我的高考--椭圆知识点总结
- 格式:doc
- 大小:847.50 KB
- 文档页数:11
高考椭圆抛物线知识点归纳总结椭圆和抛物线是高中数学中的重要知识点,也是高考数学考试中经常出现的题型。
在这篇文章中,我们将对椭圆和抛物线的相关概念和性质进行归纳总结,以帮助考生更好地理解和掌握这些知识点。
一、椭圆1. 定义与性质椭圆是指到两个固定点(焦点)的距离之和等于常数的点的轨迹。
在椭圆中,有以下性质:- 椭圆的长轴和短轴是相互垂直的。
- 椭圆的离心率小于1,离心率越小,椭圆越扁。
- 椭圆的离心率等于焦点之间的距离与长轴长度的比值。
2. 椭圆的方程椭圆的标准方程为((x-h)^2/a^2) + ((y-k)^2/b^2) = 1,其中(h, k)为椭圆的中心点坐标,a和b分别为椭圆的半长轴和半短轴长度。
3. 相关定理与公式- 椭圆的周长公式为C = 4aE(e),其中E(e)为椭圆的第一类椭圆积分,e为椭圆的离心率。
- 椭圆的面积公式为S = πab。
4. 椭圆的应用椭圆在现实生活中有许多应用,如天文学中的行星轨道、地理学中的纬度线等。
二、抛物线1. 定义与性质抛物线是指到一个定点(焦点)和一条定直线(准线)的距离相等的点的轨迹。
在抛物线中,有以下性质:- 抛物线的准线与对称轴平行。
- 抛物线的焦点位于对称轴上,到焦点的距离等于到准线的距离。
- 抛物线的顶点为对称轴与抛物线的交点。
2. 抛物线的方程抛物线的标准方程为y = ax^2 + bx + c,其中a不等于0,a决定了抛物线的开口方向。
3. 相关定理与公式- 抛物线的焦半径公式为r = 1/(4a),其中a为抛物线的系数。
- 抛物线的焦点坐标为(F, p),其中F = 1/(4a),p = c - b^2/(4a)。
4. 抛物线的应用抛物线在物理学和工程学中有广泛的应用,如抛物线的运动轨迹、天文学中的天体轨迹等。
总结:椭圆和抛物线是数学中的重要概念,它们有着各自的定义、性质、方程和应用。
在高考数学考试中,掌握这些知识点对于解题和得高分非常重要。
高考椭圆大题知识点总结椭圆是高中数学中的一个重要内容,也是高考中常出现的考点。
椭圆是平面几何中的一种特殊曲线,它具有许多有趣的性质和特点。
在解题过程中,我们应该了解椭圆的定义、性质和相关公式,从而灵活运用椭圆的知识来解答高考试题。
一、椭圆的定义和基本性质椭圆是指平面上到两个定点的距离之和等于常数的点的轨迹。
这两个定点称为焦点,两焦点间的距离称为焦距。
椭圆的形状由焦距和离心率决定,离心率小于1时,椭圆比较扁,离心率等于1时,椭圆退化为圆。
椭圆的主要性质有:对称性、切点和法线、焦点和直线的性质等。
在解题时,我们需要根据具体情况运用这些性质,简化计算步骤,提高解题效率。
二、椭圆的标准方程和一般方程椭圆的标准方程可以表示为:(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标,a为椭圆的长半轴长度,b为椭圆的短半轴长度。
当椭圆的中心在原点时,方程可以简化为x²/a²+y²/b²=1。
而一般方程则可以表示为:Ax²+Bxy+Cy²+Dx+Ey+F=0。
在解题时,我们常常需要将椭圆的方程进行转化,使其符合标准方程的形式,以便于进行求解和分析。
三、椭圆的焦点和直线的关系椭圆的焦点是反映椭圆性质的重要元素之一。
根据焦点和椭圆的关系,我们可以推导出椭圆的两个焦点与椭圆上的点的连线的交点分别位于椭圆的法线和切线上的性质。
根据焦点和直线的关系,我们可以解决一些有关焦点和直线的题目,如:已知一个点在椭圆上,连接该点和椭圆的两个焦点,然后以该点为圆心,过两个焦点的直线为半径画圆,证明所得的圆和椭圆相切等。
四、椭圆的参数方程和极坐标方程除了直角坐标系表示椭圆外,我们还可以使用参数方程和极坐标方程来描述椭圆。
在解题时,椭圆的参数方程和极坐标方程常常能够简化计算步骤,提高解题效率。
椭圆的参数方程可以表示为:x = a*cosθ,y = b*sinθ。
高考数学椭圆的知识点高考数学中,椭圆是一个重要的几何形状,涉及到的知识点相对较多。
在这篇文章中,我们将探讨椭圆的性质、方程、焦点等相关概念,并且通过一些实例帮助读者更好地理解椭圆的应用。
一、椭圆的性质椭圆是一个闭合的曲线,可以通过一个固定点(称为焦点)和离焦点的距离之和的大小来定义。
具体来说,对于一个给定的椭圆,离焦点的距离之和等于定值2a,其中a是椭圆的半长轴(长轴长度的一半)。
除了焦点和半长轴,椭圆还有一些其他重要的性质。
例如,椭圆的中点称为中心,位于中心的直线称为主轴。
椭圆的半短轴(短轴长度的一半)用b表示,它与椭圆的半长轴有一定的关系,即b^2 = a^2 -c^2,其中c是焦点到中心的距离。
二、椭圆的方程椭圆的方程可以通过两种形式来表示,一种是标准方程,另一种是一般方程。
标准方程是这样的:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)是椭圆的中心坐标。
一般方程则可以表达为Ax^2 + By^2 + Cx + Dy + E = 0,其中A、B、C、D、E是常数。
根据椭圆的方程,我们可以了解到椭圆的形状、大小以及位置等信息。
三、焦点与直角关系除了上述基本概念和性质,椭圆还与焦点和直角有一定的关系。
我们知道,对于一个椭圆来说,焦点和圆心确定的直角称为椭圆的焦点直角。
椭圆上的任意一点与焦点和圆心连成的三条线段构成一个直角。
这个直角关系在解决一些几何问题时非常有用,可以帮助我们确定和利用椭圆的性质,从而解决一些复杂的数学题目。
四、椭圆的应用举例椭圆的应用在生活和科学中是广泛存在的。
下面,我们通过一些例子来说明椭圆的实际应用。
1.卫星轨道:卫星绕地球运行的轨道往往是一个椭圆。
利用椭圆的性质,科学家可以计算出卫星的运行速度和轨道大小,从而更好地控制和管理卫星。
2.天体运动:行星、彗星等天体的运动轨迹也是椭圆。
通过研究椭圆轨道,天文学家可以了解天体的运动规律,从而预测天体的位置和行为。
椭圆知识点一、椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.二、椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -三、椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a 说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范 围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶 点:① 椭圆的对称轴与椭圆的交点称为椭圆的顶点。
② 椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③ 线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
椭圆方程高考知识点椭圆是解析几何中的一个重要概念,而椭圆方程作为椭圆研究的基础,也是高考数学中的一个重要知识点。
本文将对椭圆方程的定义、性质以及解题方法进行详细介绍,帮助学生更好地掌握这一知识点。
一、椭圆方程的定义椭圆方程是二次曲线方程的一种形式,以一般式表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$其中a和b分别代表椭圆在x轴和y轴上的半轴长。
根据a和b的大小,我们可以得到不同形态的椭圆:当a>b时,椭圆的长轴平行于x 轴;当a<b时,椭圆的长轴平行于y轴;当a=b时,椭圆为圆形。
二、椭圆方程的性质1. 椭圆的焦点和直径椭圆有两个焦点F1和F2,满足距离定理:对于椭圆上的任意一点P,FP1+FP2=2a。
此外,椭圆的两条相互垂直的直径称为主轴,其中长的一条为长轴,短的一条为短轴,且长轴的长度为2a,短轴的长度为2b。
2. 椭圆的离心率椭圆的离心率e定义为焦点与半直轴的比值,即e=c/a(c为焦点到原点的距离)。
离心率决定了椭圆的形状,当e=0时,椭圆退化为一个点;当e<1时,椭圆为实心椭圆;当e=1时,椭圆为抛物线;当e>1时,椭圆为双曲线。
3. 椭圆的标准方程椭圆方程可以根据其焦点和长轴、短轴的位置得到不同的标准方程。
例如,当椭圆的中心位于原点,长轴平行于x轴时,其标准方程为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$如果椭圆的中心不在原点,可以通过平移变换将其化为标准方程。
三、椭圆方程的解题方法1. 确定椭圆的性质和方程形式在解题过程中,首先需要根据题目给出的条件,确定椭圆的性质和方程形式。
例如,判断椭圆的长短轴、焦点位置和离心率大小,进而确定合适的计算方法。
2. 利用椭圆的性质解题在解题过程中,可以根据椭圆的性质进行分析和计算。
例如,利用椭圆的离心率和焦点位置,可以计算椭圆的长轴、短轴和焦点坐标等信息,从而进一步求解问题。
椭圆知识点总结(精选4篇)椭圆形面积公式篇一圆锥曲线的定义(1)你知道椭圆、双曲线、抛物线的第一定义吗?作答:______________________(2)椭圆、双曲线、抛物线的第二定义你掌握了吗?作答:______________________(1)平面内与两个定点f1,f2的距离之和等于常数(大于f1f2)的点的轨迹叫做椭圆;与两个定点f1,f2的距离之差的绝对值等于常数(小于f1f2)的点的轨迹叫做双曲线;与一个定点f和一条定直线l(l不经过点f)距离相等的点的轨迹叫做抛物线。
(2)已知点f是平面上的一个定点,l是平面上不过点f的一条定直线,动点p到点f 的距离和它到直线l的距离之比是一个常数e.当01时,动点p的轨迹是双曲线;当e=1时,动点p的轨迹是抛物线.椭圆的几何性质(1)你知道椭圆的焦半径公式吗?焦点弦公式还记得吗?作答:______________________(2)如何计算椭圆的焦点三角形的面积?作答:______________________(3)你知道如何求解椭圆的切线方程吗?作答:______________________以方程■+■=1(ab0)为例.(1)①设p(x0,y0),f1,f2分别为其左、右焦点,则pf1=a+ex0,pf2=a-ex0;②过点f1(-c,0)的弦ab长为ab=2a+e(xa+xb),过点f2(c,0)的弦ab长为ab=2a-e (xa+xb),其中xa,xb分别为a,b两点的横坐标.(2)设p点是椭圆上一点,f1,f2分别为其左、右焦点,则s■=b2tan■(θ为pf1,pf2的夹角).特别地,若pf1pf2,此三角形面积为b2.(3)过椭圆■+■=1上一点p(x0,y0)处的切线方程是■+■=1;过椭圆■+■=1外一点p (x0,y0)所引两条切线的切点弦方程是■+■=1.双曲线的几何性质(1)双曲线的焦半径公式还会用吗?作答:______________________(2)如何计算双曲线的焦点三角形的面积?作答:______________________(3)与已知双曲线有同一条渐近线的双曲线方程如何表示?作答:______________________(4)你知道如何求解双曲线的切线方程吗?作答:______________________以方程■-■=1(a0,b0)为例.(1)设p(x0,y0),f1,f2分别为其左、右焦点。
文科高考椭圆知识点总结椭圆作为数学中的重要概念之一,在文科高考中占据着重要的位置。
它不仅在数学中有着广泛的应用,还贯穿于几何、物理、经济等领域。
本文将对文科高考中的椭圆知识点进行总结,帮助考生更好地理解和应用这一概念。
一、椭圆的定义和基本特点椭圆的定义较为简单,它是平面上到两个给定点的距离之和等于常数的点的集合。
这两个给定点称为椭圆的焦点,而等于常数的距离称为椭圆的长轴。
椭圆的特点可以归纳如下:1. 焦点和长轴:椭圆上的每一点到两个焦点的距离之和等于常数,这个常数就是椭圆的长轴。
焦点的位置与椭圆的形状密切相关,不同的椭圆有不同的焦点位置。
2. 离心率:椭圆的离心率是一个重要的参数,它是焦距与长轴的比值。
离心率接近于0的椭圆形状接近于一个圆,离心率接近于1的椭圆形状则呈现出拉长的特点。
3. 曲率半径:椭圆上每一点的曲率半径是指在该点处椭圆曲线的曲率半径大小。
曲率半径由椭圆的离心率和曲线的斜率共同决定。
二、椭圆的方程和参数表示椭圆有多种表示方式,常见的有极坐标方程和参数方程。
1. 极坐标方程:椭圆的极坐标方程形式为(r=a/(1+εcosθ)),其中a是椭圆的半长轴,ε是离心率。
2. 参数方程:椭圆的参数方程是用参数t对椭圆上的点进行参数化表示。
常见的参数方程形式为(x=a*cos t, y=b*sin t),其中a和b分别是椭圆的半长轴和半短轴。
三、椭圆的性质和应用椭圆作为一种特殊的曲线形状,具有很多独特的性质和应用。
1. 焦点和直径性质:椭圆上任意一条直径的中点都与椭圆的焦点重合。
这一性质在椭圆的应用中具有重要的意义,例如在太阳能聚光器中,通过使反射面成为一个椭圆曲线,可以使反射后的光线汇聚于焦点,从而实现能量的聚集。
2. 投影性质:在几何光学中,光线通过椭圆反射后,其焦点位置发生改变。
这一性质被广泛应用于光学仪器设计中,例如椭圆反射镜。
3. 运动轨迹:当一个物体沿着一个椭圆轨迹运动时,不仅能够保持速度大小恒定,还可以实现周期性的往返运动。
高考数学专题复习-完美版圆锥曲线知识点总结1.椭圆的概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。
这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。
若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。
椭圆的标准方程为:x^2/a^2+y^2/b^2=1(a>b>0,焦点在x轴上)或x^2/b^2+y^2/a^2=1(a>b>0,焦点在y轴上)。
2.椭圆的性质①范围:由标准方程得知,椭圆位于直线x=±a,y=±b所围成的矩形里。
②对称性:椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心。
③顶点:椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。
④离心率:椭圆的焦距与长轴的比e=c/a。
其中,c表示焦距,a表示长半轴长。
椭圆的离心率可以通过长轴和短轴的长度计算得出。
由于长轴大于短轴,因此离心率e的值介于0和1之间。
当离心率接近1时,短轴b的长度会越来越小,导致椭圆变得越扁;反之,当离心率接近0时,短轴b的长度会越来越接近长轴a的长度,此时椭圆会趋向于圆形。
当长轴和短轴的长度相等时,椭圆的两个焦点重合,这时椭圆就变成了圆形,其方程为x+y=a。
双曲线是平面上距离两个定点距离之差绝对值等于常数2a的动点轨迹。
需要注意的是,这里的距离差的绝对值是小于焦距F1F2的。
当距离差等于2a时,得到的是双曲线的一支;当距离差等于-2a时,得到的是双曲线的另一支(含F1的一支)。
当距离差等于0时,得到的是两条射线;当距离差大于2a时,得不到任何图形。
双曲线的焦点是F1和F2,焦距为F1F2.双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1.由此可以看出,双曲线在坐标系中的范围为两条直线x=±a的外侧。
高考数学椭圆考点高考数学中,椭圆是一个重要的考点。
椭圆是平面解析几何中的一个重要曲线,也是常见的二次曲线之一。
在椭圆的相关知识点中,包括椭圆的定义、性质、方程、参数方程以及椭圆的相关定理等。
首先,椭圆的定义是指平面上到两个给定点的距离之和等于常数的点的轨迹。
这两个给定点叫做椭圆的焦点,以及一个常数叫做椭圆的长轴长度。
椭圆的轨迹是一个闭合曲线,曲线的形状与其焦点和长轴的长度有关。
在解析几何中,我们通常使用坐标来描述椭圆。
椭圆的标准方程是x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的长轴和短轴的长度。
这个方程表示了椭圆上的点到椭圆中心的距离与长轴和短轴长度的关系。
椭圆的一些基本性质也是我们需要了解的。
首先,椭圆有两个对称轴,分别是长轴和短轴。
长轴是连接两个焦点的直线段,而短轴是相互垂直于长轴的直线段。
椭圆的参数方程也是我们需要掌握的知识点。
通常我们可以使用参数方程x = a*cosθ,y = b*sinθ来描述椭圆上的点。
其中,θ是参数,a和b是椭圆的参数。
在高考数学中,椭圆的相关定理也是需要掌握的。
其中包括椭圆的切线定理和法线定理。
椭圆的切线定理是指,椭圆上任意一点的切线与该点的切线相关联,切线的斜率的倒数等于椭圆的斜率,而椭圆的法线是与切线相互垂直的直线。
除了切线和法线定理,另一个重要的定理是椭圆的离心率定理。
椭圆的离心率定义为焦点到椭圆中心的距离与椭圆长轴长度的比值。
椭圆的离心率决定了曲线的形状,当离心率小于1时,椭圆是闭合曲线;当离心率等于1时,椭圆是抛物线;当离心率大于1时,椭圆是双曲线。
在解题过程中,我们可以利用椭圆的性质和定理来解决各种与椭圆相关的问题。
例如,我们可以利用椭圆的切线定理来求椭圆上某一点的切线方程,或者利用椭圆的离心率定理来判断椭圆的形状。
椭圆还与其他数学内容有一定的联系。
例如,椭圆和三角函数之间存在一种关系,称为三角型。
通过椭圆的参数方程和三角函数的相关知识,我们可以深入研究椭圆与三角函数之间的关系。
有关椭圆的高考知识点椭圆是数学中的一种几何形状,它是离心率小于1的圆的一种特殊情况。
在高考数学中,椭圆是一个重要的知识点,它涉及到椭圆的定义、性质、方程、参数方程等内容。
本文将从不同的角度探索有关椭圆的高考知识点,帮助大家更好地理解和应用该知识。
1. 椭圆的定义和性质椭圆的定义比较简单,它是离心率小于1的圆的一种特殊情况。
在平面直角坐标系中,椭圆的定义可以表达为:给定两个固定点F1和F2,以及一个正常数a,椭圆是到这两个点的距离之和等于常数2a的点的轨迹。
椭圆具有许多重要的性质。
首先,椭圆是对称图形,其中心是坐标原点,对称轴是x轴和y轴;其次,椭圆上的点到两个焦点的距离之和是常数2a;再次,椭圆上的点关于x轴和y轴的对称点也在椭圆上。
2. 椭圆的方程和参数方程在解决椭圆相关问题时,最常用的表达方式是椭圆的方程和参数方程。
椭圆的标准方程是:x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的长半轴和短半轴。
通过椭圆的方程,我们可以了解椭圆的形状和位置。
a和b的大小关系决定了椭圆是瘦长椭圆还是矮胖椭圆,而a和b的值决定了椭圆的大小。
除了方程形式外,还可以使用参数方程来表示椭圆。
椭圆的参数方程为:x = a*cosθ,y = b*sinθ,其中θ是取值在0到2π之间的参数。
参数方程的优势在于可以直观地看出椭圆的运动轨迹。
当θ从0到2π变化时,椭圆的点会在平面上画出一圈完整的椭圆。
3. 椭圆的性质和应用椭圆有许多独特的性质和应用,对于理解和应用椭圆的知识点有很大的帮助。
首先,椭圆具有焦点性质。
椭圆上的每个点到两个焦点之间的距离之和是常数。
这个性质在实际生活中有很多应用,比如声波在焦点上的集中、行星的轨道等。
其次,椭圆还具有切线性质。
椭圆上的每个点的切线与该点到两个焦点的连线垂直。
这个性质在工程建模和物体运动的描述中常常使用,例如球体在椭球体内滚动的模型。
另外,椭圆还有与矩形和三角形面积相关的性质。
椭圆高考知识点总结一、椭圆的定义和基本性质1. 椭圆的定义椭圆的定义有多种表述方式,其中一种常见的定义是:椭圆是平面上到两个定点F1、F2的距离之和等于定常长2a(a>0)的点P的轨迹。
称F1、F2为椭圆的焦点,2a为椭圆的长轴。
即椭圆定义为$|PF_1|+|PF_2|=2a$。
根据这个定义,我们可以推导出椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$2a$和$2b$分别为椭圆的长轴和短轴。
椭圆的离心率e满足$0<e<1$。
2. 椭圆的基本性质(1)主轴和短轴: 通过椭圆两个焦点连线的中垂线叫做长轴,椭圆的两个焦点所在直线叫做长轴;长轴的两端点叫做椭圆的顶点。
垂直于长轴的直线段叫做短轴。
(2)顶点和焦点:椭圆的两个端点叫做顶点,两个焦点分别叫做F1和F2。
(3)公式中的取值范围:椭圆标准方程中的参数a和b满足$a>b>0$。
(4)对称性:椭圆具有镜面对称性。
(5)内外离心率:椭圆的内离心率e1满足:$0<e_1<1$,外离心率e2满足:$1<e_2$。
3. 椭圆的离散表示:根据离心率e和焦点F1、F2获知椭圆的表达式$|PF_1|+|PF_2|=2a$表示椭圆的定点,即点到两个定点的距离之和等于一个定常长2a。
其中a是椭圆的长轴,F1、F2是焦点。
这个定义可以描述椭圆的形状和性质。
二、椭圆的方程和坐标变换1. 椭圆标准方程:椭圆的标准方程是$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中a和b分别为椭圆的长半轴和短半轴。
2. 椭圆的一般方程:如果椭圆的长轴不在x、y轴上,可以通过坐标变换将椭圆的标准方程转化为一般方程$Ax^2+By^2+Cx+Dy+E=0$。
3. 椭圆的参数方程:椭圆的参数方程为$x=acos\theta$,$y=bsin\theta$,其中$\theta$是参数,$-\pi<\theta<\pi$。
专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>②若,则集合P 为线段; ③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点a c =a c <x 2222=1(a>b>0)x y ab +y 2222=1(a>b>0)y x a b+x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a bx a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±焦距离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为四.直线与椭圆的位置关系 1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系. 2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答222122()F F c c a b -==() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b案. 【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1 C 17 D .17-【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解.【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得3n =. 22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.22224233,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 【总结提升】1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 . (3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解.221mx ny +=(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a bλλ2222+=1(a>b>0)x y a b 22222+=1(a>b>0,0)x y b k a k b k+>++【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x a x a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .例8.(2023·全国·高三专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .3D .43【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :2221(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果.详解:根据题意,可知2c =,因为24b =, 所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______. 【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AFAF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦【总结提升】1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征.4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建2222e?b b c a =2222+=1(a>b>0)x y a b立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案. 【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-,由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆2222:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e = 22 ,1c b e e a a=-=(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程; (2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()222210x y a b a b+=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值;(2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程.(1)解:()2222222222234332BF b c aa b a a b AB b a b a+===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M Mm y kx m k =+=+,由=OM ON 可得()()222229131m k m k+=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 【规律方法】一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率;(II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程. 【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. :E 22221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==(Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C .(1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB ()210210b -=23b =E 221123x y +=(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=.(2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=. 当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+,所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121km k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 【总结提升】从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。
高三椭圆知识点总结椭圆作为解析几何中的一个重要概念,是高中数学学科中的一大难点。
它不仅仅在高中阶段中扮演着重要的角色,而且在大学数学的学习中也是必不可少的一环。
对于高三学生而言,掌握椭圆的相关知识点对于高考的数学成绩至关重要。
接下来,我将针对椭圆的一些基础知识进行总结和归纳。
首先,我们需要明确什么是椭圆。
椭圆是一个平面上所有到两个固定点(焦点)距离之和等于常数的点构成的图形,这个常数就是椭圆的长轴长。
在解析几何中,椭圆有一些基本的性质需要掌握。
首先,椭圆的标准方程为(x-h)²/a² +(y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长半轴长度,b为短半轴长度。
这个方程可以帮助我们确定椭圆的位置和形状。
其次,椭圆的焦距与半长轴之间有一个固定关系,即焦距c² = a² -b²。
这个关系很重要,可以帮助我们求解椭圆的一些关键参数。
接下来,我们需要了解椭圆的离心率。
离心率e是一个椭圆与其长半轴长度(2a)之间的比值,具体计算公式为e = c/a。
离心率的大小反映了椭圆的偏心程度,当e<1时,椭圆是一个实椭圆;当e=1时,椭圆是一个抛物线;当e>1时,椭圆是一个虚椭圆。
在研究椭圆的性质时,我们会遇到椭圆的离心率和光线反射的关系。
当光线从一个焦点射入椭圆上的一点,经过反射后会经过另一个焦点。
这个性质在实际生活中有很多应用,比如抛物面反射器和卫星接收天线等。
此外,椭圆在几何中还有一些与其他图形的关系。
例如,椭圆与直线的关系。
当直线和椭圆相交时,交点的位置取决于直线与椭圆的位置关系。
如果直线和椭圆相切,我们可以应用求切点的方法,求出切点的坐标。
如果直线不相切,可能会有两个或零个交点。
最后,我们了解椭圆的参数方程。
椭圆的参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数。
通过参数方程,我们可以探索椭圆的形状和特性。
高考椭圆专题知识点总结椭圆作为数学中的一个重要概念,是高考数学中的一个重要考点。
本文将对椭圆的相关知识进行总结,从基本概念到具体应用进行阐述,探讨其在高考中的应对策略。
一、椭圆的基本概念椭圆是平面上的一个几何图形,其定义为到两个定点F₁、F₂的距离之和等于定值2a的点集合。
F₁、F₂称为椭圆的焦点,而直线段F₁F₂的长度为椭圆的主轴。
与主轴垂直的直径称为椭圆的次轴,两轴的交点称为椭圆的中心。
二、椭圆的数学描述椭圆的数学表示是(x/a)²+(y/b)²=1或(x/a)²/(y/b)²=1,其中a为椭圆的长半轴,b为椭圆的短半轴。
根据椭圆的性质,由于离心率e=√(a²-b²)/a<1,椭圆是离心率小于1的一类曲线。
三、椭圆的参数方程椭圆的参数方程是x=a*cosθ,y=b*sinθ,其中θ为参数。
通过参数方程,我们可以很方便地求得椭圆上的各个点的坐标。
此外,椭圆的参数方程还可以用来求椭圆中心、焦点等相关信息。
四、椭圆的常见性质1. 椭圆的离心率e满足0<e<1,离心率为0时即为圆。
2. 椭圆的长半轴a和短半轴b满足a>b>0。
3. 椭圆的焦距2c满足c²=a²-b²,其中c为焦点F₁F₂到中心的距离。
五、椭圆的相关定理1. 椭圆的切线定理:椭圆上任意一点处的切线斜率等于该点对应的椭圆的切线的倾角的正切值。
2. 椭圆的法线定理:椭圆上任意一点处的法线斜率等于该点对应的椭圆的切线的倾角的负倒数。
3. 椭圆的切线和法线的判定:切线和法线的直线方程满足x²/a²+y²/b²=1和bx/a²y+ay/b²x=1。
六、椭圆的应用椭圆在现实生活中有丰富的应用。
例如,椭圆的形状被广泛应用于汽车或自行车的轮胎、卫星的轨道等。
在高考数学中,椭圆的知识点也常常涉及到与其他几何图形的相互关系以及坐标变换等问题。
高中数学椭圆高考知识点高中数学是学生们备战高考的重要科目之一,而椭圆作为其中的一个重要知识点,对于学生们来说也是不容忽视的。
在高考数学中,椭圆是一个常见的题型,涉及到方程、焦点、离心率等多个概念。
下面将对椭圆的相关知识点进行深入讨论。
椭圆是圆锥曲线的一种,其定义为平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
这两个定点被称为焦点,2a表示椭圆的长轴的长度。
椭圆的几何性质表明,任意一点到F1和F2的距离之和等于2a,这就是椭圆的焦点定义。
椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别表示椭圆的半长轴和半短轴的长度,同时满足a>b>0。
当椭圆的长轴与x 轴平行时,长轴的长度为2a,短轴的长度为2b;当椭圆的长轴与y轴平行时,长轴的长度为2b,短轴的长度为2a。
除了标准方程外,椭圆还可以用参数方程和极坐标方程表示。
参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数;极坐标方程为r = a*b/sqrt((a*sinθ)^2 + (b*cosθ)^2),其中r和θ分别表示极径和极角。
椭圆的离心率是一个衡量椭圆形状的指标,定义为焦距与长轴的比值。
离心率的取值范围在0到1之间,当离心率接近于1时,椭圆形状趋于扁平;当离心率接近于0时,椭圆形状趋于圆形。
离心率e的计算公式为e = c/a,其中c表示焦距的长度。
椭圆的重要性质之一是关于焦点和直线的性质。
对于椭圆上的任意一点P(x, y),其到焦点F1和F2的距离之和等于常数2a,即PF1 +PF2 = 2a。
此外,对于给定的直线L,过椭圆上的任意一点P的切线L'与L的交点O为焦点F1和F2连线的中点。
椭圆的方程与焦点和直线的性质在高考数学中常常会与其他几何图形进行组合运用,从而提高解题的难度。
例如,考生可能需要结合直线的方程与椭圆的方程,求解方程组并确定椭圆与直线的交点。
此外,还有可能需要通过椭圆的方程确定其离心率,并进一步分析椭圆的形状。
我的高考椭圆知识点总结文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)椭圆知识点一、椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形. 二、椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -三、椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a 说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范 围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
y同时换成-兀、-八原方程都不变,所以椭圆4 + ^ = 1是以x轴、〉,轴为对a b 称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线工=±。
和y = ±b所围成的矩形内,所以椭圆上点的坐标满足\x \< a |y |<Z?o(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆4 + 4 = 1(^>^>0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为cr 肝4 (—G,0)y A? (a。
),9 B2 (0,Z?)③线段A.A2, d场分别叫做椭圆的长轴和短轴,I A,A2 | = 2d, I B\B? | = 2/?o“和b分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作2c ce =一 = —o2a a②因为(« > c > 0),所以e的取值范围是(Ovevl)。
e越接近1,则c就越接近",从而b = yla2 -c2越小,因此椭圆越扁;反之,e越接近于0, c就越接近0,从而力越接近于",这时椭圆就越接近于圆。
当且仅当a = b时,c = 0,这时两个焦(椭圆的第二定义)\PM}\+\PM2\=—;(2) |眄| = |B列=“;|O可=|O坊|=c;|AB| = |A2B| = 777F;(3)凶可=肉列= d_c;|人佗| =肉可=0+0;a-c<\PF^<a+c :四、椭I员I J +二=1与—v + = 1 (a> b>0)的区别和联系a~ b~ a~ b~注:关于椭圆4 + 4 = 1与茸+倖= l@>b>0)的说明:cr \r cr相同点:形状、大小都相同;参数间的关系都有(">”>0)和—£(0"<1),a不同点:两种椭圆的位置不同;它们的焦点坐标也不相同。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 【关键字】中心
椭圆方程式知识点总结
1. 椭圆方程的第一定义:
⑴①椭圆的标准方程:
i. 中心在原点,焦点在x 轴上:. ii. 中心在原点,焦点在轴上:
.
②一般方程:.③椭圆的标准参数方程:的参数方程为
(一象限应是属于).
⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥
离心率:.⑦焦点半径:
i. 设为椭圆上的一点,为左、右焦点,则
由椭圆方程的第二定义可以推出.
ii.设为椭圆上的一点,为上、下焦点,则
由椭圆方程的第二定义可以推出.
由椭圆第二定义可知:归结起来为“左加右减”.
注意:椭圆参数方程的推导:得方程的轨迹为椭圆.
⑧通径:笔直于x轴且过焦点的弦叫做通经.坐标:和
⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是我们称此方程为共离心率的椭圆系方程.
⑸若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.
椭圆的简单几何性质
常见考法
在段考中,多以选择题、填空题和解答题的形式考查椭圆的简单几何性质。
选择题和填空题一般属于容易题,解答题一般属于难题。
在高考中,一般以解答题的形式融合其它圆锥曲线联合考查椭圆的几何性质,难度较大。
误区提醒
求椭圆的方程,用待定系数法,先定位,后定量。
如果不能确定,要分类讨论。
【典型例题】
此文档是由网络收集并进行重新排版整理.word可编辑版本!
1文档收集于互联网,已整理,word版本可编辑.。