工程结构的地震动输入问题
- 格式:pdf
- 大小:1.79 MB
- 文档页数:45
填空题(每空1分,共20分)1、地震波包括在地球内部传播的体波和只限于在地球表面传播的面波,其中体波包括纵波(P)波和横(S)波,而面波分为瑞雷波和洛夫波,对建筑物和地表的破坏主要以面波为主。
2、场地类别根据等效剪切波波速和场地覆土层厚度共划分为IV类。
3.我国采用按建筑物重要性分类和三水准设防、二阶段设计的基本思想,指导抗震设计规范的确定。
其中三水准设防的目标是小震不坏,中震可修和大震不倒>时,在结构顶部附4、在用底部剪力法计算多层结构的水平地震作用时,对于T1,其目的是考虑高振型的影响。
加ΔFn5、钢筋混凝土房屋应根据烈度、建筑物的类型和高度采用不同的抗震等级,并应符合相应的计算和构造措施要求。
6、地震系数k表示地面运动的最大加速度与重力加速度之比;动力系数 是单质点最大绝对加速度与地面最大加速度的比值。
7、在振型分解反应谱法中,根据统计和地震资料分析,对于各振型所产生的地震作用效应,可近似地采用平方和开平方的组合方法来确定。
名词解释(每小题3分,共15分)1、地震烈度:指某一地区的地面和各类建筑物遭受一次地震影响的强弱程度。
2、抗震设防烈度:一个地区作为抗震设防依据的地震烈度,应按国家规定权限审批或颁发的文件(图件)执行。
3、反应谱:地震动反应谱是指单自由度弹性体系在一定的地震动作用和阻尼比下,最大地震反应与结构自振周期的关系曲线。
4、重力荷载代表值:结构抗震设计时的基本代表值,是结构自重(永久荷载)和有关可变荷载的组合值之和。
5 强柱弱梁:结构设计时希望梁先于柱发生破坏,塑性铰先发生在梁端,而不是在柱端。
三简答题(每小题6分,共30分)1.简述地基液化的概念及其影响因素。
地震时饱和粉土和砂土颗粒在振动结构趋于压密,颗粒间孔隙水压力急剧增加,当其上升至与土颗粒所受正压应力接近或相等时,土颗粒间因摩擦产生的抗剪能力消失,土颗粒像液体一样处于悬浮状态,形成液化现象。
其影响因素主要包括土质的地质年代、土的密实度和黏粒含量、土层埋深和地下水位深度、地震烈度和持续时间2.简述两阶段抗震设计方法。
跨断层工程输入地震动模拟及地震响应胡进军;盛兆琦;谢礼立;邹育麟【期刊名称】《地震工程与工程振动》【年(卷),期】2024(44)1【摘要】为解决跨断层结构输入地震动的问题,揭示其地震响应规律,基于断层物理模型并引入等效脉冲函数,构建考虑地震动空间变化特征的转换矩阵,提出一种高、低频叠加的混合模拟方法,实现断层两侧输入地震动的模拟。
首先,依据建立的桥址场地断层模型,采用随机有限断层方法生成目标点位的高频地震动;再由走滑断层两侧地震动的脉冲效应和永久位移的特征,采用不同的等效脉冲模型分别模拟断层平行向和法向的低频脉冲分量,两者在截止频率处采用Butterworth滤波器进行高通和低通滤波,依据场地模型以及走滑断层两侧地震动的空间相干性,建立转换矩阵以模拟其空间变异性,最终将匹配滤波后的高、低频分量在时域叠加得到断层两侧的输入地震动。
从时程、频谱以及结构响应三方面验证了模拟结果的合理性。
以实际的跨断层悬索桥为研究对象,基于OpenSees建立全桥的三维有限元模型,采用模拟的断层两侧地震动进行动力时程分析。
研究结果表明:桥梁跨断层的角度和位置,以及永久位移幅值对跨断层桥梁地震响应有显著影响,较大的残余内力和残余位移是造成跨断层桥梁破坏的重要原因。
【总页数】13页(P1-13)【作者】胡进军;盛兆琦;谢礼立;邹育麟【作者单位】中国地震局工程力学研究所地震工程与工程振动重点实验室;地震灾害防治应急管理部重点实验室;四川沿江攀宁高速公路有限公司【正文语种】中文【中图分类】P315.9【相关文献】1.基于多点激励位移输入模型的跨断层桥梁地震动输入方法2.近断层地震动斜输入下水电站厂房非线性地震响应研究3.近断层地震动对跨活动断层隧道动力响应研究4.跨断层工程输入地震动模拟及其应用研究进展5.不同地震动输入方向下非对称大跨悬索桥地震响应分析因版权原因,仅展示原文概要,查看原文内容请购买。
反应位移法分析地下结构抗震问题的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copyexcerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!反应位移法分析地下结构抗震问题的基本流程一、资料收集与分析阶段。
建筑结构抗震设计存在的问题与对策第一篇全世界每年发生地震约50万次,其中中国发生地震的次数占到全世界地震次数的三分之一。
地震的发生严重阻碍我国社会和经济的发展。
因此,在房屋建设的过程中,加强建筑结构设计中的抗震设计是十分必要的,其能提早预防及减少地震灾难带来的损失,保证人们的生命财产安全,间接助推我国社会和经济稳定的、有序的发展。
1建筑结构中的抗震设计需要注意的问题1.1建筑场地的选择地震发生时会对建筑物主体结构造成严重的破坏。
地震过程中产生的地质运动直接破坏建筑物的建筑结构。
地质条件是建筑物被破坏的主要影响因素之一,所以,在地震的预防措施中,需要对建筑物所在的场地进行认真的选择。
对建筑物所在场地的选择应选抗震能力比较强的地质环境。
例如,开阔地就十分方便地震发生时人员的避难。
又如地质坚硬的土地,在地震发生时,其地面的沉陷程度相对较小,可以有效减少建筑物坍塌的机率。
大量的数据表明,土质越坚硬的地带,被盖层就越薄,建筑物受地震活动的程度就越小,反之亦然。
所以,应避开在地质疏松及液化现象明显的河岸、山坡地带的边缘地区建设房屋。
因为一旦发生地震,由于地基较松,在地质现象的影响下建筑物会以极快的速度下沉,非常容易造成建筑物的坍塌,若实在无法避开,则要对建筑物本身采取抗震措施。
1.2地基的设计为了确保建筑物整体结构的刚性,增强建筑的抗震能力,在房屋的建造过程中,同一个单元的建筑不能建设在不同的地基上,也不能采取相应的措施来对地基进行处理,要么就全部选用天然地基进行建造,要么就全部采取桩基的方式。
房屋建筑基础的埋置一定要达到一定得深度。
埋置过浅就会使得建筑物的嵌固作用减小,地震发生时容易造成建筑物振幅过大,非常容易坍塌。
所以在对建筑物的基础进行埋置时,要尽可能多的增加埋置的深度,提高建筑物地基的稳定性。
1.3抗震结构的选择抗震结构的合理选择是保障建筑结构抗震性能的重要因素。
建筑主体结构的抗震设计能够最大程度的减少建筑结构在地震活动中的变形概率,保障建筑物的安全性能。
掌握地震动的基本特性,结构地震响应特性,反应谱,钢筋混凝土结构、钢结构、砌体结构和桥梁结构的抗震验算和构造措施,隔震减震的基本原理等。
掌握排架结构简化为单质点体系时,多遇地震水平地震作用标准值的计算(例题3.1)钢筋混凝土框架简化成多质点体系时,用振型分解反应谱法计算该框架在多遇地震下的层间地震剪力,以及内力图。
(例题3.3)多层钢筋混凝土框架结构,用底部剪力法计算其在多遇地震作用下各质点上的水平地震作用。
(例题3.7)一、填空题1、构造地震为由于地壳构造运动造成地下岩层断裂或错动引起的地面振动。
2、建筑的场地类别,可根据土层等效剪切波速和场地覆盖层厚度划分为四类。
3、《抗震规范》将50年内超越概率为 10% 的烈度值称为基本地震烈度,超越概率为 63.2% 的烈度值称为多遇地震烈度。
4、丙类建筑房屋应根据抗震设防烈度,结构类型和房屋高度采用不同的抗震等级。
5、柱的轴压比n定义为 n=N/fc Ac(柱组合后的轴压力设计值与柱的全截面面积和混凝土抗压强度设计值乘积之比)6、震源在地表的投影位置称为震中,震源到地面的垂直距离称为震源深度。
7、表征地震动特性的要素有三,分别为振幅、频谱和持时。
8、某二层钢筋混凝土框架结构,集中于楼盖和屋盖处的重力荷载代表值相等G 1=G2=1200kN,第一振型φ12/φ11=1.618/1;第二振型φ22/φ21=-0.618/1。
则第一振型的振型参与系数j= 0、724 。
9、多层砌体房屋楼层地震剪力在同一层各墙体间的分配主要取决于楼盖的水平刚度(楼盖类型)和各墙体的侧移刚度及负荷面积。
10、建筑平面形状复杂将加重建筑物震害的原因为扭转效应、应力集中。
11、在多层砌体房屋计算简图中,当基础埋置较深且无地下室时,结构底层层高一般取至 室外地面以下500mm 处 。
12、某一场地土的覆盖层厚度为80米,场地土的等效剪切波速为200m/s,则该场地的场地土类别为 Ⅲ类场地 (中软土) 。
航站楼屋盖大跨度钢结构动力特性地震响应分析一、内容综述随着科技的飞速发展,世界范围内的基础设施建设不断取得新的突破。
在众多的基础设施项目中,航站楼屋盖大跨度钢结构作为重要的结构形式,其动力特性及其抗震性能的研究逐渐受到人们的关注。
本文旨在对近年来航站楼屋盖大跨度钢结构在地震作用下的动力特性进行详细阐述,以期为相关领域的科研和工程实践提供有益的参考。
航站楼屋盖大跨度钢结构具有空间刚度大、结构形式多样、材料种类繁多等特点。
在地震作用下,这些特点使得钢结构易产生复杂的振动现象,如颤振、模态转换、振动衰减等。
这些振动不仅会影响建筑物的正常使用,还可能对结构的安全性造成严重威胁。
对航站楼屋盖大跨度钢结构的地震响应进行分析,具有重要的理论意义和实际应用价值。
关于航站楼屋盖大跨度钢结构地震响应的研究已取得了一定的成果。
由于钢结构本身的复杂性和地震作用的随机性,现有的研究仍存在一定的局限性。
对于不同地震动特性、不同截面形式的钢结构,其地震响应规律尚不完全明确;对于钢结构的减震控制技术,也缺乏系统的研究和实证分析。
本文拟在现有研究的基础上,进一步深入探讨航站楼屋盖大跨度钢结构的地震响应问题,为相关领域的研究提供新的思路和方法。
本文还将对航站楼屋盖大跨度钢结构在地震作用下的动力特性进行详细的实验研究。
通过搭建足尺模型,利用激光测振仪、高速摄像机等多传感器技术,对钢结构的地震响应进行实时、精确的测量。
还将开展振动台试验,模拟实际地震环境下的钢结构动力响应行为。
这些实验研究将为理论分析提供有力的支撑,也为后续的结构设计和减震控制技术的研究提供新的途径。
本文将对航站楼屋盖大跨度钢结构在地震作用下的动力特性进行深入研究,旨在为航站楼屋盖大跨度钢结构的设计、施工和抗震性能评估提供理论依据和技术支持。
通过实验研究,揭示钢结构在地震作用下的动力学行为,为相关领域的研究和应用提供新的思路和方法。
1. 航站楼屋盖结构的重要性在现代交通枢纽中,航站楼屋盖结构承载着重要的功能。
工程中求解结构地震反应的方法引言随着城市的快速发展和人口的增加,建筑物的抗震性能变得越来越重要。
地震是一种常见的自然灾害,可能造成严重的破坏和人员伤亡。
因此,在设计和建造建筑物时,需要考虑地震对结构的影响。
本文将介绍一些工程中用于求解结构地震反应的常见方法。
1. 静力方法静力方法是求解结构地震反应最简单的方法之一。
它基于结构在地震作用下的静力平衡原理。
静力方法将地震作用视为一个等效的静力载荷,并根据结构的弹性响应来估计其地震反应。
这种方法适用于简单的线性结构,例如单自由度系统。
然而,静力方法没有考虑结构的动力特性,无法准确预测其非线性行为。
2. 静力等效方法静力等效方法是一种改进的静力方法,它通过等效将地震作用转化为静力载荷。
然而,与传统的静力方法不同,静力等效方法考虑了结构的刚度和阻尼特性。
这种方法可以在一定程度上考虑结构的非线性特性,并提供了更接近实际的地震反应结果。
3. 动力方法动力方法是一种基于结构的动力特性来求解地震反应的方法。
它将结构的动力方程与地震激励相耦合,通过求解动力方程来获得结构的地震反应。
在动力方法中,通常假设结构为质点、弹性体或刚度分布体系,通过数值方法求解结构的振动模态和响应。
这种方法适用于复杂的结构和大型工程项目,可以提供较为准确的地震反应结果。
3.1 模态分析方法模态分析方法是动力方法中的一种常见技术,它利用结构的振动模态对地震反应进行分析。
首先,通过模态分析获得结构的固有频率和振型;然后,将地震激励转化为模态空间中的载荷,并利用模态响应的叠加原理求解结构的地震反应。
模态分析方法具有高效和准确的特点,常用于结构的抗震设计和评估。
3.2 时程分析方法时程分析方法是动力方法中另一种常见的技术,它通过直接求解结构的动力方程来获得其地震反应。
时程分析方法考虑了结构的非线性行为和地震波的时变性,能够提供详细和准确的地震反应结果。
然而,时程分析方法需要耗费大量的计算资源,适用于特定的工程需求和复杂的结构分析。
求解结构地震反应的方法1.引言1.1 概述在结构工程领域,地震反应的求解一直是一个重要的课题。
随着结构设计和抗震能力要求的逐渐提高,对地震反应求解方法的研究也变得越来越迫切。
地震反应的求解方法可以分为多种,目前广泛应用的包括频域分析、时程分析和模态分析等。
频域分析是一种基于傅里叶变换的方法,通过将结构的地震反应转化为相应的频率响应函数来求解。
时程分析则是根据结构在地震作用下的运动方程,结合地震波输入进行数值积分,求解结构的响应时间历程。
而模态分析则是以结构的振型为基础,通过将结构的运动离散化为一系列模态响应,并对各个模态进行叠加,得到结构的地震反应。
每种方法都有其优势和局限性。
频域分析方法计算效率高,适用于结构的线性动力响应分析,但无法考虑结构的非线性行为;时程分析方法可以考虑结构的非线性行为,但计算量较大,需要较长的计算时间;模态分析方法则可以得到结构的振动模态以及特征频率等信息,对于研究结构的共振现象具有重要意义。
本文将重点介绍两种常用的地震反应求解方法,即方法一和方法二,并对它们的理论基础和具体步骤进行详细阐述。
通过对这两种方法的优缺点进行对比,可以更好地了解不同方法在解决地震反应问题上的适用性和局限性。
最后,我们还将对未来的研究方向进行展望,希望能够进一步提高地震反应求解方法的准确性和效率,为结构的抗震设计提供更好的依据。
1.2文章结构1.2 文章结构本文将介绍求解结构地震反应的两种方法,分别是方法一和方法二。
首先,我们将对这两种方法的理论基础进行详细的阐述,包括相关背景知识和数学原理。
接下来,我们将详细介绍每种方法的具体步骤,包括模型建立、参数求解和结果分析等。
在正文部分,将分别为方法一和方法二提供详细的理论和实践指导,使读者能够全面了解和掌握这两种方法的求解过程。
在结论部分,我们将对方法一和方法二的优缺点进行总结和分析,并探讨它们各自在不同情况下的应用优势。
同时,我们也将对未来研究方向进行展望,探讨在当前技术背景下如何进一步改进和发展这两种方法,以提高其求解结构地震反应的准确性和效率。