自考高等数学二各章节重点(精)
- 格式:doc
- 大小:13.00 KB
- 文档页数:3
2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。
limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f). 2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A y n n =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}ny 必定有界.2.函数的极限: ⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f x x=→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f 称在该变化过程中)(x f 为无穷大量。
专升本高等数学二知识点总结嘿,想专升本的小伙伴们!今天咱就来好好唠唠高等数学二的那些知识点。
这高等数学二啊,就像是一座神秘的城堡,里面有各种各样的宝藏(知识点)等待我们去挖掘呢。
先说说函数这一块吧。
函数就像是一个魔法盒子,你给它一个输入(自变量),它就会给你一个输出(因变量)。
一元函数是最基础的啦,就像我们走的单行道,只有一个方向决定结果。
比如一次函数y = kx + b,k就像是这条道路的坡度,b呢,就是在起点的时候的偏移量。
我记得我那同学小李啊,最开始学函数的时候,老是把k和b的意义搞混。
我就跟他说:“你看啊,k就好比是你骑自行车的速度,b就是你出发的时候离原点有多远,这能一样吗?”他这才恍然大悟。
接着就是极限。
极限这东西可神奇了,它像是一个目标,函数这个小火车一直朝着这个目标开去。
当自变量无限接近某个值的时候,函数值就无限接近极限值。
有次考试,有个求极限的题,小张在那愁眉苦脸的。
我问他咋了,他说这极限感觉就像天上的星星,看得见摸不着。
我就笑着跟他说:“你呀,别把它想得那么复杂。
你就想象你在追一只跑得特别快的兔子,你离它越来越近,这个越来越近的状态就是极限。
”求极限的方法有好多呢,像等价无穷小替换,就像是用相似的东西去代替,简化计算。
导数可不得了,它是函数的变化率。
这导数就像一个超级放大镜,能看到函数在每一点的变化速度。
如果把函数看成是一个爬山的路线,导数就是你在每个点上爬坡的陡峭程度。
我和小王一起讨论导数的时候,他说:“这导数感觉好抽象啊。
”我就说:“你想啊,你跑步的时候,你每一秒速度的变化,那就是导数啊。
”导数的公式得好好记,像常见函数的导数公式,就像是武功秘籍里的基本招式,不记住可不行。
求导法则呢,加法求导法则就像两个人合作干活,各自的效率相加就是总的效率;乘法求导法则就稍微复杂点,有点像互相影响的关系。
再讲讲积分吧。
积分和导数是相反的过程,就像上山和下山一样。
不定积分是求原函数,就像是把已经加工好的东西还原到原材料。
高数重点注:那个画的题目我是这样表示的。
比如P57.三.2 就是第57页的第三大题的第2小题。
前面的是重要的知识点。
第七章1.一阶线性微分方程2.可降阶的二阶微分方程3.二阶齐次4.常系数齐次线性微分方程书:P301.1 P320.1(1)(2)(3) P323例三P326例五P329.1(5)(7)指导书:P64.三1、2、3 P65.二P66.二.3、4 P67.三.1(7)第八章1.对称式直线方程2.点法式平面方程3.过点与两平面都垂直的平面方程书:P13.8 P19 例四P23.1 P36.2 P50例四P51.3、4指导书:P2.二.1 P5.5 P7.二P9.2、5 P57.三.2 P59.一.5第九章1.求极限2.求全微分3.求曲线的切线及法平面4.求曲线的切平面及法线5.求条件极值书P61例五P65.6(1)(2)(3)(4) P75例一、例三P77.1(1)(2)(4) P78.2 P97例四P102例六P103.7、8指导书:P11.二.1 P13.一.2、二P16.一.2 P19.二.4 P22.四.2第十章1.二重积分性质2.交换积分次序3.直角坐标系下的二重积分书:P144例一P145例三P157.2(4)、6(1)(2)(3)(4)指导书:P25.一.4、5 、二.2 P29.二.4 P30.三.3第十一章1.对弧长的曲线积分2.对坐标的曲线积分3.与积分路径无关的曲线积分书:P193.3(2)(3) P201例四P204.4 P207例二P217.6、7(1)(4)指导书:P33.一.2、二P34.二.1、2 P35.三P40.一.1 P53.一.4第十二章书:P276例一P280例六P281.1(1)(2)(5)指导书:P46.二P50.二.2、4 P59.二.3、4。
2020成人高考专升本高等数学二知识点汇总复习(自编)本文介绍了成人高考专升本高等数学二的第一章:极限与连续,其中包括极限的概念、无穷小量与无穷大量、无穷小量与无穷大量的关系、无穷小量的性质、无穷小量的比较与替换、两个重要极限和求极限的方法。
另外,还介绍了函数在某一点上的连续性。
极限的概念是指当自变量趋近于某一值时,函数值趋近于某一常数。
左极限、右极限存在且唯一时,称该点极限存在。
无穷小量和无穷大量是指在某一变化过程中,函数值趋近于零或无穷大的量。
它们之间有一定的关系,比如同阶无穷小量可以相互替换,等价无穷小量的极限相等。
函数的连续性是指函数在某一点上的极限等于函数在该点的函数值。
如果函数在某一点上连续,则该点的左右极限存在且等于该点的函数值。
求极限的方法包括直接代入法、分子分母消去公因子、分子分母同除最高次幂、利用等价代换法、利用两个重要极限和洛必达求导法则等。
最后,需要注意的是,文章中存在一些格式错误和明显有问题的段落,需要删除和改写。
第二章一元函数微分学2-1 导数与微分1.导数概念在函数y=f(x)的某个邻域内,当自变量x在点x处的改变量为Δx时,相应的函数改变量Δy=f(x+Δx)-f(x)。
如果极限lim(Δy/Δx)存在,则称此极限为函数y=f(x)在x处的导数,表示形式如下:lim(Δy/Δx) Δx→0存在,则称此极限为函数y=f(x)在x处连续。
2.常见的求导公式1) (c)'=02) (xa)'=ax^(a-1)3) (log_a x)'=xlna4) (ln x)'=1/x5) (ax)'=a^xlna6) (e^x)'=e^x7) (sin x)'=cos x8) (cos x)'=-sin x 3.导数的运算法则1) (u±v)'=u'±v'2) (uv)'=u'v+uv'3) (cu)'=cu'4) (v/u)'=(u'v-uv')/u^24.复合函数求导如果函数u=φ(x)在点x处可导,函数y=f(u)在对应点u处也可导,则复合函数y=f[φ(x)]在点x处可导,且有:dy/dx)=(dy/du)(du/dx)5.隐函数求导隐函数:x与y之间的函数关系是由一个方程F(x,y)=0来确定。
高等数学(二)重点知识及解析(占80分左右)I 、函数、极限一、 基本初等函数(又称简朴函数):(1)常值函数:y = c (2)幕函数:y = (3)指数函数:y = / (“〉0,且d H1)(4) 对数函数:y = \og a x (u ) 0,且oHl )(5) 三角函数:y = sin x > y = cosx> y = tanx » y = cot x(6) 反三角 函数:y = arcsin x, y = arccosx> y = arctan x» y = arc cot x二、 复合函数:要会判断一种复合函数是由哪几种简朴函数复合而成。
例如:|y = lncosx 是由y = ln“ , u = cosx 这两个个简朴函数复合而成. 例如:|y = arctan e'x 是由y = arctan u > u = e 和y = 3x 这三个简朴函数复合而成. 该某些是背而求导核心!三、 极限计算1、运用函数持续性求极限(代入法):对于普通极限式(即非未定式),只要将凡代 入到函数表达式中,函数值即是极限值,即lim/(x ) = /(x 0).XT 心注意:(1)常数极限等于她自身,与自变量变化趋势无关,即limC = C o(2)该办法使用前提是当x->x 0时候,而xts 时则不能用此办法。
例lim 4 = 4, lim-3 = -3, Iimlg2 = lg2, lim/r = /r, ------ A —»-XA —>-l .TfX J 〜丸•1弋2.未定式极限运算法(1)对于+未定式:分子、分母提取公因式,然后消去公因式后,将代入后函数值即是极限值。
x 2 +3x-l~x+i02+3>0-l _o+i- 丽^1曲空41k 空—1------- 22 X-l 2-1(非特殊角三角函数值不用讣算出来)ini西计算黒m …•…存定式’提取公因式解:原式二 lim- V ~3)( V + 3)23X -3(2)对于三未定式:分子、分母同步除以未知量最髙次幫,然后运用无穷大倒数是无穷小 Q0这一关系进行讣算。
高数二知识点高等数学二是许多专业课程的重要基础,涵盖了丰富的知识内容。
下面就为大家详细介绍一下高数二中的一些关键知识点。
首先,我们来谈谈多元函数的微积分。
多元函数是指具有两个或两个以上自变量的函数。
比如,$z =f(x,y)$就是一个典型的二元函数。
在多元函数中,偏导数是一个重要概念。
偏导数表示的是函数在某一个自变量方向上的变化率。
对于函数$z = f(x,y)$,它关于$x$ 的偏导数记为$\frac{\partial z}{\partial x}$,关于$y$ 的偏导数记为$\frac{\partial z}{\partial y}$。
在计算偏导数时,我们把其他自变量看作常数,只对所关注的自变量求导。
例如,对于函数$z = x^2 + 3xy + y^2$,其关于$x$ 的偏导数为$\frac{\partial z}{\partial x} = 2x + 3y$,关于$y$ 的偏导数为$\frac{\partial z}{\partial y} = 3x + 2y$。
多元函数的全微分也是一个重要知识点。
全微分反映了函数在多个自变量同时变化时的微小改变量。
对于二元函数$z = f(x,y)$,如果其偏导数$\frac{\partial z}{\partial x}$和$\frac{\partial z}{\partial y}$在某点连续,那么函数在该点的全微分$dz =\frac{\partial z}{\partial x}dx +\frac{\partial z}{\partial y}dy$ 。
接着,我们说一说二重积分。
二重积分可以用来计算平面区域上的面积、体积等。
假设我们有一个二元函数$f(x,y)$,要计算它在区域$D$ 上的二重积分,记作$\iint_D f(x,y)d\sigma$ 。
计算二重积分时,我们可以将其转化为累次积分。
如果区域$D$ 可以表示为$a \leq x \leq b$,$g_1(x) \leq y \leq g_2(x)$,那么二重积分可以化为先对$y$ 积分,再对$x$ 积分的累次积分:$\int_{a}^{b}dx\int_{g_1(x)}^{g_2(x)}f(x,y)dy$ 。
专升本高等数学二自学教材高等数学二自学教材第一章:函数与极限1. 函数的概念和性质函数是数学中的一种重要概念,是研究自变量和因变量之间关系的工具。
函数的定义和基本性质包括定义域、值域、单调性、奇偶性等。
函数可分为初等函数和特殊函数,初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
2. 极限的概念和性质极限是描述函数在某一点或无穷远处的趋势的一个概念。
极限包括数列极限和函数极限,其性质包括左极限、右极限、无穷极限、夹逼准则等。
通过求极限可以进行函数的连续性、可导性、可积性等性质的研究。
3. 函数的连续性与间断点连续性是函数在定义域内没有间断点的性质。
通过介绍函数的左连续、右连续和间断点的分类及性质,可以帮助我们理解函数的连续性和间断点的概念,并进行相关函数的分析和求解。
第二章:微分学1. 导数的概念和性质导数是描述函数局部变化率的概念,可理解为函数在某一点处的切线斜率。
导数的性质包括可导性、导数的求法、导数的几何意义和物理意义等。
导数在数学和物理领域中有广泛应用。
2. 高阶导数与常用函数的导数高阶导数是导数的推广,可通过重复求导得到。
常用函数的导数包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 微分中值定理与泰勒公式微分中值定理是微分学中的重要定理,包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。
泰勒公式是用多项式逼近函数的重要工具,通过泰勒公式可以得到函数在某一点附近的展开式。
第三章:微分方程1. 微分方程的基本概念与分类微分方程是描述函数与其导数或高阶导数之间关系的方程。
微分方程可分为一阶微分方程和二阶微分方程等。
一阶微分方程包括可分离变量型、齐次型和一阶线性微分方程等,具有广泛的应用。
2. 一阶线性微分方程与常系数齐次线性微分方程一阶线性微分方程是具有形如y'+P(x)y=Q(x)的方程,可以通过求解特解和通解来得到一般解。
常系数齐次线性微分方程是具有形如y''+ay'+by=0的方程,可通过特征方程求解。
高等数学2课程重点难点高等数学是大学中各专业必修的一门重要基础课。
高等数学的思想、内容、方法和语言已成为现代文化的重要组成部分,是提高学生文化素质,进一步学习有关专业知识,专业技术必不可少的工具。
第九章向量与空间解析几何掌握空间直角坐标的概念、向量概念,会用坐标表达式进行向量运算的方法;知道平面、直线方程,会根据所给的条件求平面、直线方程;了解空间常见的二次曲面的类型并能作出其草图,向量平行、垂直的条件,曲面在坐标面上的投影区域。
重点:向量概念、向量坐标表达式、求平面、直线方程。
难点:向量概念、向量坐标表达式第十章多元函数微分学掌握二元函数、二元函数的定义域及其可微、全微分的概念、偏导数概念,熟练地求出一阶、二阶偏导数,计算复合函数的偏导数和隐函数的偏导数;会利用偏导数讨论多元函数的极值。
重点:偏导数和全微分的概念,多元函数的极值。
难点:多元函数在诸方面不同于一元函数。
第十一章多元函数积分学熟练掌握二重积分的计算,学会计算一些简单的二重积分。
了解二重积分的概念及性质,用二重积分计算一些几何量(体积等)。
重点:熟练掌握二重积分的计算。
难点:将积分区域D化为x-型或y型或θ型-第十二章级数掌握交错级数收敛的莱布尼茨判别法和较简单的幂级数的收敛半径及收敛区域的求法;会用正项级数收敛的判别法;了解数项级数收敛和发散的概念,级数的基本性质及收敛的必要条件,几何级数、P级数、调和级数的收敛性;了解幂级数的概念和运算,会用间接法将一些简单函数展成幂级数。
重点:数项级数收敛和发散的概念, 正项级数的比值判别法, 交错级数的莱布尼茨判别法,幂级数的收敛半径和收敛区域。
难点:数项级数收敛的判别法的适当选择,函数间接展开成幂级数。
第一章解析几何与向量代数,这里面有几点,一部分是向量代数运算,包括向量的坐标。
主要还是怎么利用坐标来进行向量的加减法、数乘以及向量级和数量级,并且给了向量你会求它的长度,会求两个向量之间的夹角,求判断两个向量相互平行,相互垂直,知道他们的充分必要条件。
怎么会用向量。
比如说用两个向量的向量积求出两个垂直的向量。
第二,空间中的平面与直线。
平面方程希望大家抓住平面的点法式方程,你要确定一个平面方程来说,你只要知道这个平面的点和法向量就可以把这个平面写出来。
除了这个以外,平面还有一般式方程,任何一个三元一次方程都表示一个空间的平面,这两个之间的关系,给了这个平面方程,一般式方程,你能够从平面的一般式方程里面确定平面的法向量,这样就把这两类方程联系起来。
关于直线方程重点是直向式方程,知道这个直线的点和方向式向量,就可以直接写出这个直线的方程。
除了直线式方程之外还有点向式方程,就是把直线看成两个平面的交线。
那么你想一想,根据一般式方程,实际上就是给了两个平面的方程,直线是这两个平面的交线,你怎么根据平面方程确定方向向量,从而使这个方程写出直线的点向式方程。
这是平面方程和直线方程最基本的要求。
第三,简单的二此曲面。
这部分跟过去比有很大的差别。
这次要求主要是几个简单的二次曲面,比如说球面、椭球面、母线平行于坐标轴的柱面,知道这几个面的方程特点,您能够判断这个放表示的是
什么样的曲面。
这样在选择题、填空题里面都可能会出到这样的题目。
还有圆锥面,这也是经常用的,因为这给重积分和曲面积分做准备。
还有旋转抛物面,你要分清什么是旋转抛物面,什么是锥面。
大家想想锥面方程边是直的,所以它是直线,所以方程是Z平方等于X 平方加Y平方,这是我拿最简单的锥的例子。
旋转抛物面跟它有什么不同呢?它不是Z平方等于X平方加Y平方,对应是Z 等于X平方加Y平方,如果你看一下截横的话,让Y等于0,Z等于X平方,这就是它
的抛物曲线。
你要了解这两个方程有什么不同。
这是关于解析几何部分,主要的重点在这几个知识点。
第二章,多元函数微分学部分,它的重点一个是求二元函数、三元函数,这个主要是指出显函数,它的一阶偏导数和二阶偏导数,这是给具体的显函数,也会求全微分。
复合函数和隐函数主要是求一阶偏导数,还有极值一起应用,另外求曲面上的一点的切平面方程和法线方程,求空间曲线上的一点的切线方程和法平面方程。
第三章重积分的观点,主要是二重积分的计算,二重积分主要是简单区域的利用直角坐标,X型区域、Y型区域上的二重几分化为二次积分,还有用二次积分交换积分次序,比如说给一个抽象函数之外,他告诉你直角坐标的二重积分区域是什么样的区域,然后你能不能
给它换成极坐标下的二重积分,这个转换公式大家要熟悉。
另外,哪些区域适合应用极坐标来做二重积分这点大家要掌握。
关于三重积分,要求你会用直角坐标,球面坐标、柱坐标来计算三重积分,特别是对球面坐标计算很简单的,你不要用特别复杂的。
我想这不会考到特别复杂的三重积分。
对于第四章,曲线积分和曲面积分,主要是计算,就是大家掌握这个计算公式的时候,你要看FX或者F、X、Y,或者F、X、Y、Z,这些积分变量都应该在积分区域上,如果是重积分就应该在二重积分在平面区域上,三重积分在空间的区域上,如果是曲面积分就应该在曲面上,曲线积分就应该在曲线上。
因为他们在积分区域所以就应该满足积分区域的方程。
除此之外,还要满足 DX,DY是二重积分的面积圆,三重积分体积圆的公式应该是怎样的,大家都应该掌握。
这部分例外还有一个格林公式和高斯公式,希望大家能够掌握,利用格式公式怎么样计算曲线积分,同时格林公式可以进一步讨论线积分和路径无关的问题。
同时在曲面积分部分,对面积的曲面积分大家要掌握公式,对坐标的积分坐标要会用格林公式计算对坐标的曲线积分。
对于常微分方程,重点是一阶微分方程类型的判别及解法,二阶常系数线性方程的解法,非齐次方程特解的形式。
对于无穷级数部分,重点是数项级数里面,几何级数,P级数,正项级数审敛法,达朗贝尔审敛法,比较审敛法的极限形式。
同时还有较错级数的莱布尼兹审敛法,绝对收敛和条件收敛。
对于幂级数,需要掌握收敛区间和收敛域,还有怎么利用几何求和来求幂级数和函数。
给了一个公式要会求出他的傅立叶级数,并且知道从哪个点到哪个点就可以了。
应该说大纲没有给大家提高难度,要求大家实事求是,只要大家抓住这些重点、测试点,有应该能够取得满意的成绩。
也预祝大家能够取得好成绩。