现代电子线路02半导体性质
- 格式:ppt
- 大小:2.30 MB
- 文档页数:10
半导体超导体半导体和超导体是现代电子学和物理学中非常重要的两个概念。
它们分别代表了电子材料中的两种不同的电子行为,即半导体中的电子是部分导体、部分绝缘体,而超导体中的电子则可以在零电阻下流动。
本文将从半导体和超导体的基本概念、性质、应用以及未来发展等方面进行探讨。
一、半导体半导体是介于导体和绝缘体之间的一类电子材料,其电导率介于导体和绝缘体之间。
半导体中的电子主要是由价带和导带组成的,其中价带是指最高的占据态能级,导带是指最低的未占据态能级。
在半导体中,电子的能量不足以跨越带隙,因此不能自由地流动,但是当半导体受到外部激励(如温度、光照、电场等)时,电子就会跃迁到导带中,从而形成了电流。
半导体的性质和应用非常广泛。
首先,半导体可以用于制作各种电子器件,如晶体管、光电二极管、太阳能电池等。
其次,半导体的导电性质可以通过掺杂来改变,即将一些杂质原子引入半导体中,从而改变电子的能带结构。
这种过程被称为掺杂,掺杂后的半导体被称为杂质半导体,其导电性质可以被有效地控制。
最后,半导体的热电性质也非常重要,即在温度差的作用下,半导体可以产生电势差,这种现象被称为热电效应。
热电材料广泛应用于温度测量、能量转换等领域。
二、超导体超导体是一类在低温下具有零电阻和完全反射磁场的电子材料。
超导体的电子行为是由库珀对(即由两个电子组成的复合粒子)的相互作用引起的。
当超导体的温度降低到临界温度以下时,库珀对开始形成,电子可以在不受阻碍地流动,形成零电阻。
此外,超导体还具有完全反射磁场的性质,即当磁场作用于超导体时,其内部电流可以产生反向磁场,从而抵消外部磁场的影响。
超导体的性质和应用也非常广泛。
首先,超导体可以用于制造高灵敏度的磁场传感器和磁共振成像设备等。
其次,超导体的零电阻性质可以用于制造高效率的电力输送线路和超导电动机等。
此外,超导体还可以用于制造高能物理实验设备、量子计算机等。
尽管超导体的应用领域非常广泛,但是由于其需要低温环境的限制,其实用性还存在一定的局限性。
半导体的特性
半导体是一种具有介于导体和绝缘体之间的电导性能的材料。
其特
性包括:
1. 导电性:半导体具有介于导体和绝缘体之间的导电性能。
在绝缘
体中,电子无法自由移动,而在导体中,电子可以自由移动。
半导体
的特点是在常温下,其导电性由掺杂与温度控制。
2. 能带结构:半导体的原子排列形成了能带结构,其中包含导带和
价带。
绝缘体的导带与价带之间的能隙非常大,而导体几乎没有能隙。
半导体的能隙介于导体和绝缘体之间,通常为1-3电子伏特。
3. 温度对导电性的影响:与导体不同,半导体的电导性能与温度密
切相关。
随着温度的升高,半导体的电导性能也会增加。
4. 掺杂:通过在半导体晶体中掺入少量的杂质,可以显著地改变其
导电性质。
杂质的掺杂可以分为N型和P型。
N型掺杂引入一个附加
的自由电子,而P型掺杂引入一个附加的空穴。
5. PN结:将N型和P型的半导体材料接触在一起形成PN结。
PN
结具有整流作用,即在正向偏置时,电流可以流动,而在反向偏置时,电流被阻塞。
6. 半导体器件:半导体的特性使其成为制造各种电子器件的理想材料,如二极管、晶体管、场效应管和集成电路等。
总的来说,半导体的特性使其成为现代电子技术的基础,广泛应用于计算机、通信、光电等领域。
习题145习 题2.1 求题图2.1电路的静态工作点I CQ 和V CEQ 的值。
已知晶体管的V BE =-0.7V ,50β=。
R B1R B2R G6.8k Ω22k Ω100k ΩR G115k Ω题图2.1题图2.2解:转换为戴维南等效电路如下图:+V CC R C其中221212.8,|| 5.2B B CC B B B B B R V V V R RRk R R =⨯=-==Ω+列输入回路KVL 方程:||(2.80.7)38(5.2501)B BE BQ B E V V VI A R R k μβ--===++⨯Ω, 1.8CQ BQ I I mA β==() 3.8CEQ CC CQ C E V V I R R V =++=-2.2 已知题图2.2电路中场效应管的夹断电压V P =-2V ,工艺参数21.25mA/V k =。
求静态工作点V GSQ 、I DQ 和V DSQ 的值。
解:耗尽型N 沟道MOSFET 管,采用混合偏置:21()3.13GSQ G DQ SDQ GSQ P GG DD G G V V I R Ik V V R V V VR R =-⨯=-=⨯=+,解得:12123.4, 1.93.67,0.67DQ DQ GSQ GSQ I mA I mA V mA V mA===-=- 作为耗尽型N 沟道MOSFET 管而言,要求2GSQ P V V ≥=-V 此时DQ ()I 24 1.911.27DSQ DD D S V R R mA k V =-+=-⨯Ω=V(4.7+2)2.3 放大电路及其静态图解如题图2.3所示。
试估算电路的静态工作点I CQ 和V CEQ 各为多少?集电极电阻R C 为多少?RL4128(V)(b)(a)题图2.3解:从输出特性曲线可知:V CC =12 V因此CC BEBQBV-V(120.7)12I=60R200200V VAk kμ-=≈=ΩΩ(必忽略V BE,否则输出曲线上无对应点)对应输出特性曲线:CQI=6m A(找出BI=60u A曲线,平行于横轴作平行线与纵轴交点)CEQ CC CQ CV=V-I R⨯,故C1R k=Ω,CEQ6V V=。
第三节半导体
半导体是当今电子行业最基础的材料之一,其作用和意义不容小觑。
在此我们将深入探讨半导体的相关知识。
一、什么是半导体?
半导体是指在室温下,其导电性介于导体和绝缘体之间的材料。
有
时也被称为半导体晶体。
二、半导体的种类
从其晶体结构来看,半导体可分为单晶硅、多晶硅、非晶硅、蓝宝石、碳化硅、氮化硅等。
三、半导体的应用
1、集成电路 - 由于半导体表现出了半导体-绝缘体-金属场效应,能
够强制控制流经半导体器件的电流强度和方向,因此可用于制作各种
逻辑、振荡器等集成电路。
2、光电器件 - 利用半导体光电特性制作出的器件,如太阳能电池、发光二极管、激光器等。
3、功率器件 - 利用半导体导电性能和电特性,制作出高变换效率、低损耗、高可靠性的功率电子元器件,如IGBT器件等。
4、传感器 - 利用半导体的光电、温度、湿度、压力等特性制作出的传感器器件。
四、半导体技术的发展趋势
1、晶体管微型化和集成化 - 在实际应用中,需要更高的速度、更小的面积和功耗,因此晶体管制作微型化和集成化是半导体技术的重要趋势。
2、功率器件的高效率和大功率 - 随着人们生活水平的提高,需要更高效、更可靠、更节能的电子设备,因此功率器件的高效率和大功率是半导体技术的趋势。
3、新型材料的开发 - 蓝宝石、碳化硅等新型材料在一定应用领域已得到广泛的应用,半导体技术发展也将趋于多样化。
总而言之,半导体技术因其广泛的应用领域和重要的作用被越来越广泛地关注着,也将成为电子行业长期的研究方向之一。
最新电子电路基础知识第一节电阻器电阻,英文名resistance,通常缩写为R,它是导体的一种基本性质,与导体的尺寸、材料、温度有关。
欧姆定律说,I=U/R,那么R=U/I,电阻的基本单位是欧姆,用希腊字母“Ω”表示,有这样的定义:导体上加上一伏特电压时,产生一安培电流所对应的阻值。
电阻的主要职能就是阻碍电流流过。
事实上,“电阻”说的是一种性质,而通常在电子产品中所指的电阻,是指电阻器这样一种元件。
师傅对徒弟说:“找一个100欧的电阻来!”,指的就是一个“电阻值”为100欧姆的电阻器,欧姆常简称为欧。
表示电阻阻值的常用单位还有千欧(k Ω),兆欧(MΩ)。
一、电阻器的种类电阻器的种类有很多,通常分为三大类:固定电阻,可变电阻,特种电阻。
在电子产品中,以固定电阻应用最多。
而固定电阻以其制造材料又可分为好多类,但常用、常见的有RT型碳膜电阻、RJ型金属膜电阻、RX型线绕电阻,还有近年来开始广泛应用的片状电阻。
型号命名很有规律,R代表电阻,T-碳膜,J-金属,X-线绕,是拼音的第一个字母。
在国产老式的电子产品中,常可以看到外表涂覆绿漆的电阻,那就是RT型的。
而红颜色的电阻,是RJ型的。
一般老式电子产品中,以绿色的电阻居多。
为什么呢?这涉及到产品成本的问题,因为金属膜电阻虽然精度高、温度特性好,但制造成本也高,而碳膜电阻特别价廉,而且能满足民用产品要求。
电阻器当然也有功率之分。
常见的是1/8瓦的“色环碳膜电阻”,它是电子产品和电子制作中用的最多的。
当然在一些微型产品中,会用到1/16瓦的电阻,它的个头小多了。
再者就是微型片状电阻,它是贴片元件家族的一员,以前多见于进口微型产品中,现在电子爱好者也可以买到了(做无线窃听器?)二、电阻器的标识这些直接标注的电阻,在新买来的时候,很容易识别规格。
可是在装配电子产品的时候,必须考虑到为以后检修的方便,把标注面朝向易于看到的地方。
所以在弯脚的时候,要特别注意。
在手工装配时,多这一道工序,不是什么大问题,但是自动生产线上的机器没有那么聪明。
半导体的基本特征半导体是一种具有特殊电性质的材料,其具备一些独特的特征。
本文将介绍半导体的基本特征,包括导电性、能带结构、载流子、禁带宽度以及掺杂等方面。
一、导电性半导体的导电性介于导体和绝缘体之间。
它的导电性来源于其晶格中的原子或离子。
在晶格中,半导体的原子或离子排列紧密,但并非十分紧密,因此其导电性比金属导体差。
半导体在常温下,其电子处于能带中,无法自由移动。
只有在施加外界电场或加热的情况下,电子才能克服能带间隙的能量差,从而跃迁到导带中,实现电导。
二、能带结构半导体的能带结构是其导电性的重要依据。
能带是指电子能量的分布区域,包括价带和导带。
价带是指电子处于低能态的能带,其电子难以自由移动;而导带是指电子处于高能态的能带,电子能够自由移动。
半导体的能带结构中,导带与价带之间存在一段能量间隙,称为禁带。
禁带宽度决定了半导体的导电特性,禁带宽度较小的半导体更易导电。
三、载流子在半导体中,载流子是指能够携带电荷的粒子,包括自由电子和空穴。
自由电子是指从价带跃迁到导带中的电子,它们带有负电荷,能够自由移动。
而空穴是指在价带中留下的缺电子的位置,它们带有正电荷,也能够自由移动。
半导体的导电性与载流子的数量和移动性息息相关。
四、禁带宽度禁带宽度是半导体的一个重要参数,它决定了半导体的导电性能。
禁带宽度越小,半导体的导电性越好。
当外界电场或加热作用下,电子能够克服禁带宽度的能量差,跃迁到导带中,形成自由电子。
因此,禁带宽度的大小直接影响了半导体的导电特性。
五、掺杂掺杂是指在半导体中加入少量的杂质元素,以改变其导电性能。
掺杂分为N型和P型两种。
N型半导体是指通过掺杂杂质元素,使半导体中的电子数目增加,导电性变强。
而P型半导体是指通过掺杂杂质元素,使半导体中的空穴数目增加,导电性变强。
通过N型和P型半导体的结合,可以形成PN结,进一步扩展了半导体材料的应用。
半导体的基本特征包括导电性、能带结构、载流子、禁带宽度以及掺杂等方面。
半导体材料特性
半导体材料是一类介于导体和绝缘体之间的材料,具有独特的电学、光学和热
学性质,因此在电子器件、光电器件、光学器件等领域具有广泛的应用。
本文将对半导体材料的特性进行介绍,以便更好地了解和应用这一类材料。
首先,半导体材料的电学特性是其最为重要的特点之一。
半导体材料具有一定
的导电性,但是其导电性能受温度、杂质等因素的影响较大。
当半导体材料处于室温下时,其导电性较差,但是当半导体材料受到光照、电场等外界条件的影响时,其导电性会发生变化,这一特性被广泛应用于光电器件、太阳能电池等领域。
其次,半导体材料的光学特性也是其独特之处。
半导体材料在光照下会产生光
致发光、光致发射等现象,这一特性被广泛应用于LED、激光器等光电器件中。
此外,半导体材料还具有光电效应,即在光照下产生电荷分离和电流产生,这一特性被应用于光电探测器、光电传感器等领域。
另外,半导体材料的热学特性也是需要重点关注的。
半导体材料的热导率较低,热扩散性能较好,这使得半导体器件在工作过程中能够有效地散热,保证器件的稳定性和可靠性。
此外,半导体材料的热电效应也被广泛应用,即在温度差异作用下产生电压和电流,这一特性被应用于温差发电、温度传感器等领域。
综上所述,半导体材料具有独特的电学、光学和热学特性,这些特性使得半导
体材料在电子器件、光电器件、光学器件等领域具有广泛的应用前景。
随着科技的不断发展,相信半导体材料的特性将会得到更加深入的研究和应用,为人类社会带来更多的便利和进步。
半导体材料基本特性在当今科技领域,半导体材料是一类关键的材料,在电子、光电子和通讯领域具有广泛应用。
半导体材料与金属和绝缘体都有着截然不同的特性。
下面将介绍半导体材料的一些基本特性。
导电性半导体材料的导电性介于金属和绝缘体之间。
在室温下,半导体的电导率比绝缘体高,但远远低于金属。
这是因为半导体材料具有能带结构,在绝缘体中,能带带隙很大,电子难以从价带跃迁到导带,因此导电性很差;而在金属中,能带带隙几乎为零,使得电子自由跃迁,导电性很好。
而在半导体中,能带带隙介于绝缘体和金属之间,当半导体受到外部激发(如光或热)时,电子可以跃迁到导带,形成电流,导致导电性增加。
光吸收和发射半导体材料还具有光吸收和发射的特性。
当光线照射在半导体表面时,光子能量被半导体吸收,激发半导体内的电子跃升至激发态,形成激子。
当激子重新组合时,释放出能量,发出辐射光。
这种光发射现象被广泛应用于半导体激光器、LED 等领域。
能带结构半导体的能带结构是其特有的性质之一。
能带结构包括导带和价带,两者之间的能隙是半导体的重要指标。
当传输能量较小的电子从价带跃迁到导带时,半导体呈现导电性,而当没有足够能量的光子作用时,电子则不能跃迁到导带,半导体呈现绝缘性。
温度特性半导体材料的电学性质与温度密切相关。
一般来说,在半导体中,随着温度升高,电阻率会降低,导电性将增强;而在一些特殊情况下,随温度升高,半导体的导电性也可能会降低。
这种温度特性是半导体器件稳定工作的重要因素之一。
杂质控制半导体材料的纯度对其性能有着重要影响。
在制备半导体材料时,必须严格控制杂质的含量,尤其是掺杂控制。
通过掺入不同种类的杂质元素,可以调节半导体的电学性质,如增加或减小导电性等。
因此,对杂质的控制是确保半导体器件稳定性和可靠性的关键要素。
综上所述,半导体材料具有独特的导电性、光吸收和发射特性、能带结构、温度特性和杂质控制等基本特性,这些特性使得半导体材料在现代电子、光电子和通讯领域发挥着重要作用。
什么是半导体
在当今科技高速发展的时代,半导体作为一种基础材料在电子产业中扮演着至关重要的角色。
那么,什么是半导体呢?半导体是一种介于导体与绝缘体之间的物质,在固体物质中拥有非常特殊的电学特性。
半导体的电学特性
半导体的电学特性在于其电导率介于导体和绝缘体之间。
与导体相比,半导体的电导率要小很多;而与绝缘体相比,半导体的电导率又要大很多。
这种特殊性使得半导体在电子元件中得以应用,广泛用于晶体管、集成电路等电子产品中。
半导体的性质
半导体物质通常是由硅、锗、砷化镓等元素构成的化合物,具有晶体结构。
半导体的电导率可以通过控制杂质浓度或外加电场等方法来调节,这种调节性使半导体成为各种电子元器件的核心材料。
半导体的应用
半导体在电子领域有着广泛的应用。
晶体管是半导体应用最早、也最广泛的领域之一,它作为电子信号放大器和开关在各种电子设备中起着重要作用。
此外,集成电路(IC)是将大量的晶体管和其他元件集成在一起形成的电路,在计算机、通信、消费电子等领域也有着巨大的应用。
结语
总之,半导体作为一种特殊的电学材料,在现代电子产业中扮演着不可或缺的角色。
通过对半导体电导率的调控,人们能够实现各种电子元器件的制造和应用,推动着科技的发展和进步。
希望通过本文的介绍,读者能够对半导体有一个初步的认识,进一步了解其在电子产业中的重要性。
半导体材料性质、发展及应用摘要:半导体具有许多独特的性质,并被用来制成各式各样性能好、体积小、可靠性高的电子器件。
目前,种类繁多,性能各异的半导体器件已广泛地应用于现代工业,现代科技和现代国防,并已深入到各个家庭之中,所以,半导体器件的生产、应用水平已成为衡量一个国家现代文化程度的重要标志。
半导体科学技术发展就成为现代科学技术中的重要部分,半导体物理学也逐渐成为固体物理学中的一支重要分支。
关键词:半导体种类性能应用正文:一、半导体简介:电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质称为半导体:室温时电阻率约在1mΩ·cm~1GΩ·cm之间(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因上角标暂不可用,暂用当前方法描述),温度升高时电阻率则减小。
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。
除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
二、半导体的一般特性:(1)高纯半导体的电阻率随温度上升而下降,即具有负的温度系数。
(2)导电性能随外界影响而显著变化。
(a)用光照或高能粒子辐照半导体,可使其电阻率下降;(b)半导体中含有杂质(外来原子)时,其导电性能在很大程度上取决于杂质的类型及浓度。
(3)具有比金属强得多的霍耳效应及温差电效应。
而且,半导体的霍耳系数可为正、负或零(金属的霍耳系数为负)。
金属的温差电动势率一般在几个微伏/度的数量级,个别的可达几十个微伏/度。
半导体的温差电动势率一般在几百微伏/度的数量级。
三、半导体材料的分类;半导体材料按化学成分和内部结构,大致可分为以下几类。
1.元素半导体有锗、硅、硒、硼、碲、锑等。
半导体材料具有哪些主要特性
半导体是一种介于导体(金属)和绝缘体之间的材料,具有一些独特的特性,
使其在电子学和光电子学领域具有重要的应用。
以下是半导体材料的主要特性:
1. 带隙能量
半导体材料具有禁带宽度,即能带隙。
这是指在材料中电子能级的变化范围,
使得材料在低温下几乎是绝缘体,而在受到刺激(例如光或热)时,电子可以跨越能带隙并变得导电。
带隙能量的大小决定了半导体的导电性质,常用电子伏特(eV)作为度量单位。
2. 控制载流子浓度
半导体材料可以通过掺杂来控制载流子(电子和空穴)的浓度,这在半导体器
件的制造中至关重要。
通过引入少量的杂质原子,可以从而增加或减少载流子的浓度,从而改变材料的导电性质。
3. 半导体器件的制造
半导体材料可通过各种加工工艺来制造成各种半导体器件,如二极管、晶体管
和光电器件等。
这些器件在现代电子技术中发挥着重要作用,推动了信息技术和通信技术的快速发展。
4. 温度特性
半导体材料的电导率和带隙能量都随温度的变化而变化。
这种温度特性使得半
导体器件在一定的温度范围内工作性能更稳定,同时也为一些特定应用提供了可能,如温度传感器等。
5. 光电特性
半导体材料在受到光照射后会产生光生载流子,这种光电性质使得半导体器件
在光电子学领域有广泛的应用,如太阳能电池、发光二极管(LED)和激光器等。
总的来说,半导体材料具有能带隙、控制载流子浓度、器件制造、温度特性和
光电特性等一系列独特的特性,使得其在现代电子学领域具有重要的应用价值。