焊接原理与焊点可靠性共66页文档
- 格式:ppt
- 大小:6.93 MB
- 文档页数:33
焊点的质量与可靠性1. 焊点质量的重要性焊接是一种常见的金属连接方法,它在各种工业领域都有广泛的应用。
焊点的质量直接关系到焊接件的强度、可靠性和寿命。
因此,焊点质量的高低对于产品的质量以及人身安全都具有重要的影响。
2. 影响焊点质量的因素焊点的质量受多种因素的影响,以下是几个常见的因素:2.1. 焊接材料的选择焊接材料的选择对焊点质量具有重要影响。
合适的焊接材料可以提高焊点的强度和韧性,从而提高焊接件的可靠性。
一般来说,焊接件的材料应与被焊接材料具有良好的相容性,以确保焊接的质量。
2.2. 焊接工艺参数的控制焊接工艺参数,如焊接电流、焊接时间和焊接速度等,对焊点的质量起着重要的影响。
过高或过低的焊接电流可能导致焊点的气孔和裂纹,影响焊接件的可靠性。
因此,必须严格控制焊接工艺参数,以获得高质量的焊点。
2.3. 表面处理焊接前的表面处理对焊点质量也具有重要影响。
表面的油污、氧化物以及其他污染物可能导致焊接时的缺陷或不良结构,降低焊点的质量。
因此,在焊接前必须对工件进行适当的清洗和处理,确保焊点质量可靠。
3. 焊点质量的检测方法为了保证焊点的质量和可靠性,需要对焊点进行有效的质量检测。
以下是一些常见的焊点质量检测方法:3.1. 目测检测目测检测是最简单的焊点质量检测方法之一。
通过肉眼观察焊点表面的情况,判断焊点是否存在裂纹、疏松和气孔等缺陷。
这种方法成本低廉,操作简单,但对于微小缺陷的检测效果较差。
3.2. X射线检测X射线检测是一种非破坏性的焊点检测方法。
通过照射焊点并观察照片来检测焊点内部的缺陷。
X射线检测能够发现微小的裂纹和气孔,可以较为准确地评估焊点的质量。
然而,X射线设备的成本较高,需要专业人员进行操作。
3.3. 超声波检测超声波检测是一种常用的焊点质量检测方法。
通过发送超声波脉冲并接收回波,来评估焊点内部的缺陷情况。
超声波检测可以检测到焊点的裂纹、夹渣和未熔合等缺陷,具有较高的灵敏度和准确性。
SMT焊点可靠性研究前言近几年﹐随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的飞速发展﹐SMT焊点可靠性问题成为普遍关注的焦点问题。
与通孔组装技术THT(Through Hole Technology)相比﹐SMT在焊点结构特征上存在着很大的差异。
THT焊点因为镀通孔内引线和导体铅焊后﹐填缝铅料为焊点提供了主要的机械强度和可靠性﹐镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素﹐一般只需具有润湿良好的特征就可以被接受。
但在表面组装技术中﹐铅料的填缝尺寸相对较小﹐铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用﹐焊点的可靠性与THT焊点相比要低得多﹐铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。
另外﹐表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较大﹐当温度升高时﹐这种热膨胀差必须全部由焊点来吸收。
如果温度超过铅料的使用温度范围﹐则在焊点处会产生很大的应力最终导致产品失效。
对于小尺寸组件﹐虽然因材料的CTE 失配而引起的焊点应力水平较低﹐但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。
因此﹐焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。
80年代以来﹐随着电子产品集成水平的提高,各种形式﹑各种尺寸的电子封装器件不断推出﹐使得电子封装产品在设计﹑生产过程中,面临如何合理地选择焊盘图形﹑焊点铅料量以及如何保证焊点质量等问题。
同时﹐迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断﹑对工艺参数的设置做出决策。
目前﹐在表面组装组件的封装和引线设计﹑焊盘图形设计﹑焊点铅料量的选择﹑焊点形态评定等方面尚未能形成合理统一的标准或规则﹐对工艺参数的选择﹑焊点性能的评价局限于通过大量的实验估测。
因此﹐迫切需要寻找一条方便有效的分析焊点可靠性的途径﹐有效地提高表面组装技术的设计﹑工艺水平。
焊点的质量与可靠性机电工程学院微电子制造工程1000150312 黄荣雷摘要:本文介绍了Sn-Pb合金焊接点发失效的各种表现形式,探讨失效的各种原因。
在实践基础上,指出如何在工艺上进行改进已改善焊点的可靠性,提高产品的质量。
1前言电子产品的"轻、薄、短、小"化对元器件的微型化和组装密度提出了更高的要求。
在这样的要求下,如何保证焊点质量是一个重要的问题。
焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。
也就是说,在生产过程中,组装的质量最终表现为焊接的质量。
目前,在电子行业中,虽然无铅焊料的研究取得很大进步,在世界范围内已开始推广应用,而且环保问题也受到人们的广泛关注,但是由于诸多的原因,采用Sn-Pb焊料合金的软钎焊技术现在仍然是电子电路的主要连接技术。
文中将就Sn-Pn焊料合金的焊点质量和可靠性问题进行较全面地介绍。
2焊点的外观评价良好的焊点应该是在设备的使用寿命周期内,其机械和电气性能都不发生失效。
其外观表现为:(1)良好的湿润;(2)适当的焊料量和焊料完全覆盖焊盘和引线的焊接部位(或焊端),元件高度适中;(3)完整而平滑光亮的表面。
原则上,这些准则适合于SMT中的一切焊接方法焊出的各类焊点。
此外焊接点的边缘应当较薄,若焊接表面足够大,焊料与焊盘表面的湿润角以300以下为好,最大不超过600。
3寿命周期内焊点的失效形式考虑到失效与时间的关系,失效形式分为三个不同的时期,如图1所示。
(1)早期失效阶段,主要是质量不好的焊点大量发生失效,也有部分焊点是由于不当的工艺操作与装卸造成的损坏。
可以通过工艺过程进行优化来减少早期失效率。
(2)稳定失效率阶段,该阶段大部分焊点的质量良好,失效的发生率(失效率)很低,且比较稳定。
(3)寿命终结阶段,失效主要由累积的破环性因素造成,包括化学的、冶金的、热-机械特性等因素,比如焊料与被焊金属之间发生金属化合反应,或热-机械应力造成焊点失效。
焊点的质量与可靠性机电工程学院微电子制造工程1000150312 黄荣雷摘要:本文介绍了Sn-Pb合金焊接点发失效的各种表现形式,探讨失效的各种原因。
在实践基础上,指出如何在工艺上进行改进已改善焊点的可靠性,提高产品的质量。
1 前言电子产品的"轻、薄、短、小"化对元器件的微型化和组装密度提出了更高的要求。
在这样的要求下,如何保证焊点质量是一个重要的问题。
焊点作为焊接的直接结果,它的质量与可靠性决定了电子产品的质量。
也就是说,在生产过程中,组装的质量最终表现为焊接的质量。
目前,在电子行业中,虽然无铅焊料的研究取得很大进步,在世界范围内已开始推广应用,而且环保问题也受到人们的广泛关注,但是由于诸多的原因,采用Sn-Pb焊料合金的软钎焊技术现在仍然是电子电路的主要连接技术。
文中将就Sn-Pn焊料合金的焊点质量和可靠性问题进行较全面地介绍。
2 焊点的外观评价良好的焊点应该是在设备的使用寿命周期内,其机械和电气性能都不发生失效。
其外观表现为:(1)良好的湿润;(2)适当的焊料量和焊料完全覆盖焊盘和引线的焊接部位(或焊端),元件高度适中;(3)完整而平滑光亮的表面。
原则上,这些准则适合于SMT中的一切焊接方法焊出的各类焊点。
此外焊接点的边缘应当较薄,若焊接表面足够大,焊料与焊盘表面的湿润角以300以下为好,最大不超过600。
3 寿命周期内焊点的失效形式考虑到失效与时间的关系,失效形式分为三个不同的时期,如图1所示。
(1)早期失效阶段,主要是质量不好的焊点大量发生失效,也有部分焊点是由于不当的工艺操作与装卸造成的损坏。
可以通过工艺过程进行优化来减少早期失效率。
(2)稳定失效率阶段,该阶段大部分焊点的质量良好,失效的发生率(失效率)很低,且比较稳定。
(3)寿命终结阶段,失效主要由累积的破环性因素造成,包括化学的、冶金的、热-机械特性等因素,比如焊料与被焊金属之间发生金属化合反应,或热-机械应力造成焊点失效。
焊点可靠性分析目录焊点的基础知识1焊点的工艺流程2焊点的工艺评价3焊点的可靠性评价41.焊点的基础知识1.1焊点:无铅/锡铅焊料被加热到熔点以上,焊接金属表面在助焊剂的活化作焊点图片用下,对金属表面的氧化层和污染物起到清洗作用,同时使金属表面获得足够的激活能。
熔融的焊料在经过助焊剂净化的金属表面上进行浸润、发生扩散、冶金结合,在焊料和被焊接金属表面之间生成金属间结合层,冷却后使得焊料凝固,形成焊点。
在焊接界面形成良好滋润形成良好焊点的关键形成合适的金属化间化合物1.2形成良好焊点的关键1.3焊点的基本结构和基本作用�焊点的基本构成:器件引脚、焊料、PCB焊盘、界面的金属化层�焊点的基本作用:电气连接、机械连接2.焊点的工艺流程冷却后形成焊点表面清洗焊件加热焊料润湿扩散结合层焊接工艺表面清洁焊件加热焊料润湿扩散结合层冷却后形成焊点焊接过程分解助焊剂残留的影响高温和温度差异的影响焊点微观结构的差异2.1主要的焊接工艺软钎焊接:手工焊接软钎焊接:手工焊接 波峰焊接波峰焊接波峰焊接 SMT SMT SMT再流焊再流焊接其他焊接:激光焊接其他焊接:激光焊接 氩弧焊接氩弧焊接氩弧焊接 压焊等压焊等——主要针对钎焊接2.1.1手工焊接手工焊接工艺手工焊接工艺缺陷:焊料对引脚润湿不良;焊料对孔壁润湿、填充不足。
2.1.2波峰焊波峰焊:波峰焊是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫"波峰焊"波峰焊曲线图2.1.3回流焊�回流焊:回流焊技术在电子制造领域并不陌生,我们电脑内使用的各回流焊接工艺种板卡上的元件都是通过这种工艺焊接到线路板上的,这种设备的内部有一个加热电路,将空气或氮气加热到足够高的温度后吹向已经贴好元件的线路板,让元件两侧的焊料融化后与主板粘结回流焊曲线图焊接缺陷案例2.2工艺不当主要失效模式工艺不当焊点冷焊静电损伤焊点偏位异常陶瓷电容破裂潮湿敏感损伤焊点过度焊接工艺缺陷原因汇总分析1包括元器件、助焊剂等材料控制不合理3后期检测的手段缺乏,不能及时发现问题2焊接工艺参数缺乏必要的控制和优化补充:技术人员对工艺控制的要求掌握不够3.焊点的工艺评价9.热分析技术(TGA/DSC/TMA)10.染色与渗透技术11.其他分析测试技术9.热分析技术(TGA/DSC/TMA)10.染色与渗透技术11.其他分析测试技术5.金相切片分析6.扫描电镜分析SEM 7.能谱分析EDAX 8.光电子能谱XPS 5.金相切片分析6.扫描电镜分析SEM 7.能谱分析EDAX 8.光电子能谱XPS 1.红外检查2.X 射线透视检查X-RAY 3.扫描超声显微镜检查 C-SAM 4.红外显微镜分析FT-IR 1.红外检查 2.X 射线透视检查X-RAY 3.扫描超声显微镜检查C-SAM 4.红外显微镜分析FT-IR3.1外观检查 Visual Inspection4.焊点可靠性分析焊点的主要可靠性问题�焊点缺陷(空洞、虚焊、冷焊等)�焊点疲劳失效(和长时间工作相关)�焊点开裂失效(通常和受热或机械应力相关焊点疲劳可靠性评价标准IPC-SM-785表面组装焊点可靠性加速试验实验指南IPC-9701 表面组装焊点性能测试方法和鉴定要求(给出了详细要求)JESD22-104-B 温度循环试验4.1温度循环/温度冲击�温度:0℃—100℃、-25℃—100℃、-40℃—125℃、-55℃—125℃、-55℃--100℃�高低温停留时间:有铅:10min\无铅:10min~30min 常用:15min�温度变化速率:<20℃/min 推荐10℃/min~15℃/min�循环数:200cyle\500cyle\1000cyle\1500cyle\2000cyle\�1%失效率计算�5年*365天=1825天*24=43800h*1%=438h*2=876cyle----1000cyle� 3年*365天=1095天*24=26280h*1%=262h*2=524cyle �温冲:500h 2pcs4.2高温高湿试验�85℃± 2℃,85± 2%RH,1000h(其他非标准时间:500H,168H客户指定时采用)\ JESD22A101�IPC-TM-650 2.6.14.1电迁移�40℃ ± 2℃, 93% ± 2% RH;�65℃ ± 2℃,88.5% ±3.5% RH; 85°C ± 2°C, 88.5% ± 3.5% RH�偏压:10VDC;时间:596H�85°C ± 2°C, 85% ±5% RH,1000-24/+168 小时JESD-22-A1014.3锡须观察�Min Temperature -55 to -40 (+0/-10) °C;Max Temperature +85 (+10/-0) °C,air to air; 5 to10 minute soak;3 cycles/hour 1000 cycles。