分子间的相互作用力
- 格式:pptx
- 大小:1.33 MB
- 文档页数:21
分子之间的作用力
首先,范德华力(Van der Waals forces)是由于分子之间的偶极矩
和/或极化引起的吸引力。
偶极矩是由于电子云在分子内部不对称分布而
产生的。
当分子靠近时,偶极矩会相互作用,从而产生吸引力。
极化则是
由外部电场引起电子云的不均匀分布,形成暂时的偶极矩。
这些吸引力的
大小取决于分子中的电荷分布和分子间的距离。
其次,静电力是由于分子之间的电荷引力而产生的相互作用力。
当分
子中存在正电荷和负电荷时,它们会相互吸引形成静电力。
例如,正负电
荷分别位于两个分子之间时,它们之间的静电力会把两个分子吸引在一起。
静电力的大小取决于电荷的多少和分子之间的距离。
最后,氢键是一种特殊的静电力。
它是由于氢原子与具有较强电负性
的原子(如氧、氮和氟)之间形成的相互作用力。
在氢键中,氢原子共价
结合到一个原子上,而另一个原子上存在一个较强的电负性。
这样,氢原
子的电子会更倾向于位于具有较强电负性的原子附近,而形成一个偏正电荷。
这个偏正电荷会与具有部分负电荷的原子形成静电相互作用力,从而
形成氢键。
氢键的强度通常比范德华力和普通的静电力强,因此它在许多
化学和生物分子的结构和性质中起着重要的作用。
总结起来,分子之间的作用力分为范德华力、静电力和氢键。
这些作
用力的大小和属性取决于分子中的电荷分布、电子云的构成和分子之间的
距离。
通过这些作用力,分子可以相互吸引,并在化学反应、溶解和分子
间相互作用等方面发挥重要作用。
分子间的作用力的概念和内容一、分子间的作用力的概念和内容1、概念:分子间的作用力包括引力和斥力。
2、内容:分子间的引力和斥力是同时存在、同时消失的,是不会相互抵消的。
(1)当分子间的距离$r=10^{-10}$m时,引力等于斥力,分子之间作用力为零。
(2)当分子间的距离$r<10^{-10}$m时,分子之间的斥力大于引力,分子之间作用力表现为斥力。
(3)当分子间的距离$r>10^{-10}$m时,分子之间的引力大于斥力,分子之间作用力表现为引力。
(4)当分子间的距离大于$10^{-10}$m的10倍时,分子之间作用力变得十分微弱,可以忽略;“破镜难圆”就是由于断裂处的距离已经超出分子间引力作用的最大距离。
3、从分子间作用力的角度理解固体、液体、气体的特征:(1)固体中分子之间的距离小,相互作用力很大,分子只能在一定的位置附近振动,所以既有一定的体积,又有一定的形状。
(2)液体中分子之间的距离较小,相互作用力较大,以分子群的形态存在,分子可在某个位置附近振动,分子群却可以相互滑过,所以液体有一定的体积,但有流动性,形状随容器而变化。
(3)气体中分子之间的距离很大,相互作用力很小,每一个分子几乎都可以自由运动,所以气体既没有固定的体积,也没有固定的形状,可以充满能够达到的整个空间。
(4)固体很难被拉伸,是因为分子间存在着引力。
固体和液体很难被压缩,是因为分子间存在着斥力。
固体和液体能保持一定的体积是因为分子间存在着引力。
二、分子间的作用力的相关例题下面说法正确的是___A.当水凝固成冰后,水分子的热运动也就停止了B.气体分子间作用力要比固体分子间作用力大C.快速压缩气体,可使气体内能增大,温度升高D.热量总是从内能大的物体向内能小的物体传递答案:C解析:A.当水凝固成冰后,由于分子都在不停地做无规则运动,水分子的热运动不会停止,故A错误;B.与固体相比,空气很容易被压缩,这是因为气体分子间距离较大,分子间作用力较小,故B错误;C.快速压缩气体,对气体做功,可使气体内能增大,温度升高,故C正确;D.发生热传递的条件是两物体有温度差,高温物体的内能转移到低温物体,直到两者温度相同,热传递才停止,所以热量总是从温度高的物体传递到温度低的物体,故D错误。
分子间的相互作用力扩散现象和布朗运动不但说明分子不停地做无规则运动,同时也说明分子间是有空隙的,否则分子便不能运动了。
气体容易被压缩,水和酒精混合后的体积小于两者原来体积之和,说明气体分子之间、液体分子之间都有空隙.固体分子之间也有空隙。
我们在前面讲述分子的大小时,认为固体分子和液体分子是一个挨一个排列的,那只是为估算分子直径的数量级而作的设想。
分子间虽然有空隙,大量分子却能聚集在一起形成固体或液体,说明分子之间存在着引力。
用力拉伸物体,物体内要产生反抗拉伸的弹力,就是因为分子间存在着引力。
把两块纯净的铅压紧,由于分子间的引力,两块铅就合在一起,甚至下面吊一个重物也不能把它们拉开。
把两块光学玻璃的表面磨得既光滑又相吻合,并把表面处理干净,施加一定的压力它们就可以粘合在一起,这也是利用了分子间的引力。
分子间有引力,而分子间又有空隙,没有紧紧吸在一起,这说明分子间还存在着斥力。
用力压缩物体,物体内要产生反抗压缩的弹力,就是物体内大量分子间的斥力的宏观表现。
研究表明,分子间同时存在着引力和斥力,它们的大小都跟分子间的距离有关。
图中的两条虚线分别表示两个分子间的引力和斥力随距离变化的情形。
实线表示引力和斥力的合力即实际表现出来的分子间的作用力随距离变化的情形。
我们看到,分子间的引力和斥力随着分子间的距离的增大而减小。
当两分子间的距离等于r0时,分子间的引力和斥力相互平衡,分子间的作用力为零,r0的数量级约为10-10m。
相当于距离为r0的位置,叫做平衡位置(图甲)。
当分子间的距离小于r0时,引力和斥力虽然都随着距离的减小而增大,但是斥力增大得更快,因而分子间的作用力表现为斥力(图乙)。
当分子间的距离大于r0时,引力和斥力虽然都随着距离的增大而减小,但是斥力减小得更快,因而分子间的作用力表现为引力(图丙),它随着距离的增大迅速减小。
当分子间距离的数量级大于10-9m时,分子力已经变得十分微弱,可以忽略不计了。
分子间的相互作用力
分子间作用力(范德瓦尔斯力)有三个来源:①极性分子的永久偶极矩之间的相互作用。
②一个极性分子使另一个分子极化,产生诱导偶极矩并相互吸引。
③分子中电子的运动产生瞬时偶极矩,它使临近分子瞬时极化,后者又反过来增强原来分子的瞬时偶极矩;这种相互耦合产生净的吸引作用。
什么是范德瓦尔斯力?
范德瓦尔斯力也被称为范德华力,是分子间普遍存在的作用力,它很弱,比化学键的键能小1~2个数量级。
对于结构相似的物质,相对分子质量越大,范德华力越大;分子的极性越大,范德华力越大。
范德华力主要影响物质的物理性质,范德华力越大,物质的熔沸点越高。
注意:范德华力不属于化学键,它是分子和分子之间的一种作用力。
分子相互作用分子间相互作用是指分子之间的相互作用力,这种力量是由于分子之间的电荷分布不均匀而产生的。
分子间相互作用是化学反应和物理现象的基础,它对于生命体系的维持和物质的性质有着重要的影响。
分子间相互作用可以分为三种类型:范德华力、氢键和离子键。
这些相互作用力在不同的化学反应和物理现象中起着不同的作用。
范德华力是分子间最普遍的相互作用力。
它是由于分子之间的电荷分布不均匀而产生的。
当两个分子靠近时,它们之间的电子云会发生相互作用,这种相互作用会导致分子之间的吸引力。
范德华力对于分子的凝聚和液体的表面张力有着重要的影响。
氢键是一种特殊的分子间相互作用力。
它是由于氢原子与氧、氮或氟原子之间的电荷分布不均匀而产生的。
氢键对于生命体系的维持和物质的性质有着重要的影响。
例如,DNA的双螺旋结构就是由氢键维持的。
离子键是由正负离子之间的相互作用力产生的。
离子键对于化学反应和物理现象有着重要的影响。
例如,盐的晶体结构就是由离子键维持的。
分子间相互作用力对于生命体系的维持和物质的性质有着重要的影响。
例如,蛋白质的结构和功能就是由分子间相互作用力维持的。
蛋白质的结构和功能对于生命体系的维持和物质的性质有着重要的影响。
分子间相互作用力还对于化学反应和物理现象有着重要的影响。
例如,化学反应中的反应速率和反应产物的选择性就是由分子间相互作用力决定的。
物理现象中的表面张力和液滴形状也是由分子闸相互作用力决定的。
分子间相互作用力是化学反应和物理现象的基础,它对于生命体系的维持和物质的性质有着重要的影响。
我们需要深入研究分子间相互作用力的性质和作用机制,以便更好地理解化学反应和物理现象,为生命科学和材料科学的发展做出页献。