什么是IC
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
芯片是什么芯片的工作原理芯片基础知识介绍芯片是什么芯片的工作原理芯片基础知识介绍一、芯片基础知识介绍我们通常所说的“芯片”是指集成电路,它是微电子技术的主要产品.所谓微电子是相对'强电'、'弱电'等概念而言,指它处理的电子信号极其微小.它是现代信息技术的基础,我们通常所接触的电子产品,包括通讯、电脑、智能化系统、自动控制、空间技术、电台、电视等等都是在微电子技术的基础上发展起来的。
我国的信息通讯、电子终端设备产品这些年来有长足发展,但以加工装配、组装工艺、应用工程见长,产品的核心技术自主开发的较少,这里所说的'核心技术'主要就是微电子技术.就好像我们盖房子的水平已经不错了,但是,盖房子所用的砖瓦还不能生产.要命的是,'砖瓦'还很贵.一般来说,'芯片'成本最能影响整机的成本。
微电子技术涉及的行业很多,包括化工、光电技术、半导体材料、精密设备制造、软件等,其中又以集成电路技术为核心,包括集成电路的设计、制造。
集成电路(IC)常用基本概念有:晶圆,多指单晶硅圆片,由普通硅沙拉制提炼而成,是最常用的半导体材料,按其直径分为4英寸、5英寸、6英寸、8英寸等规格,近来发展出12英寸甚至更大规格.晶圆越大,同一圆片上可生产的IC就多,可降低成本;但要求材料技术和生产技术更高。
前、后工序:IC制造过程中, 晶圆光刻的工艺(即所谓流片),被称为前工序,这是IC制造的最要害技术;晶圆流片后,其切割、封装等工序被称为后工序。
光刻:IC生产的主要工艺手段,指用光技术在晶圆上刻蚀电路。
线宽:4微米/1微米/0.6微未/0.35微米/035微米等,是指IC生产工艺可达到的最小导线宽度,是IC工艺先进水平的主要指标.线宽越小,集成度就高,在同一面积上就集成更多电路单元。
封装:指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接。
存储器:专门用于保存数据信息的IC。
什么是芯片?芯片与集成电路的联系与区别什么是芯片?芯片,又称微电路(microcircuit)、微芯片(microchip)、集成电路(英语:integrated circuit, IC)。
是指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。
芯片一般是指集成电路的载体,也是集成电路经过设计、制造、封装、测试后的结果,通常是一个可以立即使用的独立的整体。
“芯片”和“集成电路”这两个词经常混着使用,比如在大家平常讨论话题中,集成电路设计和芯片设计说的是一个意思,芯片行业、集成电路行业、IC行业往往也是一个意思。
实际上,这两个词有联系,也有区别。
集成电路实体往往要以芯片的形式存在,因为狭义的集成电路,是强调电路本身,比如简单到只有五个元件连接在一起形成的相移振荡器,当它还在图纸上呈现的时候,我们也可以叫它集成电路,当我们要拿这个小集成电路来应用的时候,那它必须以独立的一块实物,或者嵌入到更大的集成电路中,依托芯片来发挥他的作用;集成电路更着重电路的设计和布局布线,芯片更强调电路的集成、生产和封装。
而广义的集成电路,当涉及到行业(区别于其他行业)时,也可以包含芯片相关的各种含义。
芯片与集成电路的联系与区别芯片也有它独特的地方,广义上,只要是使用微细加工手段制造出来的半导体片子,都可以叫做芯片,里面并不一定有电路。
比如半导体光源芯片;比如机械芯片,如MEMS陀螺仪;或者生物芯片如DNA芯片。
在通讯与信息技术中,当把范围局限到硅集成电路时,芯片和集成电路的交集就是在“硅晶片上的电路”上。
芯片组,则是一系列相互关联的芯片组合,它们相互依赖,组合在一起能发挥更大的作用,比如计算机里面的处理器和南北桥芯片组,手机里面的射频、基带和电源管理芯片组。
现在,市面上的芯片大多数指的是内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。
而芯片组,是一系列相互关联的芯片组合。
它们相互依赖,组合在一。
什么是集成电路它的分类有哪些集成电路(Integrated Circuit,简称IC)是在单个硅片上将大量的电子元器件集成在一起,通过微细的电路连接来实现电子功能的半导体器件。
它的发明和应用深刻影响了现代电子科技和信息时代的发展。
本文将介绍什么是集成电路以及集成电路的分类。
一、什么是集成电路集成电路是将电子元器件(如电晶体、二极管、电容器等)和电阻器等被集成在一起的块体,通过微细的连接线连接各个元器件和电阻器。
集成电路可以包含数以百万计的电子元器件,从而在很小的空间内实现复杂的电路功能。
与传统的离散电路相比,集成电路具有体积小、功耗低、可靠性高等优点。
集成电路根据集成度的不同可以分为三个层次:小规模集成电路(SSI)、中规模集成电路(MSI)和大规模集成电路(LSI)。
小规模集成电路一般由几个到几十个晶体管组成,主要用于数字逻辑电路的实现。
中规模集成电路通常由几百到几千个晶体管组成,可以实现更复杂的数字逻辑电路。
大规模集成电路则由上千个晶体管组成,可以实现更加复杂且功能更强大的数字电路。
二、集成电路的分类根据功能的不同,集成电路可以分为模拟集成电路和数字集成电路两大类。
1. 模拟集成电路模拟集成电路是指能够处理连续信号的集成电路。
它可以对输入信号进行放大、滤波、调制等处理,输出的信号也为连续信号。
模拟集成电路广泛应用于音频放大器、射频通信、传感器信号处理等领域。
常见的模拟集成电路有运放、放大器、滤波器等。
2. 数字集成电路数字集成电路是指能够处理离散信号的集成电路。
它能够对输入的离散信号进行逻辑运算、计数、存储等处理,输出的信号为离散信号。
数字集成电路被广泛应用于计算机、通信、控制系统等领域。
常见的数字集成电路有逻辑门、微处理器、存储芯片等。
此外,根据制造工艺的不同,集成电路还可以分为多种类型,如:3. 厚膜集成电路厚膜集成电路是利用陶瓷、玻璃等材料制成基片的集成电路。
它的制造工艺相对简单,常用于一些简单的模拟电路和数字电路。
ic芯片是什么IC芯片,即集成电路芯片(Integrated Circuit Chip),是应用集成电路技术将多个电子器件(如晶体管、电容、电阻等)集成在一个小型半导体芯片上,形成一个完整的电路系统。
它是现代电子技术的基础,广泛应用于计算机、通信、消费电子、汽车、航空航天等领域。
IC芯片的发展可以追溯到20世纪60年代的集成电路技术开始应用于计算机和军事领域。
当时的集成电路只能集成数十个元件,并且较为昂贵。
随着技术的不断发展,集成度逐渐提高,成本逐渐降低,IC芯片变得更加普遍和实用。
IC芯片集成了许多电子器件,可以实现各种功能。
它由一块硅片作为基底,上面形成一系列的导电层和绝缘层,通过掩膜光刻工艺形成输电线路、晶体管等。
不同功能的IC芯片是通过设计不同的电路结构和布局来实现的。
IC芯片的主要优势包括:1. 小型化:IC芯片将多个电子器件整合在一个小型芯片上,大大减小了体积,使得电子设备更加轻薄、便携。
2. 高集成度:通过集成多个元件,IC芯片极大地提高了电路的集成度,从而提高了系统性能和功能。
3. 低功耗:IC芯片采用半导体材料制造,其功耗较低,可以延长设备的电池寿命。
4. 高可靠性:IC芯片的制造工艺较为精密,采用了先进的质量控制和测试技术,使得IC芯片具有较高的可靠性和稳定性。
IC芯片的应用范围非常广泛,涵盖了各个领域。
在计算机领域,IC芯片用于中央处理器、内存、显卡等各个部件,是计算机性能提升的关键。
在通信领域,IC芯片用于无线通信、卫星通信、数据传输等设备,是实现高速、稳定通信的重要组成部分。
在消费电子领域,IC芯片用于智能手机、平板电脑、智能家居等产品,提供了丰富的功能和体验。
在汽车领域,IC 芯片用于发动机控制、车载娱乐系统、驾驶辅助系统等,提升了汽车的性能和安全性。
在航空航天领域,IC芯片用于卫星、导航系统、飞行控制等,确保飞行安全和航天任务的顺利实施。
总之,IC芯片是现代电子技术的基础,其应用范围广泛,为各个领域的科技进步和社会发展提供了强大的支持。
IC,半导体,芯片三者之间有什么区别一、什么是芯片芯片,又称微电路(microcircuit)、微芯片(microchip)、集成电路(integrated circuit,IC),是指内含集成电路的硅片,体积很小,常常是计算机或其他电子设备的一部分。
芯片(chip)就是半导体元件产品的统称,是集成电路(IC, integrated circuit)的载体,由晶圆分割而成。
硅片是一块很小的硅,内含集成电路,它是计算机或者其他电子设备的一部分。
二、什么是半导体半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。
如二极管就是采用半导体制作的器件。
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。
无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。
常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
物质存在的形式多种多样,固体、液体、气体、等离子体等。
我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。
而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。
可以简单的把介于导体和绝缘体之间的材料称为半导体。
半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。
如二极管就是采用半导体制作的器件。
半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。
无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。
今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。
常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
财务净现值ic是什么
一、折现率(Ic)与财务净现值(FNPV)
1、在建设项目财务效益的分析和评价中引入折现率这一概念,是计算财务净
现值(FNPV)的需要。
如果不需要计算财务净现值,就不必理会折现率了。
所谓折现,就是将静态的币值比较上升到计算货币的时间价值这一动态的币值比较。
关于折现率的定义,通行的说法是:折现率(Ic)是投资者期望的最低的投资回报年复利利率。
我个人以为:基准折现率的实质是:在正常情况下,全社会资本营运的预期平均收益率。
折现率的计算,学术界建立了多个数学模型,深入的探讨不是本文的任务。
在完全自由经济国家,其中央银行公布的贴现率在一定程度上可以视作当期折现率,即全社会综合投资利润率,某些经济调查机构也公布其测算的折现率。
在我国尚无类似的作法。
在国内编写项目可行性研究报告一般采用的是国家发展改革委员会、建设部颁发的《建设项目经济评价参数》中的数据,也可使用本行业平均投资利润率或略高一点的数值作为折现率,还可使用稍高于当时银行贷款利率的数值。
非特殊回报行业,一般控制在8%--12%之间为宜,原因是如果投资回报过高
必将争相进入,最终导致回报率走低,其后日趋平行,反之亦然。
在实际操作中,如果计算出来的动态投资回收期过长,则调低折现率,反之亦然。
切记要合情合。
内循环厌氧反应器(IC)的工作原理是什么?内循环(internal circulation)厌氧反应器,简称IC反应器,是20世纪80年代中期由荷兰帕克(PAQUES)公司开发,也是在UASB反应器基础上发展起来的第三代厌氧反应器。
IC反应器的基本构造如图6-5-35所示。
它可以看作是由两层UASB反应器串联而成,反应器从下而上分为5个区,即混合区、第一厌氧反应室、第二厌氧反应室、沉淀区和气液分离区。
IC反应器是在一个反应器内将废水有机物的降解分解为两个阶段,底部一个阶段(第一厌氧反应室)处于高负荷,上部一个阶段(第二厌氧反应室)处于低负荷。
IC反应器的工作原理是:废水从反应器的底部进入第一厌氧反应室与颗粒污泥均匀混合,大部分有机物在这里被降解而转为沼气。
混合液的上升流和沼气的剧烈扰动,使污泥量膨胀成流化状态,加强了进水与颗粒污泥的充分接触。
所产生的沼气被第一厌氧反应室的集气罩收集。
沼气将沿着提升管上升,在沼气上升的同时,将第一厌氧反应室的混合液提升至IC反应器顶部的气液分离器。
被分离出的沼气从气液分离器顶部的排气管引走,而分离出的泥水混合液沿着回流管返回到第一厌氧反应室的底部,并与底部的颗粒污泥和进水再充分混合,实现了混合液的内部循环。
经过第一厌氧反应器处理过的废水,会自动进入第二厌氧反应器,继续进行生化反应,由于上升流速降低(一般2~6m/h),因此第二厌氧反应室还具有厌氧反应器与沉淀区之间的缓冲段作用,对防止污泥流失及确保沉淀后的出水水质起着重要作用。
由于第二厌氧反应器进一步降解废水中剩余有机物,使废水得到更好净化,提高了出水水质,而产生的沼气通过集气管进入气液分离器。
第二厌氧反应室的混合液在沉淀区进行固液分离,上清液由排水管排出,沉淀的污泥自动返回第二厌氧反应室。
IC反应器具有处理容量高、投资少、占地省、运行稳定等优点。
学集成电路出来能干什么呢女生集成电路(Integrated Circuit,简称IC)是现代电子技术中十分重要的一部分,它的应用广泛涵盖了各个领域。
作为女生,学习集成电路可以带来多方面的机会和发展。
本文将介绍学习集成电路的女生可以从中获得的职业机会以及对社会的贡献,并探讨集成电路对女性的潜在启发。
职业机会1. 集成电路设计师作为一个集成电路设计师,女生可以参与到集成电路的设计和开发工作中。
这需要具备电子工程、电路设计和半导体器件的相关知识。
集成电路设计师可以从事数字电路设计、模拟电路设计和混合信号电路设计等。
她们可以在电子公司、芯片设计公司或研发机构中找到就业机会。
2. 集成电路工艺工程师集成电路工艺工程师负责将电路设计转变为真实的芯片产品。
女生可以参与到制造过程的优化和改进中,确保电路在制造过程中有良好的执行。
她们需要掌握微电子器件物理、半导体加工和工艺改善等知识。
集成电路工艺工程师可在半导体制造厂、芯片工艺实验室等场所就业。
3. 集成电路测试工程师集成电路测试工程师负责芯片的测试和验证。
她们需要根据设计规格和要求,使用测试设备和工具对芯片进行测试和故障分析。
女生可以通过学习和掌握测试策略、测试方法和测试设备的知识,参与到集成电路测试和验证的工作中。
集成电路测试工程师可以在电子制造公司、测试实验室等领域找到就业机会。
社会贡献1. 推动科技创新学习集成电路的女生可以参与到科技创新中,为社会进步做出贡献。
集成电路是现代电子设备的核心,是通信、计算、医疗、汽车等领域的基础。
通过学习集成电路,女生可以参与到新产品的研发和创新中,推动科技进步,为社会带来更多新的科技突破。
2. 增加女性科技人才在科技领域,女性科技人才依然相对较少。
学习集成电路的女生可以为增加女性科技人才作出贡献。
通过投身于集成电路的研究和工作中,女生能够为女性科技人才的培养树立榜样和典范,鼓励更多女生参与到科技创新的领域中。
3. 提升自身综合素质学习集成电路需要掌握一定的技术和理论知识,这将帮助女生提高自身的综合素质。
ic 是什么意思IC,即集成电路是采用半导体制作工艺,在一块较小的单晶硅片上制作上许多晶体管及电阻器、电容器等元器件,并按照多层布线或遂道布线的方法将元器件组合成完整的电子电路。
它在电路中用字母IC(也有用文字符号N 等)表示。
IC 的定义IC 就是半导体元件产品的统称。
包括:1.集成电路板(integrated circuit,缩写:IC); 2.二、三极管;3.特殊电子元件。
IC 的分类(一)按功能结构分类集成电路按其功能、结构的不同,可以分为模拟集成电路和数字集成电路两大类。
模拟集成电路用来产生、放大和处理各种模拟信号(指幅度随时间边疆变化的信号。
例如半导体收音机的音频信号、录放机的磁带信号等),而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。
例如VCD、DVD 重放的音频信号和视频信号)。
基本的模拟集成电路有运算放大器、乘法器、集成稳压器、定时器、信号发生器等。
数字集成电路品种很多,小规模集成电路有多种门电路,即与非门、非门、或门等;中规模集成电路有数据选择器、编码译码器、触发器、计数器、寄存器等。
大规模或超大规模集成电路有PLD(可编程逻辑器件)和ASIC(专用集成电路)。
从PLD 和ASIC 这个角度来讲,元件、器件、电路、系统之间的区别不再是很严格。
不仅如此,PLD 器件本身只是一个硬件载体,载入不同程序就可以实现不同电路功能。
因此,现代的器件已经不是纯硬件了,软件器件和以及相应的软件电子学在现代电子设计中得到了较多的应用,其地位也越来越重要。
电路元器件种类繁多,随着电子技术和工艺水平的不断提高,大量新的器件不断出现,同一种器件也有多种封装形式,例如:贴片元件在现代电子产品中已随处可见。
对于不同的使用环境,同一器件也有不同的工业标准,国内元器件通常有三个标准,即:民用标准、工业标准、军用标准,标准不同,价格也不同。
军用标准器件的价格可能是民用标准的十倍、甚至更多。
什么是IC?
广义的讲,IC就是半导体元件产品的统称,包括:
1.集成电路(integrated circuit,缩写:IC)
2.二,三极管.
3.特殊电子元件.
再广义些讲还涉及所有的电子元件,象电阻,电容,电路版/PCB版,等许多相关产品.
一、世界集成电路产业结构的变化及其发展历程
自1958年美国德克萨斯仪器公司(TI)发明集成电路(IC)后,随着硅平面技术的发展,二十世纪六十年代先后发明了双极型和MOS型两种重要的集成电路,它标志着由电子管和晶体管制造电子整机的时代发生了量和质的飞跃,创造了一个前所未有的具有极强渗透力和旺盛生命力的新兴产业集成电路产业。
回顾集成电路的发展历程,我们可以看到,自发明集成电路至今40多年以来,"从电路集成到系统集成"这句话是对IC产品从小规模集成电路(SSI)到今天特大规模集成电路(U LSI)发展过程的最好总结,即整个集成电路产品的发展经历了从传统的板上系统(System -on-board)到片上系统(System-on-a-chip)的过程。
在这历史过程中,世界IC产业为适应技术的发展和市场的需求,其产业结构经历了三次变革。
第一次变革:以加工制造为主导的IC产业发展的初级阶段。
70年代,集成电路的主流产品是微处理器、存储器以及标准通用逻辑电路。
这一时期I C制造商(IDM)在IC市场中充当主要角色,IC设计只作为附属部门而存在。
这时的IC设计和半导体工艺密切相关。
IC设计主要以人工为主,CAD系统仅作为数据处理和图形编程之用。
IC产业仅处在以生产为导向的初级阶段。
第二次变革:Foundry公司与IC设计公司的崛起。
80年代,集成电路的主流产品为微处理器(MPU)、微控制器(MCU)及专用IC(ASIC)。
这时,无生产线的IC设计公司(Fabless)与标准工艺加工线(Foundry)相结合的方式开始成为集成电路产业发展的新模式。
随着微处理器和PC机的广泛应用和普及(特别是在通信、工业控制、消费电子等领域),IC产业已开始进入以客户为导向的阶段。
一方面标准化功能的IC已难以满足整机客户对系统成本、可靠性等要求,同时整机客户则要求不断增加IC的集成度,提高保密性,减小芯片面积使系统的体积缩小,降低成本,提高产品的性能价格比,从而增强产品的竞争力,得到更多的市场份额和更丰厚的利润;另一方面,由于IC微细加工技术的进步,软件的硬件化已成为可能,为了改善系统的速度和简化程序,故各种硬件结构的ASIC如门阵列、可编程逻辑器件(包括FPGA)、标准单元、全定制电路等应运而生,其比例在整个IC销售额中1982年已占12%;其三是随着EDA工具(电子设计自动化工具)的发展,PCB设计方法引入IC设计之中,如库的概念、工艺模拟参数及其仿真概念等,设计开始进入抽象化阶段,使设计过程可以独立于生产工艺而存在。
有远见的整机厂商和创业者包括风险投资基金(V C)看到ASIC的市场和发展前景,纷纷开始成立专业设计公司和IC设计部门,一种无生产
线的集成电路设计公司(Fabless)或设计部门纷纷建立起来并得到迅速的发展。
同时也带动了标准工艺加工线(Foundry)的崛起。
全球第一个Foundry工厂是1987年成立的台湾积体电路公司,它的创始人张忠谋也被誉为"晶芯片加工之父"。
第三次变革:"四业分离"的IC产业
90年代,随着INTERNET的兴起,IC产业跨入以竞争为导向的高级阶段,国际竞争由原来的资源竞争、价格竞争转向人才知识竞争、密集资本竞争。
以DRAM为中心来扩大设备投资的竞争方式已成为过去。
如1990年,美国以Intel为代表,为抗争日本跃居世界半导体榜首之威胁,主动放弃DRAM市场,大搞CPU,对半导体工业作了重大结构调整,又重新夺回了世界半导体霸主地位。
这使人们认识到,越来越庞大的集成电路产业体系并不有利于整个IC产业发展,"分"才能精,"整合"才成优势。
于是,IC产业结构向高度专业化转化成为一种趋势,开始形成了设计业、制造业、封装业、测试业独立成行的局面(如下图所示),近年来,全球IC产业的发展越来越显示出这种结构的优势。
如台湾IC业正是由于以中小企业为主,比较好地形成了高度分工的产业结构,故自1996年,受亚洲经济危机的波及,全球半导体产业出现生产过剩、效益下滑,而IC设计业却获得持续的增长。
特别是96、97、98年持续三年的DRAM的跌价、MPU的下滑,世界半导体工业的增长速度已远达不到从前17%的增长值,若再依靠高投入提升技术,追求大尺寸硅片、追求微细加工,从大生产中来降低成本,推动其增长,将难以为继。
而IC设计企业更接近市场和了解市场,通过创新开发出高附加值的产品,直接推动着电子系统的更新换代;同时,在创新中获取利润,在快速、协调发展的基础上积累资本,带动半导体设备的更新和新的投入;IC设计业作为集成电路产业的"龙头",为整个集成电路产业的增长注入了新的动力和活力。
二、IC的分类
IC按功能可分为:数字IC、模拟IC、微波IC及其他IC,其中,数字IC是近年来应用最广、发展最快的IC品种。
数字IC就是传递、加工、处理数字信号的IC,可分为通用数字IC和
专用数字IC。
通用IC:是指那些用户多、使用领域广泛、标准型的电路,如存储器(DRAM)、微处理器(MPU)及微控制器(MCU)等,反映了数字IC的现状和水平。
专用IC(A SIC):是指为特定的用户、某种专门或特别的用途而设计的电路。
目前,集成电路产品有以下几种设计、生产、销售模式。
1.IC制造商(IDM)自行设计,由自己的生产线加工、封装,测试后的成品芯片自行
销售。
2.IC设计公司(Fabless)与标准工艺加工线(Foundry)相结合的方式。
设计公司将所设计芯片最终的物理版图交给Foundry加工制造,同样,封装测试也委托专业厂家完成,最后的成品芯片作为IC设计公司的产品而自行销售。
打个比方,Fabless相当于作者和出版商,而Foundry相当于印刷厂,起到产业"龙头"作用的应该是前者。