考纲要求
知识梳理
双击自测
核核心心考考点点
学科素养
-22-
考点1
考点2
考点3 知识方法 易错易混
考点3异面直线所成的角
例3如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-
A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为 ()
得P∈平面ABCD.
同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线 DA.∴CE,D1F,DA三线共点.
考点1
第八章
8.3 空间图形的基本关系与公理
考纲要求
知识梳理
双击自测
核核心心考考点点
考点2
考点3 知识方法 易错易混
学科素养
-14-
思考:如何利用平面的基本性质证明点共线和线共点? 解题心得:1.点线共面问题的证明方法: (1)纳入平面法:先确定一个平面,再证有关点、线在此平面内; (2)辅助平面法:先证有关点、线确定平面α,再证其余点、线确定 平面β,最后证明平面α,β重合. 2.证明三线共点问题,常用的方法是:先证其中两条直线交于一点, 再证交点在第三条直线上.证交点在第三条直线上时,第三条直线 应为前两条直线所在平面的交线,可以利用公理3证明.
8.3 空间图形的基本关系与公理
第八章
8.3 空间图形的基本关系与公理
考考纲纲要要求求
知识梳理
双击自测
核心考点
学科素养
-2-
考纲要求:1.理解空间直线、平面位置关系的定义并了解可以作为 推理依据的公理和定理. 2.能运用公理、定理和已获得的结论证 明一些空间位置关系的简单命题.
第八章
8.3 空间图形的基本关系与公理