恒压供水系统自动控制设计要点
- 格式:doc
- 大小:230.50 KB
- 文档页数:22
恒压供水系统自动控制设计要点编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(恒压供水系统自动控制设计要点)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为恒压供水系统自动控制设计要点的全部内容。
摘要变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。
本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。
全文共分为四章。
第一章阐明了供水系统的应用背景、选题意义及主要研究内容.第二章阐明了供水系统的变频调速节能原理.第三章详细介绍了系统硬件的工作原理以及硬件的选择。
第四章详细阐述了系统软件开发并对程序进行解释.关键词:变频器;恒压供水系统; PLCAbstractFrequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of theThis article primarily for current there is a high degree of automation in the water supply system, serious disadvantages,reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content。
恒压供水自动控制系统设计方案控制策略:1.PID控制策略:根据水压的反馈信号与设定值之间的误差,计算出控制阀门的开度,以调节出水流量,使水压保持在设定值范围内。
2.水泵组合运行策略:根据需求的水流量大小,自动选择合适的水泵数量和运行状态(单泵或多泵并联),以满足供水系统对水压的要求。
3.系统监测与故障诊断策略:通过监测系统中的传感器,实时监测供水系统的压力、流量、温度等参数,并能够自动诊断故障,提供警报和故障排除建议。
硬件选择:1.压力传感器:选用高精度、稳定性好的压力传感器,能够实时准确地测量供水系统中的水压,并将信号传送给控制器。
2.控制阀门:选择高灵敏度、响应速度快的电动或气动控制阀门,能够根据控制信号快速调节水量,实现恒压供水。
3.变频器:选择适合的变频器可以根据供水需求调节水泵的运行频率,提高系统的能效,减少能耗。
4.控制器:选用可编程控制器(PLC)或微处理器控制器(MCU),具有强大的计算和控制能力,能够实时处理信号,控制整个供水系统的运行。
系统布局:1.水源与水池:根据供水需求选择水源和水池的容量,保证水能够持续供应。
2.水泵配置:根据供水系统的水压需求,选择合适的水泵类型和数量,自动控制其启停和运行状态,以稳定供水压力。
3.阀门安装:在输送管道上设置自动控制阀门,根据系统控制信号调节阀门的开度,以控制出水量,保持恒定的水压。
4.传感器安装:将压力传感器、流量计等安装在适当的位置,能够准确地测量和传递相关参数,为系统控制提供实时反馈信号。
5.控制器布置:控制器应该安装在恒温恒湿的环境中,与其他元件紧密配合,并与操作界面(如触摸屏)相连,便于操作和监控系统运行。
以上是对恒压供水自动控制系统设计方案的一个基本描述。
具体的实施方案需要根据实际情况进行具体分析和设计,以确保系统运行的稳定性、可靠性和效果。
恒压供水系统自动控制设计一、控制策略设计:1.压力传感器:安装在水泵的出水管道上,用于实时监测出水压力,并将监测数据反馈给控制装置。
2.控制装置:根据压力传感器的反馈数据,判断当前的出水压力是否达到设定值,并决定是否调整水泵的运行状态。
3.设定值设定:用户可以通过控制装置进行设定,可以根据实际需要设定出水压力的目标值。
二、控制装置设计:1.控制算法:根据压力传感器的反馈数据,控制算法可以采用PID控制策略,通过对比设定值和实际值来计算出相应的控制信号,控制水泵的开启和关闭。
2.控制信号传输:控制装置通过控制信号传输装置将计算出的控制信号传输给水泵控制装置。
3.水泵控制装置:根据接收到的控制信号,控制水泵的启停和运行速度。
可以采用变频控制方式,通过调整水泵的转速来实现出水压力的调节。
三、系统优化设计:1.启停设置:当出水压力低于设定值时,自动启动水泵;当出水压力达到设定值后,自动停止水泵。
避免压力超过设定值或低于设定值过多的情况,保持出水压力稳定。
2.变频控制:根据压力传感器的反馈数据,控制装置可以实时调整水泵的转速。
当出水压力低于设定值时,增加水泵的转速;当出水压力高于设定值时,降低水泵的转速。
通过改变水泵的转速,可以实现稳定的出水压力。
3.故障保护:当水泵运行异常或发生故障时,控制装置应能够及时报警,并关闭水泵以避免进一步损害设备。
同时,还可以设计自动切换备用水泵的功能,保证供水的连续性和可靠性。
综上所述,恒压供水系统的自动控制设计包括压力传感器的安装和数据反馈、控制装置的设计、设定值的设定、控制算法的选择、控制信号传输装置的设计、水泵控制装置的设计等多个方面。
通过合理的设计和控制策略,可以实现恒压供水系统的稳定运行,提高供水的效率和质量,同时还能够减少能源的消耗和设备的损耗。
基于PLC的恒压供水系统的设计恒压供水系统是一种自动调节水压的设备,通常用于建筑物、工业场所和城市供水系统中。
它可以根据需求调节水压,确保水压始终保持在稳定的水平,从而提高供水效率和水质。
在恒压供水系统中,PLC(可编程逻辑控制器)起着至关重要的作用。
PLC是一种用于自动化控制系统的电子设备,可以根据预先编程的指令来控制各种设备和过程。
在恒压供水系统中,PLC可以监测水压、控制水泵和阀门的运行,实现恒压供水系统的自动化控制。
恒压供水系统的设计需要考虑到以下几个方面:1. 水压监测:恒压供水系统需要能够实时监测水压值,以便及时调节水泵的运行。
PLC可以通过传感器来监测水压值,并根据设定的压力范围来控制水泵的启停和速度调节。
2. 水泵控制:恒压供水系统中通常会配备多台水泵,以便实现备用和负载均衡。
PLC可以根据需求来实现自动或手动切换水泵的运行,保证系统能够持续稳定地供水。
3. 阀门控制:恒压供水系统需要通过控制阀门来调节水流量,以保持恒定的水压。
PLC可以根据需要来控制阀门的开启和关闭,从而实现恒压供水系统的自动调节。
4. 故障诊断:恒压供水系统需要具备故障诊断和自动报警功能,以便及时发现和解决问题。
PLC可以通过程序来监测设备的运行状态,并在发现异常情况时及时报警或采取相应的应对措施。
1. PLC控制系统设计恒压供水系统的核心是PLC控制系统,它可以根据预先设定的参数来实现恒定的水压控制。
在设计PLC控制系统时,需要考虑以下几个方面:1.1 控制逻辑设计:根据恒压供水系统的工作原理,需要设计相应的控制逻辑来实现水泵、阀门等设备的自动控制。
可以通过 ladder diagram(梯形图)等图形化编程语言来设计控制逻辑。
1.2 参数设置:需要在PLC中设置水压的目标数值、压力范围、水泵启停条件等参数,以实现恒定水压的控制。
2. 传感器和执行器选型恒压供水系统需要配备压力传感器、水流量传感器、温度传感器等传感器,以及电动阀门、电动水泵等执行器。
工厂恒压供水控制系统设计在设计工厂恒压供水控制系统时,需要考虑以下几个方面:1.系统结构设计:系统可以包括水泵、水箱、压力传感器、控制器等设备。
水泵负责将水从水源中抽取,然后将水送至水箱进行储存,并通过压力传感器实时监测水箱内的水压情况。
控制器根据传感器反馈的数据,控制水泵的工作状态,以保持水压的稳定。
同时,系统还应该设计有报警装置,一旦发生异常情况,系统能够及时发出警报。
2.水泵选择:在选择水泵时,需要根据工厂的实际需求来确定水泵的流量和扬程。
流量决定了水泵每分钟输送的水量,扬程则决定了水泵能够达到的最高供水高度。
此外,还需要考虑水泵的功率和效率,以及工作可靠性和维护方便性。
3.水箱容量和位置:水箱的容量应根据工厂的供水需求而确定,一般可以根据平均日供水量计算。
水箱的位置应尽量选择在离水源和用水点较近的位置,以减少管道的长度和压力损失。
4.压力传感器选型:压力传感器应具备较高的精度和稳定性,能够准确测量水箱内的水压。
传感器的输出信号一般为模拟信号,需要通过模数转换器转换为数字信号,进一步传输到控制器。
5.控制器设计:控制器应具备自动控制的功能,能够根据压力传感器的反馈数据,自动调节水泵的启停和转速。
控制器还应具备一定的运算能力,能够实现压力设定、报警、监测和数据记录等功能。
6.系统的安全性和可靠性:为了确保系统的安全性和可靠性,应在系统中设置合适的安全装置,如过流保护、过压保护和短路保护等。
此外,在日常维护工作中应定期对系统进行检查和维护,及时发现并排除故障。
7.系统的扩展性和可升级性:在设计系统时,应考虑到工厂未来扩建或改造的可能性。
系统应具备良好的扩展性和可升级性,以便进行后续的改造和升级。
总而言之,工厂恒压供水控制系统的设计需要考虑到工厂的实际需求和水源条件,合理选择水泵、水箱、压力传感器等设备,并设计合适的控制器。
同时,还应注意系统的安全性和可靠性,以及系统的扩展性和可升级性。
恒压供水系统设计1. 引言恒压供水系统是一种自动调节水压来实现稳定供水的系统。
它可以根据用户实际需求,根据不同的用水量和水压变化,自动调整供水压力,确保供水的稳定性和可靠性。
本文将对恒压供水系统的设计进行详细探讨。
2. 恒压供水系统组成恒压供水系统主要由以下几个部分组成:2.1 水泵水泵是恒压供水系统的核心组件。
它通过电动机驱动,将水从储水池或水源抽取出来,然后通过管道输送到用户处。
在设计恒压供水系统时,需要根据用户的用水需求和水压要求来选择合适的水泵类型和型号。
2.2 电控柜电控柜是恒压供水系统的控制中心,用于自动控制水泵的启停和调节水泵的转速。
电控柜通常包括控制面板、主开关、电流表、电压表等设备,通过设定合适的参数和控制逻辑,实现恒定的供水压力。
2.3 储水池储水池用于存储从水泵抽取出来的水,并提供给用户使用。
储水池可以根据用户的用水量和用水习惯的不同,选择不同的类型和容量。
2.4 压力传感器压力传感器用于实时监测供水系统的压力变化。
它可以将压力信号转换为电信号,并传输给电控柜,从而实现对水泵的自动控制。
2.5 控制阀控制阀用于调节水流量和压力,确保恒定的供水压力。
在恒压供水系统中,控制阀通常位于泵出口处或者系统的关键位置,通过开度调节,控制水泵的出水量和压力。
3. 恒压供水系统设计考虑因素在设计恒压供水系统时,需要考虑以下因素:3.1 用水量和压力需求根据用户实际用水量和水压需求,确定恒压供水系统所需的水泵流量和压力范围。
这需要进行详细的调研和数据分析,确保系统能够满足用户的实际需求。
3.2 环境条件在选择水泵和相关设备时,需要考虑环境条件,如温度、湿度等因素。
这些因素可能影响水泵的性能和使用寿命,因此需要选择合适的设备以适应不同的环境条件。
3.3 安全性和可靠性在设计恒压供水系统时,需要确保系统的安全性和可靠性。
这包括采用符合安全标准的设备、合理设计管道和阀门等,以减少系统故障和事故的发生。
恒压供水系统设计2篇恒压供水系统设计(一)恒压供水系统是一种通过自动调节管网压力来实现稳定供水的系统。
其设计原理是通过控制设备,使得在各个用水点的供水压力保持不变,不受流速、水量和管道布置的变化影响。
恒压供水系统设计的目标是提供稳定的水压,确保用户在任何时间、任何位置都能得到符合需求的供水。
对于恒压供水系统的设计,首先需要确定系统所需的最小输出压力。
这可以根据用户需求、水压变化规律和供水区域的具体情况来决定。
然后,根据所需的最小输出压力确定恒压供水系统的工作参数,包括自动调节阀的开度、泵的流量和压力控制设置等。
在设计过程中,需要充分考虑用水的峰值和谷值,以及管道的阻力特性等因素。
根据实际情况,可以采用单一泵或多泵并联供水的方式来满足用水量的变化需求。
同时,还要考虑到水泵的启停次数,以减少能耗和设备磨损。
在安装恒压供水系统时,要确保管道的正常运行以及管网的稳定性。
为了避免噪音和水锤现象,需要进行合理的管道布置和降压装置的设置。
此外,还要注意管道的抗震性能和排气阀的设置,以保证系统的安全运行。
恒压供水系统设计(二)在恒压供水系统的设计中,需要考虑到不同区域的压力平衡和调节器的选择。
为了实现恒压供水,可以采用稳压罐、自动调节阀或调速泵等设备。
这些设备能够监测用水情况,并根据实际需求调整水压,保证供水的稳定性。
在恒压供水系统中,还需要注意水源的选择和利用。
优先选择自然水源,如地下水和河流水,以减少对自来水厂的依赖,并降低成本。
同时,要考虑水质的问题,采用适当的水处理设备进行处理,确保供水质量达到标准要求。
在设计恒压供水系统时,还应考虑到紧急情况的处理和备用供水的设置。
如遇到水源中断或管道故障时,要能够及时启动备用供水系统,以保证用户正常用水。
同时,要有紧急停水装置,用于紧急情况下的停水处理。
在系统运行过程中,要定期进行检查和维护,保证设备的正常工作和供水系统的稳定性。
对供水泵、自动调节阀和稳压罐等设备进行定期保养,清洗管道内部的杂质和沉积物,确保系统的畅通。
基于PLC的恒压供水系统的设计
恒压供水系统是一种应用广泛的自动化控制系统,可以实现对供水系统的稳定控制,使水压恒定。
本文将介绍基于PLC的恒压供水系统的设计。
恒压供水系统的工作原理是通过对水泵的控制,使得水泵的流量可以根据需求进行自动调节,从而保持系统中的水压恒定。
PLC(可编程逻辑控制器)是一种专门用于工业自动化控制的计算机控制系统,具有可编程性和灵活性强的特点,适用于对恒压供水系统进行控制和监测。
基于PLC的恒压供水系统的设计主要包括以下几个方面:水泵控制逻辑设计、传感器选择和布置、PLC程序设计和系统监测。
在水泵控制逻辑设计方面,首先需要确定恒压供水系统的工作方式,例如开启水泵的条件、关闭水泵的条件等。
然后,根据系统的需求和特点,设计相应的控制逻辑,如水泵的启停控制、流量调节等。
传感器的选择和布置是恒压供水系统设计中非常重要的一步。
常用的传感器有压力传感器、液位传感器等。
通过这些传感器可以实时监测水压和水位等参数,并将数据反馈给PLC进行处理和控制。
PLC程序的设计是实现恒压供水系统自动化控制的核心。
根据系统的要求,设计合理的控制策略,编写PLC程序,实现对水泵的自动控制和流量调节。
系统监测是基于PLC的恒压供水系统设计中的一项重要任务。
通过PLC可以实时监测系统的运行状态、水泵的工作状态、水压和水位等参数,并及时报警或做出相应的控制。
变频恒压供水控制系统设计一、引言随着社会的不断发展和技术的不断创新,供水系统的控制方式也在不断更新和改进。
传统的供水系统控制方式存在着一些问题,如压力不稳定、能耗高、运行维护成本高等,因此采用变频恒压供水控制系统已成为一种趋势。
本文将对变频恒压供水控制系统的设计进行介绍。
二、变频恒压供水控制系统的原理1. 变频技术变频技术是指通过改变电机的输入频率来控制电机的转速,从而达到控制流量的目的。
在供水系统中,采用变频技术可以实现根据实际需要自动调节水泵的转速,以满足供水系统的变化需求,降低能耗和运行成本。
2. 恒压技术恒压技术是指在供水系统中通过控制泵的运行以保持系统压力稳定,不受水流量等因素影响。
采用恒压技术可以有效避免供水压力不稳定的问题,提高供水系统的稳定性和可靠性。
三、变频恒压供水控制系统设计要点1. 系统布局设计首先需要对供水系统的布局进行合理设计,包括水泵、水箱、管道以及控制设备等的布置位置,以确保系统的正常运行和维护。
2. 变频器选择在变频恒压供水控制系统中,变频器是核心设备之一,需要选择合适的变频器来控制水泵的转速。
在选择变频器时需要考虑供水系统的实际需求、电机的功率和运行环境等因素,以确保系统的稳定运行。
3. 控制系统设计控制系统是整个变频恒压供水控制系统的核心,需要根据实际需求设计合理的控制逻辑和参数设置,以保证系统的稳定性和可靠性。
还需要考虑控制系统的扩展性和智能化,以满足供水系统未来的发展需求。
4. 传感器选择传感器是用于实时监测系统压力和流量情况的设备,需要选择可靠的传感器来确保系统的准确监测和控制。
5. 配电系统设计在变频恒压供水控制系统中,还需要考虑配电系统的设计,确保系统的电源供应稳定可靠。
6. 系统安全保护设计为了保障供水系统的正常运行,需要对系统进行合理的安全保护设计,包括过流、过压、短路等多种保护机制的设置,以减少系统的损坏和安全事故的发生。
四、实现效果采用变频恒压供水控制系统可以实现供水系统的自动化、稳定性和节能性的提高,并且减少了运行维护成本。
收稿日期:2020-02-26第一作者简介:刘建生(1962—),男,毕业于重庆大学,本科,电气工程师研究方向为自动化。
DOI:10.16525/ki.14-1362/n.2020.05.27总第191期2020年第5期Total of 191No.5,2020两化融合恒压供水自动控制系统设计刘建生(太原市滨河体育中心,山西太原03006)摘要:通过基于PLC 恒压供水控制系统的设计,然后分析了PLC 的工作原理以及交流电机利用变频器的调速原理,从而完成小区恒压供水系统硬件设计和通过梯形图进行软件设计,该系统保证了居民的用水质量且高效节能。
关键词:节能;恒压;变频调速;PLC 中图分类号:TP273文献标识码:A文章编号:2095-0748(2020)05-0066-03现代工业经济和信息化Modern Industrial Economy and Informationization 引言在供水系统中,通常以流量为控制目的;其工作原理是根据用户需水量的变化调整水泵电机的转速,使管网压力始终保持恒定。
本设计课题任务主要是基于PLC 的恒压供水系统,该系统由两台水泵供水,水泵电机分别为M1、M2;由交流接触器KM1和KM2控制。
监测管网中水压由装在泵站出口传感器PT 完成。
采用闭环单回路反馈控制,系统不断采集管网内压力信号与给定压力设定值进行比较,经过运算后将偏差值送给PLC 进行调节,PLC 输出信号送给执行机构,执行机构接收到指令来改变自己的工作运行方式,从而使管内的压力发生变化。
如此循环直到管网压力保持在一个恒定的状态[1]。
1基本原理恒压供水控制不但可以提高供水的质量,而且可以通过变频技术降低能耗,提高设备运行的可靠性。
当用水量增大时电机加速,用水量减小时电机减速,如此循环直到管网压力保持在一个恒定的工作状态[2]。
流量特性:阀门开度和水泵转速一定,流量越大,扬程越小。
管阻特性:阀门开度和水泵转速一定,流量越大,扬程越大。
恒压供水控制系统要点第一章绪论1.1 课题的的产生及其研究意义水是万物之源,在现实生产生活中不可或缺。
在我国水资源和电能短缺的客观现状下,节水节能就成为了当前迫切需要进行推广的。
但是,长期以来在市政供水、高层建筑供水、工业生产循环用水等几个方面和供水技术一直比较落后且自动化程度低。
主要表现在用水高峰期水的供给量常常低于需求量,水压降低无法正常供水,但在用水低谷期水的供给量常常高于需求量,出现水压升高供水供过于求的现象。
这样不仅造成水资源及电能的浪费,同时水压过高有可能导致输水管爆裂和用水设备的损坏。
在这样的历史背景下,恒压供水控制系统应运而生。
1.2 恒压供水控制系统的国内外研究概况恒压供水控制系统是在变频调速技术的发展之后逐渐发展起来的。
变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。
应用在变频恒压供水控制系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。
从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。
即1968年,丹麦的丹佛斯公司发明并首家生产变频器(丹佛斯是传动产品全球五大核心供应商之一)后,随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水控制功能的变频器,像瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循坏方式”两种模式。
目前国内有不少在做变频恒压供水工程的公司,大多采用国外品牌的变频器控制水泵的转速。
对于水管的管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。
变频恒压供水控制系统设计一、系统设计概述变频恒压供水控制系统是一种用于城市供水系统和建筑物水供系统的先进控制系统。
通过使用变频控制器和压力传感器,系统能够监测并调节系统的运行,实现水压恒定,避免因为供水系统压力不足或者过高而导致的浪费和损坏。
本文将阐述变频恒压供水控制系统的设计原理和技术要点。
二、变频恒压供水控制系统的工作原理1. 压力传感器检测变频恒压供水控制系统首先通过安装在管道上的压力传感器实时检测供水管道内的水压情况。
压力传感器将检测到的水压情况反馈给控制系统。
2. 控制器调节控制系统根据压力传感器反馈的水压情况,利用变频器调节水泵的转速,以使得供水管道内的压力始终维持在设定的恒定值之上。
当管道内的水压低于设定值时,控制系统将增加水泵的转速以增加供水量;当管道内的水压超过设定值时,控制系统将降低水泵的转速以减少供水量。
3. 故障自诊断系统还具有故障自诊断功能,当传感器或控制器出现故障时,系统能够自动诊断并给出报警信号,指示维修人员前往修复。
1. 变频器的选型变频器是变频恒压供水控制系统中的关键组件,它能够根据控制系统的指令调节水泵的转速。
在选型时,需要考虑控制系统对变频器的精度和稳定性的要求,以及水泵的功率和额定转速。
一般情况下,应选择具有较高性能和较高精度的变频器,以保证控制系统的准确性和稳定性。
压力传感器是变频恒压供水控制系统中用于检测管道内水压情况的装置,因此其精度和可靠性对系统的性能至关重要。
在选型时,需要考虑管道内水压的测量范围和精度要求,以及传感器的耐压能力和抗干扰能力。
3. 控制系统的程序设计控制系统的程序设计需要考虑到系统运行的稳定性和响应速度。
程序设计应充分考虑水泵和变频器的控制逻辑,并充分考虑各种工况下的供水量和供水压力的变化趋势,以实现系统的准确控制和稳定运行。
4. 系统的安全保护设计变频恒压供水控制系统需要具备完善的安全保护功能,以防止水泵和管道的损坏。
安全保护设计应考虑到水泵的过流、过载和短路等故障情况,并配备相应的保护装置,及时停止水泵的运行以避免对设备和管道的损坏。
恒压供水设计方案恒压供水设计方案一、设计原则1. 提供稳定的水压,保证用户用水的舒适性和正常使用。
2. 节约能源,降低供水成本,提高供水效率。
3. 保证供水管道的可持续发展,具有一定的扩展性和可靠性。
二、设计方案1. 供水泵站设计(1)选择合适的泵站设备,应根据供水系统的工作压力、流量和运行特点来确定。
(2)采用多台泵机并联的方式工作,能够实现安全、有效地供水。
(3)设置自动切换和备用泵机,以防止主泵故障或维护时造成供水中断。
(4)设置调节阀门和变频器,可根据实际需求调整泵机的工作状态,提高供水效率。
2. 供水管道设计(1)选择合适的管材和管径,应根据供水量、用水地点和距离来确定,以保证供水的稳定性和正常使用。
(2)对于远离泵站的供水管道,应采取适当的措施降低水压损失,例如设置增压泵、增设储水罐等。
(3)建立完善的管网系统,包括主干管、支线管和用户管道,确保供水的覆盖范围和供水质量。
3. 控制系统设计(1)采用先进的水位监测技术来监控水池或储水罐的水位变化,及时调整泵机的运行状态。
(2)安装流量计和压力传感器来监测和调节供水的流量和压力,保持供水的稳定性。
(3)设置自动控制系统,根据供水量和用户需求来调整泵机的运行状态,实现恒压供水。
三、设备优化1. 选择高效节能的供水泵机,减少能源消耗。
2. 采用智能控制系统,实现供水过程的自动化控制和调整,提高供水效率。
3. 定期对设备进行检测和维护,保证设备的正常运行和寿命。
四、安全保障措施1. 为供水设备安装过压和过流保护装置,以防止设备因过载而损坏。
2. 设备运行过程中及时发现并处理漏水和管道破损等问题,及时修复和更换。
3. 建立完善的供水管理系统,加强对供水质量和供水压力的监测和控制,确保供水的安全性和稳定性。
综上所述,恒压供水设计方案应根据实际需求和条件来确定,要充分考虑稳定性、节能和可靠性等因素,以提供舒适的水压和正常的供水。
在设计和运行过程中,要定期检测和维护设备,保证其正常运行和寿命,同时要加强对供水质量和压力的监测和控制,保障供水的安全性和稳定性。
恒压供水控制系统设计毕业设计引言恒压供水控制系统是一种常见的供水设备,在住宅、商业建筑和工业场所被广泛应用。
它通过保持供水管道中的压力恒定,从而实现稳定且高效的供水。
本文将深入探讨恒压供水控制系统的设计原理、工作原理以及相应的优化策略。
设计原理恒压供水控制系统的原理基于调节供水压力以保持恒定。
该系统主要由水泵、压力传感器、控制器和执行器组成。
当供水压力下降时,传感器会检测到这一变化并通过控制器向水泵发送信号,启动水泵来提供更多的水压。
一旦供水压力恢复到设定的范围内,控制器会停止水泵的运行。
工作原理1.传感器实时监测供水压力,并将测量值传送给控制器。
2.控制器接收到传感器的测量值后,与设定值进行比较,并根据差异来判断是否需要调整供水压力。
3.若供水压力低于设定值,则控制器向水泵发送信号,启动水泵。
4.水泵开始提供更多的水压,使得供水压力逐渐恢复到设定值。
5.一旦供水压力达到设定值,控制器会停止向水泵发送信号,水泵停止工作。
6.供水压力在一定范围内波动,以保持恒压供水。
设计要求恒压供水控制系统的设计需要满足以下要求:1. 稳定性要求恒压供水控制系统需要能够在供水压力波动较大的情况下,保持稳定的恒压供水。
系统设计时应考虑传感器的灵敏度和控制器的响应速度,以及调节水泵的能力,以适应不同的工作负载。
2. 节能要求恒压供水控制系统应能够根据实际需求控制水泵的运行时间和水流量,以实现节能的目标。
系统设计需要考虑能效比较高的水泵和控制器,并优化控制算法,以降低能耗。
3. 可靠性要求恒压供水控制系统需要具备一定的可靠性,以确保长期稳定运行。
系统设计时应考虑设备的寿命和维护周期,选择质量可靠的传感器、控制器和水泵,并合理规划设备的布局和看护。
4. 安全性要求恒压供水控制系统应具备一定的安全性能,以避免因供水失控而引发的意外事故。
系统设计时应考虑安全保护装置的设置,如水泵超压保护、水位保护等,并制定相关安全操作规程。
综合实训报告实训项目:系部:电气工程系专业:班级:学号:姓名:同组成员:指导教师:日期:摘要随着社会的发展,恒压供水越来越重要。
本系统以PLC与变频器控制水泵工作,根据压力给定的理想值信号及管网水压的反馈信号进行比较,变频器根据比较结果调节水泵的转速,达到控制管网水压的目的。
文中重点叙述了变频节能原理,恒压供水原理及PID控制方式。
并提供控制系统硬件和控制软件,经现场模拟调试成功,实现运行可靠、节能、低噪,维护简单等效果。
恒压供水是指在供水网系中用水量发生变化时,出口压力保持不变的供水方式。
系统由可编程控制器、变频器、水泵电机组、压力变送器等构成。
共三台电机,其中由一台变频器拖动2台电动机的起动、运行与调速,1台电机备用。
控制系统中采用德国SIEMENS公司的S7-300可编程控制器来控制水泵电机的投入台数及运行方式;同时利用其中的数字PID控制器,由FB41将压力给定值与测量值的偏差进行处理,实时控制变频器的输出频率,进而改变水泵电动机的转速来改变水泵出水口流量,实现管网压力的自动调节,使管网压力稳定在设定值附近。
此方法具有短路保护、过载保护功能,工作稳定可靠,大大延长了电机的使用寿命关键词:恒压供水;PLC控制;闭环PID目录摘要 (1)一:引言…………………………………………………………………………………………….. 二:变频恒压供水控制系统简介……………………………………………………...1.恒压供水系统的目的和意义……………………………………………………..2.恒压供水系统的特点……………………………………………………………….. 三:变频恒压供水控制系统理论分析……………………………………………...1.变频恒压供水控制系统构成…………………………………………………….2.变频恒压供水控制系统理论模型……………………………………………. 四:变频恒压供水控制系统设计与选型………………………………………...1.变频恒压供水系统设计……………………………………………………………2.变频恒压供水系统器件选型…………………………………………………..1)可编程逻辑控制器(plc)简介……………………………………2)变频器简介………………………………………………………………….3)变频器与plc的连接…………………………………………………..4)压力传感器的简介……………………………………………………..3.变频恒压供水系统主电路设计…………………………………………4.变频恒压供水系统控制电路设计…………………………………..1)控制系统主程序设计…………………………………………………..5. PID设计………………………………………………………………………………1)PID控制…………………………………………………………………….五:变频恒压供水控制系统调试……………………………………………………六:总结………………………………………………………………………………………….. 七:研究愿望……………………………………………………………………………………….. 参考文献…………………………………………………………………………………………………附件……………………………………………………………………………………………………….. 致谢词………………………………………………………………………………………………..一:引言随着社会经济的飞速发展,城市建设规模的不断扩大,人口的增多以及人们生活水平的不断提高,对城市供水的数量、质量、稳定性提出了越来越高的要求。
题目恒压供水的自动控制设计摘要建设节约型社会,合理开发、节约利用和有效保护水资源是一项艰巨任务。
根据高校用水时间集中,用水量变化较大的特点,分析了校园原供水系统存在成本高,可靠性低,水资源浪费,管网系统待完善的问题。
提出以利用自来水水压供水与水泵提水相结合的方式,并配以变频器、软启动器、PLC、微泄露补偿器、压力传感器、液位传感器等不同功能等传感器,根据管网的压力,通过变频器控制水泵的转速,使水管中的压力始终保持在合适的范围。
从而可以解决因楼层太高导致压力不足及小流量时能耗大的问题。
另外水泵耗电功率与电机转速的三次方成正比关系,所以水泵调速运行的节能效果非常明显,平均耗电量较通常供水方式节省近四成。
结合使用可编程控制器,可实现主泵变频,具有缺相、缺水保护功能,工作稳定可靠,大大延长了电机的使用寿命。
关键词:恒压变频供水,PLC,压差供水,自动控制目录前言 (4)第一章绪论 (5)§1.1 课题设计背景及意义 (5)§1.2 课题的设计内容 (7)§1.2.1 恒压供水系统的选型 (7)§1.2.2 系统的硬件设计 (7)§1.2.3 系统的软件设计 (7)第二章系统控制方案的确定 (8)§2.1 变频器的定义 (8)§2.2 变频调速的工作原理 (8)§2.3 变频器调速运行的节能原 (8)§2.4 变频器的技术特点及应 (9)§2.5 变频器的外围设备及选择 (10)§2.6 制动电阻的计算 (12)§2.7 变频器硬件设计 (13)§2.8 变频器的应用 (14)§2.9 工艺流程简介 (15)第三章变频器恒压供水系统硬件设计 (18)§3.1 PLC的定义 (18)§3.2 梯形图编程语言 (19)§3.3 PLC的选择................................................................ ..21§3.4变频器的选型 (23)§3.5 水泵的选型 (24)§3.6压力传感器的选型 (24)§3.7系统组成 (24)§3.8系统控制工作原理 (26)§3.9变频器恒压供水系统硬件设计 (27)§3.9.1 缺水保护电路 (28)§3.9.2 缺相相序保护电路 (29)第四章变频器恒压供水系统软件设计 (30)§4.1 变频器恒压供水系统软件设计 (30)§4.2 供水系统的PLC系统梯形 (31)§4.3 系统工作过程分析 (37)§4.4 控制系统程序设计 (38)§4.4.1 启动程序 (38)§4.4.1 水泵切换程序 (38)§4.4.2 逐台停泵程序 (39)§4.4.3 故障处理 (39)第五章结论 (40)参考文献 (41)致谢 (42)前言随着变频调速技术的发展和人们节能意识的不断增强,变频恒压供水系统的节能特性被广泛地应用于住宅小区、高层建筑的生活及消防供水系统。
MCGS组态课程设计—恒压供水系统班级:0 班姓名:学号:恒压供水系统概述供水系统是国民生产生活中不可缺少的重要一环。
传统供水方式占地面积大,水质易污染,基建投资多,而最主要的缺点是水压不能保持恒定,导致部分设备不能正常工作。
由于安全生产和供水质量的特殊需要,对恒压供水压力有着严格的要求,而且在相当一部分领域有着很好的应用。
自来水供水、生活小区及消防供水系统。
工业企业生活、生产供水系统及工厂其它需恒压控制领域(如空压机系统的恒压供气、恒压供风)。
各种场合的恒压、变压控制,冷却水和循环供水系统。
污水泵站、污水处理及污水提升系统。
农业排灌、园林喷淋、水景和音乐喷泉系统。
宾馆、大型公共建筑供水及消防系统等都广泛的应用了恒压供水系统。
课程设计任务和目的本课程设计要求在修完《监控系统程序设计技术》课程后,运用工业监控系统组态软件(MCGS),结合一个自动控制系统,完成该控制系统的上位机监控系统组态设计。
使学生掌握监控软件的设计和编程方法,得到计算机监控系统程序设计与调试,以及编写设计技术文件的初步训练。
为从事计算机控制方面的工作打下一定基础。
一、恒压供水系统原理用户用水量一般是动态的,因此供水不足或供水过剩的情况时有发生。
而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力大。
保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。
恒压供水设备中采用多泵供水方案,当供水对用水发生相对变化时,供水系统自动调节供水1阀和供水2阀的开关,以次来保持供水管道中的压力恒定。
恒压供水系统效果图封面:二、组态步骤2.1 工程分析在开始组态工程之前,先对该工程进行剖析,以便从整体上把握工程的结构、流程、需实现的功能及如何实现这些功能。
工程框架:1.4个用户窗口:水位控制、数据显示、报警窗口、封面2.4个主菜单:系统管理、数据显示、历史数据、报警数据3.4个子菜单:登录用户、退出登录、用户管理、修改密码4.5个策略:启动策略、退出策略、循环策略、报警数据、历史数据数据对象:出水阀、出水压力、供水1阀、供水2阀、开水阀、流量1、流量2、流量3、水箱液位、水箱液位上限、水箱液位下限、停止、稳压阀、压力上限、压力下限、组对象2.2 建立工程可以按如下步骤建立样例工程:A.鼠标单击文件菜单中"新建工程"选项,如果MCGS安装在D盘根目录下,则会在D:\MCGS\WORK\下自动生成新建工程,默认的工程名为:"新建工程X.MCG"(X表示新建工程的顺序号,如:0、1、2等)B.选择文件菜单中的"工程另存为"菜单项,弹出文件保存窗口。
变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。
本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。
全文共分为四章。
第一章阐明了供水系统的应用背景、选题意义及主要研究内容。
第二章阐明了供水系统的变频调速节能原理。
第三章详细介绍了系统硬件的工作原理以及硬件的选择。
第四章详细阐述了系统软件开发并对程序进行解释。
关键词:变频器;恒压供水系统; PLCFrequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of theThis article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the proceduresKey words:Cam、high deputy、automation目录第一章变频恒压供水系统简介 (1)第二章水泵调速运行的节能原理 (3)第三章系统硬件的工作原理及硬件选择 (5)第一节PLC的工作原理及选择 (5)第二节变频调速系统原理及选择 (6)第三节压力传感器的选择 (9)第四节水泵的选择 (10)第五节控制电路 (10)第四章系统软件的开发 (12)第一节PLC的工作方式 (12)第二节PLC连接图 (13)第三节恒压供水的工艺流程 (14)结束语 (17)谢辞 (18)参考文献 (19)第一章变频恒压供水系统简介我国长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,工业自动化程度低。
主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象;而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时会造成能量的浪费,同时还有可能造成水管爆裂和用水设备的损坏。
传统调节供水压力的方式,多采用频繁启/停电机控制和水塔二次供水调节的方式,前者产生大量能耗的,而且对电网中其他负荷造成影响,设备不断启停会影响设备寿命;后者则需要大量的占地与投资。
且由于是二次供水,不能保证供水质的安全与可靠性。
而变频调速式的运行十分稳定可靠,没有频繁的启动现象,启动方式为软启动,设备运行十分平稳,避免了电气、机械冲击,也没有水塔供水所带来的二次污染的危险。
由此可见,变频调速恒压供水系统具有供水安全、节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。
变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。
在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、压频比控制及各种保护功能。
应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。
从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。
随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本SAMC公司,就推出了恒压供水基板,备有“变频泵固定方式”“变频泵循环方式”两种模式。
它将PID调节器和PLC可编程控制器等硬件集成,在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。
这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。
目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。
但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。
成都希望集团(森兰变频器)也推出恒压供水专用变频器(5.5kW-22kW),无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。
该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。
可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC),的变频恒压供水系统的水压闭环控制研究得不够。
因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。
第二章水泵调速运行的节能原理全自动变频调速供水控制系统采用专用供水控制器控制变频调速器,通过安装在管网上的远传压力表,把水压转换成电信号,通过接口输入控制器内置的PID控制器上,用以改变水泵转速。
当用户用水量增大,管网压力低于设定压力时,变频调速器的输出频率将增大,水泵转速提高,供水量加大。
当达到设定压力时,水泵恒速运转,使管网压力稳定在设定值上。
反之当用户用水量少,管网压力高于设定压力时,变频调速器的输出频率将降低,水泵转速下降,供水量减少,使管网压力稳定在设定压力,这样反复循环就达到了恒压变量供水的目的。
图2-1供水系统原理图供水系统的工作原理如图2-1所示。
由自来水管网或其它水源提供的水进入蓄水池经加压水泵进入用户管网管路。
通过压力传感器按提供网的压力信号,传送给控制系统的PID,经PID运算后输出信号控制变频器的输出频率,从而控制水泵的转速进而保持供水管道的压力基本恒定。
用户用水量大时,管网管路压力下降变频器频率就升高,水泵转速加快,反之频率下降,水泵减速运行,从而维持恒压供水。
当用水量大于一台水泵的最大供水量时,通过PLC自动切换电路工作再投入一台水泵,根据最多用水量的大小可投入数台水泵。
在供水系统中,控制对象是水泵,控制目标是保持管网水压恒定,控制方法是压力信号的反馈闭环控制。
它的自动控制原理图见图2-2。
图2-2 变频式恒压供水自动控制原理图第三章系统硬件的工作原理及硬件选择第一节PLC的工作原理及选择PLC是以微机控制技术为基础,通过编程,可以执行诸如逻辑判断,顺序控以时,计数,运算等功能,并通过数字或模拟I/O组件控制机械设备。
与传统的继电器控制盘相比,PLC控制系统体积小,可靠性高;更易使用和维护,且能在工厂环境下进行编程;便于扩充和修改功能,又具有向中央数据采集系统传递信息的能力;通过接插件,所有输入端点能直接和工业现场的开关,接点直接相连,所有输出端点能直接驱动继电器、电磁阀、电机启动器的线圈等。
它的发展大致经历了三个发展时期。
1.形成期(1970-1974年)早期的PLC采用小规模的IC构成专用的逻辑处理芯片(CPU),采用机器语言或汇编语言编程,仅有逻辑控制指令,控制点少,功能简单,并没有获得广泛重视。
2.成熟期(1974-1978年)随着单电源的8位处理器的出现,在小型化、高可靠性多功能及价格等方面,PLC的研制和应用水平有了飞速发展和提高。
PLC开始具有了多个CPU,设置了定时器、计算器并具有了算术运算功能。
3.加速发展期(1978年以来)从70年代末到80年代,PLC的应用和制造呈现了蓬勃发展的趋势。
一方面研制出了高性能不同规模的PLC控制系统,开发了多种智能I/O模块,充分吸收了计算机和通讯技术,实现了分布式分级控制的PLC网络系统。
另一方面也逐一生产一般机械加工逻辑控制而价格较为便宜的微小型PLC,对PLC普及应用起了重要推动作用。
可编程控制器(programmable logical controller,简称PLC)已经越来越多地应用于工业控制系统中,并且在自动控制系统中起着非常重要的作用。
所以,对PLC的正确选择是非常重要的。
1.工作量这一点尤为重要。
在自动控制系统设计之初,就应该对控制点数(数字量及模拟量)有一个准确的统计,这往往是选择PLC的首要条件,一般选择比控制点数多10%-30%的PLC。
(本设计中开关量16个,控制量6个,1个模拟量输出,3个模拟量输入)2.工作环境工作环境是PLC工作的硬性指标。