GH4169 镍基变形高温合金资料
- 格式:doc
- 大小:152.00 KB
- 文档页数:19
GH4169是是Fe-Ni-Cr基沉积硬化型变形高温合金,长时间运用温度规模-253~650℃,短期运用温度在800℃,在650℃以下时具有高强度、出色的耐性以及在高低温环境均具有耐氧化耐腐蚀性。
以及出色的加工功能和焊接功能和长时间组织稳定性。
GH4169适用于制作航空、航天和石油化工中的环件、叶片、紧固件和结构件等,主要有棒、板、管、带、丝、等。
GH4169对应牌号:2.4668、N07718、GH4169。
GH3536钢板GH3536棒GH3536锻件GH3536管GH3536带材预热:工件在加热之前和加热过程中都应进行外表清理,坚持外表清洁。
若加热环境含有S、P、铅或其他低熔点金属,合金将变脆。
杂质来源于做符号的油漆、粉笔、润滑油、水、燃料等。
燃料的硫含量要低,如液化气和气的杂质含量要低于0.1%,城市煤气的硫含量要低于0.25g/m3,石油气的硫含量低于0.5%是理想的。
加热的电炉应要具有较准的控温才能,炉气应为中性或弱碱性,应防止炉气成分在氧化性和还原性中动摇。
GH4169冷热加工:合金合适的热加工温度为1120-900℃,冷却方法可以是水62616964757a686964616fe59b9ee7ad9431333431353839淬或其他快速冷却方法,热加工后应及时退火以确保得到很好的功能。
热加工时资料应加热到加工温度的上限,为了确保加工时的塑性,变形量到达20%时的终加工温度不应低于960℃。
冷加工应在固溶处理后进行,加工硬化率大于奥氏体不锈钢,因此加工设备应作相应调整,并且在冷加工过程中应有中间退火过程。
冷热处理:不同的固溶处理和时效处理工艺会得到不同的资料功能。
因为γ”相的扩散速率较低,所以通过长时间的时效处理能使合金取得很好的机械功能。
冷打磨:工件焊缝附近的氧化物要比不锈钢的更难以去除,需要用细砂带打磨,在HNO3和氢氟酸的混合酸中酸洗之前,也要用砂纸去除氧化物或进行盐浴预处理。
常州市天志金属材料有限公司一、GH4169 概述GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。
该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。
供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。
可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。
1.1 GH4169 材料牌号 GH4169(GH169)1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国)1.3 GH4169 材料的技术标准GJB 2612-1996 《焊接用高温合金冷拉丝材规范》HB 6702-1993 《WZ8系列用GH4169合金棒材》GJB 3165 《航空承力件用高温合金热轧和锻制棒材规范》GJB 1952 《航空用高温合金冷轧薄板规范》GJB 1953《航空发动机转动件用高温合金热轧棒材规范》GJB 2612 《焊接用高温合金冷拉丝材规范》GJB 3317《航空用高温合金热轧板材规范》GJB 2297 《航空用高温合金冷拔(轧)无缝管规范》GJB 3020 《航空用高温合金环坯规范》GJB 3167 《冷镦用高温合金冷拉丝材规范》GJB 3318 《航空用高温合金冷轧带材规范》GJB 2611《航空用高温合金冷拉棒材规范》YB/T5247 《焊接用高温合金冷拉丝》YB/T5249 《冷镦用高温合金冷拉丝》YB/T5245 《普通承力件用高温合金热轧和锻制棒材》GB/T14993《转动部件用高温合金热轧棒材》GB/T14994 《高温合金冷拉棒材》GB/T14995 《高温合金热轧板》GB/T14996 《高温合金冷轧薄板》GB/T14997 《高温合金锻制圆饼》GB/T14998 《高温合金坯件毛坏》GB/T14992 《高温合金和金属间化合物高温材料的分类和牌号》HB 5199《航空用高温合金冷轧薄板》HB 5198 《航空叶片用变形高温合金棒材》HB 5189 《航空叶片用变形高温合金棒材》HB 6072 《WZ8系列用GH4169合金棒材》1.4 GH4169 化学成分该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。
一种镍基高温合金gh4169g合金的均匀化处理方法一种镍基高温合金GH4169G合金的均匀化处理方法在材料科学领域,镍基高温合金是一类优异的高温结构材料,具有良好的耐高温、耐腐蚀和高强度等特性。
GH4169G合金作为一种典型的镍基高温合金,被广泛应用于航空航天、化工和能源领域。
然而,GH4169G合金在使用过程中,由于组织不均匀性的存在,可能会影响其高温性能和机械性能。
进行均匀化处理是关键的工艺步骤之一。
本文将从GH4169G合金的组织特点、均匀化处理的重要性、均匀化处理方法和个人观点等方面,全面探讨一种适用的GH4169G合金的均匀化处理方法。
1. GH4169G合金的组织特点GH4169G合金是一种固溶强化型的镍基高温合金,其组织主要由γ'相和γ相组成。
γ'相是一种富含Al和Ti的析出相,在晶界和晶内均有分布,具有良好的抗蠕变性能;而γ相则是固溶体相,对合金的塑性起着重要作用。
然而,由于GH4169G合金在固溶和热加工过程中可能出现的非均匀组织现象,使得合金的性能可能出现了不均匀的情况,因此需要进行均匀化处理,以提高其性能和稳定性。
2. 均匀化处理的重要性均匀化处理是指利用固溶化和析出强化原理,通过适当的热处理工艺,使合金中的合金元素溶解均匀,并生成均匀细小的析出相,从而提高合金的塑性、热稳定性和抗蠕变性能。
对于GH4169G合金来说,均匀化处理不仅可以消除合金的非均匀组织,提高合金的整体性能,还能够提高合金的抗氧化和抗蠕变性能,延长其使用寿命。
3. 均匀化处理方法(1)固溶处理:首先将GH4169G合金加热至固溶温度,使合金中的固溶体元素均匀溶解,然后通过快速冷却或精确控制冷却速度,以避免析出相再次不均匀地沉积。
(2)时效处理:在固溶处理后,通过精确控制合金的时效温度和时间,使得合金中的析出相均匀细小地析出,提高合金的强度和耐蠕变性能。
4. 个人观点和理解作为材料科学领域的从业者,我对GH4169G合金的均匀化处理非常重视。
高温合金简介编制单位威励集团编制时间2020年07月页次共2页(上海威励金属集团有限公司,上海201601)①③⑥--*****--⑥①⑧④--****--⑤⑧②⑧GH4169沉淀强化镍基高温合金GH4169特性及应用领域概述:该合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、***、耐腐蚀性能,以及良好的加工性能、焊接性能良好。
能够制造各种形状复杂的零部件,在宇航、核能、石油工业及挤压模具中,在上述温度范围内获得了极为广泛的应用。
GH4169相近型号:Inceonel718、UNS NO7718(mei国)、NC19FeNb(法国)、W.Nr.2.4668(德国)GH4169化学成份:(GB/T14992-2005)合金型号%镍Ni铬Cr铁Fe钼Mo铌Nb钴Co碳C锰Mn硅SiliuS铜Cu铝Al钛TiGH416 9小5017余量2.8 4.750.200.65标准55213.3 5.501.00.080.350.350.0150.300.80 1.15GH4169物理性能:密度熔点热导率比热容弹性模剪切模电阻率泊松比线膨胀系数g/cm 3℃λ/(W/m•℃)J/kg•℃量GPa量GPaμΩ•m a/10-6℃-18.241260132014.7(100℃)435199,977,2---0.311.8(20~100℃)。
常州市百炼特钢有限公司变形合金之王GH4169GH4169,又名为Inconel 718,是沉淀强化的镍基高温高强合金。
Inconel 718在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。
该合金的另一特点是合金的组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。
Inconel 718国内外对应牌号:Inconel 718化学成分:Inconel 718物理性能:Inconel 718在常温下合金的机械性能的最小值:Inconel 718具有以下特性:1.易加工性2.在700℃时具有高的抗拉强度、疲劳强度、抗蠕变强度和断裂强度3.在1000℃时具有高抗氧化性4.在低温下具有稳定的化学性能5.良好的焊接性能Inconel 718的金相结构,718合金为奥氏体结构,沉淀硬化后生成的γ”相使之具有了优秀的机械性能。
在热处理过程中于晶界处生成的δ相使之具有了最佳的塑性。
Inconel 718的耐腐蚀性:不管在高温还是低温环境,718合金都具有极好的耐应力腐蚀开裂和点蚀的能力。
718合金在高温下的抗氧化性尤其出色。
Inconel 718工艺性能与要求:(1)热加工:合适的热加工温度为1120-900℃,冷却方式可以是水淬或其他快速冷却方式,热加工后应及时退火以保证得到最佳的性能。
热加工时材料应加热到加工温度的上限,为了保证加工时的塑性,变形量达到20%时的终加工温度不应低于960℃。
(2)冷加工:冷加工应在固溶处理后进行,加工硬化率大于奥氏体不锈钢,因此加工设备应作相应调整,并且在冷加工过程中应有中间退火过程Inconel718焊接工艺:合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。
GH4169是Ni-Cr-Fe基沉淀硬化型变形高温合金GH4169简介:GH4169合金在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的,并具有良好的耐辐射、耐氧化、耐腐蚀性能,以及良好的加工性能、焊接性能良好。
能够制造形状复杂的零部件该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的零件。
机匣等零部件长期使用。
GH4169 的化学成分:GH4169物理性能:GH4169特性:GH4169是Ni-Cr-Fe基沉淀硬化型变形高温合金,长时使用温度范围-235°C~650°C,短时使用温度可达800°C。
合金在650°C以下强度较高,具有良好的抗疲劳﹑抗辐射﹑抗氧化和耐腐蚀性能,以及良好的加工性能﹑焊接性能和长期组织稳定性。
GH4169 应用:合金已用于制作航空发动机、环件、机匣、轴、叶片、紧固件、弹性元件、燃气导管、密封元件和焊接结构件等;制作液氢、制作核能工业应用的各种弹性元件和格架;制作石油和化工领域应用的多种零件。
GH4169 叶片冷辊轧成形过程数值模拟分析摘要:以航空发动机用 GH4169 五级叶片冷辊轧工艺为研究对象,应用DEFORM 二次开发子程序,向有限元软件中添加适合分析高温合金塑性变形的CHABOCHE 本构模型,然后根据实际工况进行辊轧过程数值模拟,所得最大辊轧力和延伸量与实际经验值符合,验证了仿真模型准确性。
进一步分析了叶片辊轧过程中材料流动,并探讨了摩擦系数与轧辊转速对叶片辊轧力的影响。
结果表明:开始阶段辊轧力较平稳,当轧至叶身2/3 附近,由于后滑原因,辊轧力迅速增加约40%;摩擦系数对辊轧力、辊轧力矩有较大的影响,摩擦系数为0.12 和0.4 时,两者最大辊轧力相差20.2%,而轧辊转速对辊轧力影响较小。
GH4169 镍基变形高温合金资料中国牌号:GH4169/GH169美国牌号:Inconel 718/UNS NO7718法国牌号:NC19FeNb一、GH4169概述GH4169合金是以体心四方的γ"和面心立方的γ′相沉淀强化的镍基高温合金,在-253~700℃温度范围内具有良好的综合性能,650℃以下的屈服强度居变形高温合金的首位,并具有良好的抗疲劳、抗辐射、抗氧化、耐腐蚀性能,以及良好的加工性能、焊接性能和长期组织稳定性,能够制造各种形状复杂的零部件,在宇航、核能、石油工业中,在上述温度范围内获得了极为广泛的应用。
该合金的另一特点是合金组织对热加工工艺特别敏感,掌握合金中相析出和溶解规律及组织与工艺、性能间的相互关系,可针对不同的使用要求制定合理、可行的工艺规程,就能获得可满足不同强度级别和使用要求的各种零件。
供应的品种有锻件、锻棒、轧棒、冷轧棒、圆饼、环件、板、带、丝、管等。
可制成盘、环、叶片、轴、紧固件和弹性元件、板材结构件、机匣等零部件在航空上长期使用。
1.1 GH4169 材料牌号 GH4169(GH169)1.2 GH4169 相近牌号 Inconel 718(美国),NC19FeNb(法国)1.3 GH4169 材料的技术标准1.4 GH4169 化学成分该合金的化学成分分为3类:标准成分、优质成分、高纯成分,见表1-1。
优质成分的在标准成分的基础上降碳增铌,从而减少碳化铌的数量,减少疲劳源和增加强化相的数量,提高抗疲劳性能和材料强度。
同时减少有害杂质和气体含量。
高纯成分是在优质标准基础上降低硫和有害杂质的含量,提高材料纯度和综合性能。
核能应用的GH4169合金,需控制硼含量(其他元素成分不变),具体含量由供需双方协商确定。
当ω(B)≤0.002%时,为与宇航工业用的GH4169合金加以区别,合金牌号为GH4169A。
表1-1[1]%1.5 GH4169 热处理制度合金具有不同的热处理制度,以控制晶粒度、控制δ相形貌、分布和数量,从而获得不同级别的力学性能。
合金热处理制度分3类:Ⅰ:(1010~1065)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。
经此制度处理的材料晶粒粗化,晶界和晶内均无δ相,存在缺口敏感性,但对提高冲击性能和抵抗低温氢脆有利。
Ⅱ:(950~980)℃±10℃,1h,油冷、空冷或水冷+720℃±5℃,8h,以50℃/h 炉冷至620℃±5℃,8h,空冷。
经此制度处理的材料有δ相,有利于消除缺口敏感性,是最常用的热处理制度,也称为标准热处理制度。
Ⅲ:720℃±5℃,8h,以50℃/h炉冷至620℃±5℃,8h,空冷。
经此制度处理后,材料中的δ相较少,能提高材料的强度和冲击性能。
该制度也称为直接时效热处理制度。
1.6 GH4169 品种规格和供应状态可以供应模锻件(盘、整体锻件)、饼、环、棒(锻棒、轧棒、冷拉棒)、板、丝、带、管、不同形状和尺寸的紧固件、弹性元件等、交货状态由供需双方商定。
丝材以商定的交货状态成盘状交货。
1.7GH4169 熔炼和铸造工艺合金的冶炼工艺分为3类:真空感应加电渣重熔;真空感应加真空电弧重熔;真空感应加电渣重熔加真空电弧重熔。
可根据零件的使用要求,选择所需的冶炼工艺,满足应用要求。
1.8GH4169 应用概况与特殊要求制造航空和航天发动机中的各种静止件和转动件,如盘、环件、机匣、轴、叶片、紧固件、弹性元件、燃气导管、密封元件等和焊接结构件;制造核能工业应用的各种弹性元件和格架;制造石油和化工领域应用的零件及其他零件。
近年来,在对该合金研究不断深化和对该合金应用不断扩大的基础上,为提高质量和降低成本,发展了很多新工艺:真空电弧重熔是采用氦气冷却工艺,有效减轻铌偏析;采用喷射成型工艺,生产环件,降低生产成本和缩短生产周期;采用超塑成型工艺,扩大产品的生产范围。
二、GH4169 物理及化学性能2.1 GH4169 热性能2.1.1 GH4169 熔化温度范围1260~1320℃。
2.1.2 GH4169 热导率见表2-1。
表2-1[2]2.1.3 GH4169 比热容见表2-2。
2.1.4 GH4169线膨胀系数见表2-3;2.2 GH4169密度ρ=8.24g/cm3。
2.3 GH4169电性能表2-2[2]表2-3[2]2.4 GH4169磁性能合金无磁性。
2.5 GH4169化学性能2.5.1 GH4169抗氧化性能在空气介质中试验100h后的氧化速率见表2-4。
表2-4三、GH4169力学性能GH4169优质棒材技术标准规定的性能见表3-1。
表3-1[1]注:热处理制度:Ⅱ。
四、GH4169组织结构4.1 GH4169相变温度γ"相是该合金的主要强化相,其最高稳定温度是650℃,开始固熔温度为840~870℃,完全固熔温度是950℃,γ′相也是该合金的强化相,但数量少于γ"相,其析出温度是600℃,完全熔解温度是840℃;δ相的开始析出温度是700℃,析出峰温度是940℃,980℃开始熔解,完全熔解温度是1020℃。
4.2 GH4169时间-温度-组织转变曲线见图4-1。
4.3 GH4169合金组织结构4.3.1 GH4169合金标准热处理状态的组织由γ基体、γ′、γ"、δ、NbC相组成。
γ"(Ni3Nb)相是主要强化相,为体心四方有序结构的亚稳定相,呈圆盘状在基体中弥散共格析出,在长期时效或长期应用期间,有向δ相转变的趋势,使强度下降。
γ′(Ni3(Al、Ti))相的数量次于γ"相,呈球状弥散析出,对合金起一部分强化作用。
δ相主要在晶界析出,其形貌与锻造期间的终锻温度有关,终锻温度在900℃,形成针状,在晶界和晶内析出;终锻温度达930℃,δ相呈颗粒状,均匀分布;终锻温度达950℃,δ相呈短棒状,分布于晶界为主;终锻温度达980℃,在晶界析出少量针状δ相,锻件出现持久缺口敏感性。
终锻温度达到1020℃或更高,锻件中无δ相析出,晶粒随之粗化,锻件有持久缺口敏感性。
锻造过程中,δ相在晶界析出,能起到钉扎作用,阻碍晶粒粗化。
4.3.2 GH4169L相是变形GH4169合金中不允许存在的相,该相富铌,存在于铸锭枝晶间,降低铸锭初熔点,铸锭中L 相固溶温度和均匀化时间的关系见图4-2。
4.3.3 GH4169晶粒度4.3.3.1 GH4169合金在高温固熔(保温2h)时的晶粒长大倾向见图4-3。
4.3.3.2 GH4169棒材(原始晶粒9~9.5级)经不同温度加热并以不同变形量锻造变形后,再经过标准热处理(固溶温度965℃,1h),其晶粒度的变化见表4-1。
4.3.3.3 GH4169锻件技术标准规定,普通锻件平均晶粒度为4级,允许个别2级,高强锻件平均晶粒度为8级,允许个别2级;直接时效锻件平均晶粒度应为10级或更细。
4.3.4 GH4169直接时效的锻件在600~700℃长期时效500h后,析出相数量的变化见表4-2。
表4-1[19]表4-2[11]五、GH4169工艺性能与要求5.1 GH4169成型性能5.1.1 因GH4169合金中铌含量高,合金中的铌偏析程度与冶金工艺直接相关。
电渣重熔和真空电弧熔炼的熔炼速度和电极棒的质量状态直接影响材质的优劣。
熔速快,易形成富铌的黑斑;熔速慢,会形成贫铌的白斑;电极棒表面质量差和电极棒内部有裂纹,均易导致白斑的形成,所以,提高电极棒质量和控制熔速及提高钢锭的凝固速率是冶炼工艺的关键因素。
为避免钢锭中的元素偏析过重,至今采用的钢锭直径不大于508mm。
均匀化工艺必须确保钢锭中的L相完全熔解。
钢锭两阶段均匀化和中间坯二次均匀化处理的时间,根据钢锭和中间坯的直径而定。
均匀化工艺的控制与材料中的铌偏析程度直接相关。
目前生产中采用的1160℃,20h±1180℃,44h的均匀化工艺,尚不足以消除钢锭中心的偏析,因此建议采用以下均匀化工艺:1. 1150~1160℃,20~30h+1180~1190℃,110~130h;2. 1160℃,24h+1200℃,70h[20]。
5.1.2 经均匀化处理的合金具有良好的热加工性能,钢锭的开坯加热温度不得超过1120℃。
锻件的锻造工艺应根据锻件使用状况和应用要求,结合生产厂的生产条件而定。
开坯和生产锻件是,中间退火温度和终锻温度必须根据零件所要求的组织状态和性能来确定,一般情况下,锻造的终锻温度控制在930~950℃之间为宜。
各类锻件的锻造温度和变形程度见表5-1。
表5-1[17]5.1.3 GH4169与板材冷成形有关的性能见表5-2。
5.1.4 GH4169锻件的变形程度、终锻温度和晶粒尺寸之间的关系见图5-1。
5.1.5 GH4169合金动态再结晶见图5-2。
5.1.6 GH4169发动机叶片模锻件由顶锻和终锻二道工序模锻而成,不同的锻造加热温度对叶片综合性能的影响见表5-3,以1020℃顶锻和终锻的叶片组织性能为最佳。
5.1.7 GH4169合金在高温下的变形抗力曲线见图5-3。
5.2 GH4169焊接性能合金具有满意的焊接性能,可用氩弧焊、电子束焊、缝焊、点焊等方法进行焊接。
对直接时效状态的零部件,推荐采用惯性摩擦焊以保持其强化效果,选用合适的摩擦焊工艺参数,在保留细晶组织的同时,焊缝边缘及热影响区还可以保留强化相γ′和γ"以及δ相,因此对接头性能无明显影响,对直接时效的锻件,可在锻造状态进行摩擦焊,焊后再进行直接时效处理(制度Ⅲ),可获得持久强度很高的焊接接头[21]。
表5-2表5-3[19]5.3 GH4169零件热处理工艺航空零件的热处理通常按1.5条规定的Ⅱ、Ⅲ两种制度,即标准热处理制度和直接时效热处理制度进行。
再有技术依据的条件下,也可采用其他制度热处理。
按标准制度热处理时,固溶处理可在950~980℃范围内,在选定的温度±10℃下进行。
5.4 GH4169表面处理工艺必要时可对零件表面局面进行喷丸强化、孔挤压强化或螺纹滚压强化工序,使零件在交变载荷条件下工作的寿命成倍增长。
对要求喷涂耐磨封严涂层的零件,可采用等离子喷涂或爆炸喷涂工艺,以爆炸喷涂为佳,爆炸喷涂涂层与基体结合强度高,涂层致密、硬度高、孔隙率低,耐磨性好。
5.5 GH4169切削加工与磨削性能合金可满意地进行切削加工。
机械加工时必须确保圆弧达到设计要求和平滑过渡,不允许在机械加工、装配或运输中出现尖角、坑与划伤缺口,因为在这些缺陷出,可形成过量的应力集中,在使用中会导致严重事故的发生。
六、GH4169(GH169)低温抗拉及屈服性能(含热处理工艺)表6-1—温度对热轧棒材的拉伸性能影响表6-1注:以上样品热处理工艺:980℃±5℃退火,1小时+720℃±5℃时效,8小时,空冷至620℃±5℃,在620℃±5℃保温到总时效时间达到18小时,+空冷表6-2—锻件(短横向实验)的低温性能表6-2。