(1)可知,第②行数的第n个数是(―1)n(2n―1)―2,设三个连续整数为(―1)n﹣1(2n――2,(―1)n(2n―1)―2,(―1)n+1(2n+1)―2,当n为奇数时,则2n―3―2―2n+1―2+2n+1―2=83,化简得2n―7=83,解得n=45,这三个数分别为85,―91,89;当n为偶数时,则―(2n―3)―2+(2n―1)―2―(2n+1)―2=83,化简得―2n―5=83,解得n=―44(不符合题意舍去),这三个数分别为85,―91,89;综上,存在三个连续数,其和为83,这三个数分别为85,―91,89;(3)解:当k为奇数时,根据题意得,―(2k ―1)―(2k +1)+3×(2k ―1)=―101,解得:k =―49,当k 为偶数时,根据题意得,(2k +1)+(2k ―3)―3(2k ―1)=―101,解得,k =51(舍去),综上,k =―49.24.如图,数轴上有A ,B ,C 三个点,分别表示数―20,―8,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),PQ =2,MN =4,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当t =20时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ =PM 时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.【答案】(1)8,―8(2)―2.8或2(3)5.5或8.5或18.25或19.75【分析】本题考查一元一次方程的应用,解题的关键是读懂题意,能用含t 的代数式表示点运动后所表示的数.(1)当t =20时,根据起点位置以及运动方向和运动速度,即可得点M 表示的数为8、点Q 表示的数为―8;(2)当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,36―3t =|―10+2t|,此时―12+t =―12+465=―145,当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,3t ―36=|62―4t |,(3)当PQ 从A 向C 运动时,―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,当PQ 从C 向A 运动时,132+―――=1.5或172――――=1.5,解方程即可得到答案.【详解】(1)解:依题意,∵―8―4+20×1=8,∴当t =20时,点M 表示的数为8;∵16―{20×3―[16―(―20)]}=―8,∴当t =20时,点Q 表示的数为―8;故答案为:8,―8;(2)解:当t ≤12时,Q 表示的数是―20+3t ,P 表示的数是―22+3t ,M 表示的数是―12+t ,∴CQ =16―(―20+3t )=36―3t ,PM =|―22+3t ―(―12+t )|=|―10+2t |,∴36―3t =|―10+2t |,解得t =465或t =26(舍去),此时―12+t =―12+465=―145当12<t ≤24时,Q 表示的数是16―3(t ―12)=52―3t ,P 表示的数是50―3t ,M 表示的数是―12+t ,∴CQ =16―(52―3t )=3t ―36,PM =|50―3t ―(―12+t )|=|62―4t |,∴3t ―36=|62―4t |,解得t =14或t =26(舍去),此时―12+t =―12+14=2,∴当CQ =PM 时,点M 表示的数是―145或2;(3)解:当PQ 从A 向C 运动时,t =4时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为―8+32(t ―4),P 表数为―10+32(t ―4),M 表示的数为―8+12(t ―4),N 表示的数是―4+12(t ―4),若线段PQ 和MN 重合部分长度为1.5则―8+32(t ―4)――8+12(t ―4)=1.5或―4+12(t ―4)―[―10+32(t ―4)]=1.5,解得t =5.5或t =8.5,由―10+32(t ―4)=―4+12(t ―4)得t =10,∴当t =10时,PQ 与MN 的重合部分消失,恢复原来的速度,此时Q 表示的数是1,再过(16―1)÷3=5(秒),Q 到达C ,此时t =15,则M 所在点表示的数是―12+4+10―42+5=0,N 所在点表示的数4,当PQ 从C 向A 运动时,t =352时,PQ 与MN 开始有重合部分,有重合部分时,Q 表示的数为172――P 表示的数为132―M 表示的数为52N 表示的数是132―若线段PQ 和MN 重合部分长度为1.5,132+―――=1.5或172―――=1.5,解得t =18.25或t =19.75,∴重合部分长度为1.5时所对应的t 的值是5.5或8.5或18.25或19.75.。
七年级数学试卷(第一章)(时间100分钟,满分120分)一.选择题(本大题有10个小题,每小题3分,共30分)1.下列说法错误的是( )A. 一个正数的前面加上负号“—”就是负数B. 不是正数的数一定是负数C. 0既不是正数也不是负数D. 正负数可以用来表示具有相反意义的量2.一个点从数轴上原点出发,向左移动2个单位,再向左移动4个单位,到达终点时所表示的数是( )A.2B.2-C.6D.6-3.下列计算正确的是( )A.431-=+-B.4)2(2=-C.5)5()1(-=-⨯-D.151)5(1-=⨯-÷ 4.a 是小于1的正数,把a a a a 1,,1,--用“>”连接起来,结果是( ) A.a a aa ->->>11B.a a a a 11>->>-C.a a a a 11->->>D.aa a a 11->->> 5.下列说法正确的有( )①绝对值等于本身的有理数只有零 ②相反数等于本身的有理数只有零③倒数等于本身的有理数只有1 ④平方等于本身的有理数只有零A.1个B.2个C.3个D.4个6.已知,3,2==b a 且在数轴上表示有理数b 的点在原点的左边,b a -的值为( )A.1-B.1C.5D.1-或57.下列近似数中,有四个有效数字的数是( )A.0320.0B.0032.0-C.3200.0-D.0302.0-8.算式⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-31313131可表示为( )431.⎪⎭⎫ ⎝⎛-A ⎪⎭⎫ ⎝⎛-⨯314.B 431.⎪⎭⎫ ⎝⎛-C D.以上说法都不正确 9.若两位数应该是,则b a b a ab 0,0<+<( )A.b a ,两数同正B.b a ,异号且负数的绝对值教大C.b a ,两数同负D.b a ,异号且正数的绝对值教大10.下列判断错误的是( )A.32+a 的值总是正数 B.3)2(2++a 的最小值是3 C.a b b a -=- D.41a -的值总比1小二.填空题(本大题有10个小题,每小题3分,共30分)11.小于3的非负整数为______________________. 12.5-的相反数是________,211-倒数是__________,)6(+-的绝对值是________. 13.潜水艇原来停在海平面下500米处,记为500-米,若潜水艇先上浮250米,再下潜230米,潜水艇现在的位置记为_________.14.比15-小7的数是______.15.若________,012=+=-+-y x y x 则16.数轴上与表示2-的点的距离等于4的点所表示的数为__________.17,乘积是_____的两个数互为倒数;数____没有倒数;倒数等于本身的数是_______. 18.521⎪⎭⎫ ⎝⎛-读作_________________________,5)21(--读作___________________________ 19.近似数51030.5⨯精确到________位,有效数字是_____________.20.计算:()()()_______100994321=+-+⋅⋅⋅++-++-三.解答题(本答题有8个小题,共60分)21.()分55⨯ ()()()()()5.745.39.195.1245.3)1(-+++++-+- (2)()⎪⎭⎫ ⎝⎛-⨯---21113(3)1265105⨯⎪⎭⎫ ⎝⎛- (4)⎪⎭⎫⎝⎛+-⨯52322130()()139343312132)5(2222⨯⎥⎥⎦⎤⎢⎢⎣⎡-÷⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+-22.(5分)将下列各数按要求填入相应的集合内:.2007,2008,1013%,10,72,67,1,25.2,413,100,0,317,5,6.100---+--+--- 正整数:{ };负整数:{ };正分数:{ };负分数:{ };非负有理数:{ }.23.(6分)已知y x 与互为相反数,n m 与互为倒数1=a ,求()()()的值200420032mn y x a mn y x a -+++++-.24.(4分)已知:有理数b a ,满足()0122=-+-b a ,求的值b a 73-.25.(5分)已知,x 是绝对值最小的有理数,y 是最大的负整数,求式子的值322333y xy y x x +++.26.(7分)有10筐苹果,以30千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:,1,2,6,4,5,3,0,1,4,5++-+--+-+试问称重的总重与标准重相比超过或不足多少千克?10筐苹果实际共多少千克?27.(4分)已知,3317333231321⨯=+++⋅⋅⋅+++计算的值993396329331124936231-+-+-+⋅⋅⋅+-+-+-+-。
第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。
A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。
A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。
①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。
2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________第Ⅰ卷(共10题;每题2分,共20分)1.(2分)(2022七上·汇川期末)已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣13102.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2-B .3-C .0D .1-3.(2分)(2021七上·丽水期末)|-4|的相反数是( ) A .4B .14C .-4D .14-4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0bd< 5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( ) A .7.5×103B .75×103C .7.5×104D .7.5×1056.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a cbcd a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.57.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次8.(2分)(2021七上·平阳期中)将1,2,3,4...,60这60个自然数,任意分成30组,每组两个数,将每组的两个数中的任意一个数记做a ,另一个数记做b ,代入代数式(|a-b|+a+b)中进行计算,求出结果,30组分别代入后可求出30个结果,则这30个值的和的最大值是( ) A .1365B .1565C .1735D .18309.(2分)(2021七上·江津期中)a ,b ,c 大小关系如图,下列各式①0a b c --<②1b ca ab c++=③0ac b ->④a c a b c b --+=+ ,其中错误的个数为( ).A .1个B .2个C .3个D .4个10.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数 B .任意一个正数 C .任意一个负数D .任意一个非负数(共10题;每题2分,共20分)11.(2分)(2021七上·紫金期末)若|a ﹣2020|+|b +2021|=0,则|a +b|= .12.(2分)(2021七上·宜宾期末)有理数a ,b 在数轴上的位置如图所示,化简 a b b a +-- 的结果是 .13.(2分)(2021七上·衡阳期末)比较两数大小: - 67 - 76(用“<”,或“>”,或“=”填空)14.(2分)(2021七上·普陀期末)设a ,b ,c 为不为零的实数,且 0abc > ,那么b a cx a b c=++ ,则x 的值为 . 15.(2分)(2021七上·余姚期末)计算: 34ππ-+-= .16.(2分)(2021七上·云梦期末)一只昆虫从点A 处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A 点相距 米.17.(2分)(2021七上·青岛期中)若 0x y z ++= ,且x ,y ,z 均不为零,则 y x zx y z++ 的值为 .18.(2分)(2021七上·苏州期中)如图1,在一条可以折叠的数轴上有点A ,B ,C ,其中点A ,点B 表示的数分别为﹣16和9,现以点C 为折点,将数轴向右对折,点A 对应的点A 1落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点A 1对应的点A 2落在B 的左边.若A 2、B 之间的距离为3,则点C 表示的数为 .19.(2分)(2021七上·黔西南期中)若a ,b ,c 为整数,且|a -b|+|c -a|=1,则|c -a|+|a -b|+|b -c|的值为20.(2分)(2020七上·龙山期末)我们知道: 52- 表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离; 52+ 也可以看成 5(2)-- ,表示5与 2- 之差的绝对值,也可理解为数轴上表示5与 2- 两数在数轴上所对应的两点之间的距离事实上,数轴上表示有理数 ,a b 的点 ,A B 的距离均可以用 a b - 来计算.根据以上材料,则使 347x x ++-= 的所有整数x 的和是 .第Ⅱ卷 主观题(共8题;共61分)21.(9分)(2022七上·句容期末)计算: (1)(3分)10(5)(9)--+-(2)(3分)1251631248⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(3)(3分)20211113269⎛⎫--÷-⨯+- ⎪⎝⎭22.(4分)(2021七上·孝义期中)把以下各数填入表示它所在的数集的集合里:2, 0.3⋅- ,0.1,32-,-100,0, 13- .-,23.(10分)(2021七上·韶关期末)如图,点A,B是数轴上两点,点A表示的数为16AB=.动点P,Q分别从A,B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 20t t>秒.以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为()0(1)(1分)数轴上点B表示的数是.(2)(3分)求数轴上点P,Q表示的数(用含t的式子表示).(3)(3分)若点P和Q同时出发,t为何值时,这两点相遇?(4)(3分)若点Q比点P迟2秒钟出发,则点Q出发几秒时,点P和点Q刚好相距5个单位长度?24.(9分)(2021七上·黄埔期末)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)(1分)a= ,b= ,并在数轴上面标出A、B两点;(2)(3分)若PA=2PB,求x的值;(3)(4分)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA 的值是否随着时间t的变化而改变?若变化,请说明理由若不变,请求其值.25.(6分)如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)(1分)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)(5分)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;26.(7分)(2021七上·海珠期末)某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)(3分)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)(4分)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?27.(7分)(2020七上·仁寿期末)2020年12月8日,中尼两国共同宣布珠穆朗玛峰的最新测定高度为8848.86米.今有某登山队5名队员在一次登山活动中,以二号高地为基地,开始向海拔距二号高地500米的顶峰冲刺,设他们向上走为正,行程单位:记录如下:180+,33-,75+,25-,40+,55+,42-,150+.(1)(3分)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)(4分)登山时,5名队员在登山全程中都使用了氧气瓶,且每人向下行走每米要消耗氧气m 升,向上行走每米还要多消耗0.01升,求他们共消耗了氧气多少升?(用含m 的代数式表示)28.(9分)(2022七上·句容期末)某快递公司规定每件体积不超标的普通小件物品的收费标准如表:例如:寄往省内一件1.6千克的物品,运费总额为: 85(0.50.5)13+⨯+= 元. 寄往省外一件2.3千克的物品,运费总额为: 126(10.5)21+⨯+= 元. (下面问题涉及的寄件按上表收费标准计费)(1)(4分)小明同时寄往省内一件3千克的物品和省外一件2.8千克的物品,各需付运费多少元? (2)(1分)小明寄往省内一件重 ()m n + 千克,其中m 是大于1的正整数,n 为大于0且不超过0.5的小数(即 00.5n <≤ ),则用含字母m 的代数式表示小明这次寄件的运费为 ; (3)(4分)小明一次向省外寄了一件物品,用了36元,你能知道小明这次寄件物品的重量范围吗?2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分(共10题;每题2分,共20分)8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣1310【答案】A【完整解答】根据题意得:(8x ﹣7)+(6﹣2x )=0, 解得:x=16. 故答案为:A.【思路引导】根据互为相反数的两个数的和为0,据此解答即可.2.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2- B .3-C .0D .1-【答案】A【完整解答】解:设点A 表示的数是x. 依题意,有640x +-=, 解得2x =-, 即点A 表示的数是2-. 故答案为:A.【思路引导】 设点A 表示的数是x ,根据向右移动用加法,向左移动用减法,列方程求解即可.3.(2分)(2021七上·丽水期末)|-4|的相反数是( )A .4B .14C .-4D .14- 【答案】C 【完整解答】解:|-4|=4∴|-4|的相反数为-4.故答案为:C.【思路引导】利用负数的绝对值等于它的相反数,再求出|-4|的相反数.4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d < 【答案】C【完整解答】解:由数轴上点的位置可知: 0a b c d <<<< ,因为 0a c << 且 a c > ,所以 0a c +< ,故 A 正确,不符合题意;因为 0a b << ,所以 0b a -> ,故 B 正确,不符合题意;因为 0a < , 0c > ,所以 0ac < ,故 C 错误,符合题意,因为 0b < , 0d > ,所以0b d < ,故 D 正确,不符合题意. 故答案为:C.【思路引导】根据数轴可得a<b<0<c<d ,且|a|>|c|,据此判断A 、B ;根据有理数的乘法法则可判断C ;根据有理数的除法法则可判断D.5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )A .7.5×103B .75×103C .7.5×104D .7.5×105 【答案】C【完整解答】解:将数据75000用科学记数法表示为7.5×104.故答案为:C.【思路引导】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.6.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为 m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a c b c d a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.5【答案】C 【完整解答】解:①如图,当 D 在 A 点的右侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当 D 在 A 点的左侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段 BD 的长度为6.5或1.5故答案为:C【思路引导】分两种情况:①如图,当 D 在 A 点的右侧时,②如图,当 D 在 A 点的左侧时,据此分别解答即可.7.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次【答案】B【完整解答】解:根据题意可得:第一次相遇所需时间为:2424934+÷+=()()(秒) 从第2此相遇起,相遇路程变成了正方形的周长,也就是24×4=96(厘米)因此,之后每次相遇所需时间为:96938÷+=()(秒)2022-4=2018(秒)20188252......2÷=所以,在第一次相遇后还有252此相遇因此,总共相遇了252+1=253(次)故答案为:B.【思路引导】根据相遇问题的公式求出第一次和第二次之后的相遇时间,再根据周期规律,求解出相遇次数。
七年级数学上册第一章测试题(含答案)满分120分,考试时间120分钟一、选择题。
(每小题3分,共30分)1.下列四个数中最大的数是( )A .0B .-2C .-4D. -62.若实数a 与-3互为相反数,则a 的值为( )A. 31B. 0.3C. -3D. 3 3.﹣的倒数是( )A .2B .C .﹣2D .﹣4. 下列各组数中,相等的是( ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169 D.2)4(-与–165.一个数和它的倒数相等,则这个数是( ).A .1B .1-C .±1D .±1和0 6.下面说法正确的有( ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A .0个B .1个C .2个D .3个7.大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( )A. 1.6×105B. 1.6×106C. 1.6×107D. 1.6×1088.-52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 5⨯5的相反数9.设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110.如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a二、填空题:(每小题3分,共24分)11.如果上升3米记作+3米,那么下降4米记作_____________.A12.比较大小:﹣ ﹣.13.计算:1-2+3- 4 +…+2017-2018+2019=__________.14.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈ .15.的相反数是 .16.已知3x -8与2互为相反数,则x = _.17.化简:ππ-+-34= .18. 已知()0422=-++y x ,求y x 的值为 .三、解答题:(本大题共66分)19.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣)3(3)(4)20.(6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.21.(6分)把下列各数填入相应集合的括号内:﹣7.5,﹣2,0.35,0,3.14,17,﹣6,0.4,﹣5,π,23%. 正有理数集合:{ …}; 负分数集合:{ …}; 有理数集合:{ …}.22.(6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):32--23.(6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.24.(7分)如图,A、B、C三点在数轴上对应的数分别为a、b、c.(1)若-a=5,|b|=5,1110c=,求a、b、c的值;(2)化简:a|b|c|a|b|c|++;25.(9分)如图所示,在数轴上有三个点A,B,C.(1)将B点向左移动4个单位,此时该点表示的数是多少?(2)将C点向左移动6个单位得到数x1,再向右移2个单位得到数x2,那么x1,x2分别是多少?请用“>”把B ,x 1,x 2表示的数连接起来.(3)怎样移动A ,B ,C 中的两点,才能使3个点表示的数相同?有几种方法?26.(6分)设[]x 为不超过x 的最大整数,如[][]35.2,28.2-=-=. (1)填空: []=2.9__________,[]=-14.3__________; (2)计算:[][][]25.76.47.3⨯---+.27.(8分);;(1)请在理解上面计算方法的基础上,把下面两个数表示成两个分数的和的形式(分别写出表示的过程和结果) = = ,= = .(2)利用以上所得的规律进行计算:答案一、选择题:(每小题3分,共30分)1.下列四个数中最大的数是( A )A .0B .-2C .-4D. -62.若实数a 与-3互为相反数,则a 的值为( D ) 7A. 31B. 0.3C. -3D. 33.﹣的倒数是( C )A .2B .C .﹣2D .﹣4. 下列各组数中,相等的是( B ).A.–1与(–4)+(–3)B.3-与–(–3)C.432与169 D.2)4(-与–16 5.一个数和它的倒数相等,则这个数是( C ).A .1B .1-C .±1D .±1和0 6.下面说法正确的有( A ).① π的相反数是-3.14;②符号相反的数互为相反数;③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A .0个B .1个C .2个D .3个7.大树的价值很多,可以吸收有毒气体,防止大气污染,增加土壤肥力,涵养水源,为鸟类及其他动物提供繁衍场所等价值,累计计算,一棵50年树龄的大树总计创造价值超过160万元,其中160万元用科学记数法表示为( B )A. 1.6×105B. 1.6×106C. 1.6×107D. 1.6×1088.-52表示( D )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 5⨯5的相反数9.设n 是自然数, 则n n 1(1)(1)2+-+-的值为( A )A. 0B. 1C. -1D. 1或-110.如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( C )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a二、填空题:(每小题3分,共24分)11.如果上升3米记作+3米,那么下降4米记作_____-4米________. 12.﹣<﹣.13. 计算:1-2+3-4 +…+2017-2018+2019=___1010_______. 14.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈ 3.142 .的相反数是 32.15.16.已知3x -8与2互为相反数,则x = 2 _. 17.化简:ππ-+-34= 1 .18. 已知()0422=-++y x ,求y x 的值为 16 ..A32--三.解答题:(本大题共66分)19.(12分)计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣)3(3)(4)解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.20.(6分)已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:2)20162017++x-+-.++a)()(b(cdcdab解:∵a,b互为相反数,c、d互为倒数,x的绝对值为5∴a+b=0, cd=1,x=±5∴x2-(a+b+cd)+(a+b) 2016+(-cd) 2017=(±5)2-(0+1)+0 2016+(-1) 2017=25-1+0+(-1)=2321.(6分)解:正有理数集合:{0.35,3.14,17,0.4,23%};负分数集合:{﹣7.5,﹣2};有理数集合:{﹣7.5,﹣2,0.35,0,3.14,17,﹣6,0.4,﹣5,23%};22.(6分)某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):解:(1)7-(-10)=17(辆);(2)100×7+(-1+3-2+4+7-5-10)=696(辆)23.(6分)已知│a │=2,│b │=5,且ab<0,求a +b 的值.解:∵|a|=2,|b|=5∴a=±2,b=±5 ∵ab<0∴a=2,b=-5或a=-2,b=5.∴a +b =2+(-5) =-3或a +b =(-2)+5=3.24.(7分)如图,A 、B 、C 三点在数轴上对应的数分别为a 、b 、c .(1)若-a =5,|b |=5,1110c=,求a 、b 、c 的值; (2)化简:a |b|c |a |b |c |++;(3)在(1)的条件下,点B 、C 同时出发向点A 运动,结果同时到达, 求点B 、C 的运动速度有何关系? 解:(1)a =-5,b =5,c =10;(2)原式=1;25. (9分)如图所示,在数轴上有三个点A ,B ,C .(1)将B 点向左移动4个单位,此时该点表示的数是多少?(2)将C 点向左移动6个单位得到数x 1,再向右移2个单位得到数x 2,那么x 1,x 2分别是多少?请用“>”把B ,x 1,x 2表示的数连接起来.(3)怎样移动A ,B ,C 中的两点,才能使3个点表示的数相同?有几种方法?解:(1)﹣1﹣4=﹣5,此时该点表示的数是﹣5; (2)C 点表示的数是4,向左移动6个单位得到数x 1=4﹣6=﹣2; 再向右移2个单位得到数x 2=﹣2+2=0; ∵0>﹣1>﹣2 ∴x 2>B >x 1;(3)①A 向右移动7个单位,B 向右移动5个单位,能使3个点表示的数相同; ②A 向右移动2个单位,C 向左移动5个单位,能使3个点表示的数相同; ③B 向左移动2个单位,C 向左移动7个单位,能使3个点表示的数相同; 有3种移动方法.26.(6分)设[]x 为不超过x 的最大整数,如;[][]35.2,28.2-=-=.(1)填空:[]=2.9__________,[]=-14.3__________;(2)计算:[][][]25.76.47.3⨯---+. 解:(1)9 , 4- ;……………………………………………2分 (2)[][][]25.76.47.3⨯---+()()()1621622853+-=---=⨯---+=14=.27.(8分);;(1)请在理解上面计算方法的基础上,把下面两个数表示成两个分数的和的形式(分别写出表示的过程和结果) = = ,= = .(2)利用以上所得的规律进行计算:解:(1)=+=;=+=;故答案为:+,;+,; (2)=1+﹣(+)+(+)﹣(+)+(+)﹣(+)+(+)﹣(+) =1﹣=.。
七年级数学试卷(第一章)(时间100分钟,满分120分)
一.选择题(本大题有10个小题,每小题3分,共30分)
1.下列说法错误的是( )
A. 一个正数的前面加上负号“—”就是负数
B. 不是正数的数一定是负数
C. 0既不是正数也不是负数
D. 正负数可以用来表示具有相反意义的量
2.一个点从数轴上原点出发,向左移动2个单位,再向左移动4个单位,到达终点时所表示的数是( )
A.2
B.2-
C.6
D.6-
3.下列计算正确的是( )
A.431-=+-
B.4)2(2=-
C.5)5()1(-=-⨯-
D.15
1)5(1-=⨯
-÷ 4.a 是小于1的正数,把a a a a 1,,1,--用“>”连接起来,结果是( ) A.a a a
a ->->>11
B.a a a a 11>->>-
C.a a a a 11->->>
D.a
a a a 11->->> 5.下列说法正确的有( )
①绝对值等于本身的有理数只有零 ②相反数等于本身的有理数只有零
③倒数等于本身的有理数只有1 ④平方等于本身的有理数只有零
A.1个
B.2个
C.3个
D.4个
6.已知,3,2==b a 且在数轴上表示有理数b 的点在原点的左边,b a -的值为( )
A.1-
B.1
C.5
D.1-或5
7.下列近似数中,有四个有效数字的数是( )
A.0320.0
B.0032.0-
C.3200.0-
D.0302.0-
8.算式⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-31313131可表示为( )
431.⎪⎭
⎫ ⎝⎛-A ⎪⎭⎫ ⎝⎛-⨯314.B 431.⎪⎭⎫ ⎝⎛-C D.以上说法都不正确 9.若两位数应该是,则b a b a ab 0,0<+<( )
A.b a ,两数同正
B.b a ,异号且负数的绝对值教大
C.b a ,两数同负
D.b a ,异号且正数的绝对值教大
10.下列判断错误的是( )
A.32
+a 的值总是正数 B.3)2(2++a 的最小值是3 C.a b b a -=- D.4
1a -的值总比1小
二.填空题(本大题有10个小题,每小题3分,共30分)
11.小于3的非负整数为______________________.
12.5-的相反数是________,2
11-倒数是__________,)6(+-的绝对值是________. 13.潜水艇原来停在海平面下500米处,记为500-米,若潜水艇先上浮250米,再下潜230米,潜水艇现在的位置记为_________.
14.比15-小7的数是______.
15.若________,012=+=-+-y x y x 则
16.数轴上与表示2-的点的距离等于4的点所表示的数为__________.
17,乘积是_____的两个数互为倒数;数____没有倒数;倒数等于本身的数是_______. 18.5
21⎪⎭
⎫ ⎝⎛-读作_________________________,5)21(--读作___________________________ 19.近似数51030.5⨯精确到________位,有效数字是_____________.
20.计算:()()()_______100994321=+-+⋅⋅⋅++-++-
三.解答题(本答题有8个小题,共60分)
21.()分55⨯ ()()()()()5.745.39.195.1245.3)1(-+++++-+- (2)()⎪⎭
⎫ ⎝⎛-⨯---21113
(3)1265105⨯⎪⎭⎫ ⎝⎛- (4)⎪⎭⎫
⎝⎛+-⨯52322130
()()13
9343312132)5(2222⨯⎥⎥⎦⎤⎢⎢⎣⎡-÷⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+-
22.(5分)将下列各数按要求填入相应的集合内:
.2007,2008,101
3%,10,72,67,1,25.2,413,100,0,317,5,6.100---+--+---
正整数:{ };
负整数:{ };
正分数:{ };
负分数:{ };
非负有理数:{ }.
23.(6分)已知y x 与互为相反数,n m 与互为倒数1=a ,
求()()
()的值200420032mn y x a mn y x a -+++++-.
24.(4分)已知:有理数b a ,满足()0122=-+-b a ,求的值b a 73-.
25.(5分)已知,x 是绝对值最小的有理数,y 是最大的负整数,
求式子的值322333y xy y x x +++.
26.(7分)有10筐苹果,以30千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:,1,2,6,4,5,3,0,1,4,5++-+--+-+试问称重的总重与标准重相比超过或不足多少千克?10筐苹果实际共多少千克?
27.(4分)已知,3317333231321⨯=+++⋅⋅⋅+++
计算的值99
3396329331124936231-+-+-+⋅⋅⋅+-+-+-+-。
28.(4分)数轴上点A 对应的数为1-,一只小虫从点A 出发沿着数轴向右以每秒5个单位的速度爬行至B 点后,原路返回A 点,共用了9秒钟,则小虫爬行了多少个单位长度?B 点对应的数是多少?。