理论力学:第六章 点的运动学
- 格式:ppt
- 大小:599.00 KB
- 文档页数:21
论力学--运动学运动学研究点和刚体运动的几何规律,即运动方程、轨迹、速度、加速度或角速度、角加速度等运动特征量。
第六章 点的运动学点的运动学是研究一般物体运动的基础,又具体独立的应用意义。
描述点的运动有矢径法、直角坐标法、自然法三种方法。
§6.1 矢量法一.矢量法表示点的运动方程设动点M 在空间作曲线运动,在参考坐标系上任取 某确定的点O 为坐标原点,则动点的位置可用原点至动 点的矢径r 表示。
当动点M 运动时,矢径r 的大小和方 向一般也随时间而改变,并且是时间的单值连续函数, 即)(t r r =上式称为用矢量表示的点的运动方程。
动点M 在运动过程中,其矢径r 的末端在空间 描绘出的曲线,称为动点M 的运动轨迹。
也称为矢径r 的矢端曲线。
二.矢量法表示点的速度)()(t t t r r r -+=∆∆平均速度tt t t t ∆∆∆∆)()(r r r υ-+== 瞬时速度dtd t t t rr υυ===→→∆∆∆∆00limlim 三.矢量法表示点的加速度 )()(t t t υυυ-+=∆∆ 平均加速度tt t t t ∆∆∆∆)()(υυυa -+==瞬时加速度2200lim lim dt d dt d t t t rυυa a ====→→∆∆∆∆结论:动点的速度等于它的矢径r 对时间的一阶导数,其加速度等于动点的速度对时间的一阶导数,也等于动点的矢径r 对时间的二阶导数。
§6.2 直角坐标法一.直角坐标表示动点的运动方程由于k j i r z y x ++=,当动点在轨迹上运动时,r 随时间而变化,则动点M 的坐标值x ,y 和z 随时间 而变化。
即⎪⎩⎪⎨⎧===)()()(321t f z t f y t f x消去方程中的参数t ,则得到动点运动的轨迹。
二.直角坐标表示动点的运动速度由于动点M 的矢径可表示为 k j i r z y x ++=,所以动点M 的速度可表示为 k j i r υdtdzdt dy dt dx dt d ++==将动点M 的速度写成投影形式,即k j i υz y x υυυ++=比较以上两式,可得dt dx x =υ,dt dy y =υ,dtdz z =υ 三.直角坐标表示动点运动的加速度动点M 的速度可表示为k j i r υdtdz dt dy dt dx dt d ++==,其加速度可表示为 k j i υa 222222dtzd dt y d dt x d dt d ++==将动点M 的加速度写成投影形式,即k j i a z y x a a a ++=比较以上两式,可得 22dt x d a x =,22dt y d a y =,22dt z d a z =结论:动点的速度在各坐标轴上的投影等于各对应的坐标对时间的一阶导数,动点的加速度在各坐标轴上的投影等于各对应的坐标对时间的二阶导数。
运动学部分:一、点的运动学重点难点分析1.重点:点的运动的基本概念(速度与加速度,切向加速度和法向加速度的物理意义等);选择坐标系,建立运动方程,求速度、加速度。
求点的运动轨迹。
2.难点:运动方程的建立。
解题指导:1.第一类问题(求导):建立运动方程然后求导。
若已知点的运动轨迹,且方程易于写出时,一般用自然法,否则用直角坐标法。
根据点的运动性质选取相应的坐标系,对于自然法要确定坐标原点和正向。
不管用哪种方法,注意将点置于一般位置,而不能置于特殊位置。
根据运动条件和几何关系把点的坐标表示为与时间有关的几何参数的函数,即可得点的运动方程。
2.第二类问题(积分):由加速度和初始条件求运动方程,即积分并确定积分常数。
二、刚体的简单运动重点难点分析:1.重点:刚体平移、定轴转动基本概念;刚体运动方程,刚体上任一点的速度和加速度。
2.难点:曲线平移。
解题指导:首先正确判断刚体运动的性质。
其后的分析与点的运动分析一样分两类问题进行。
建立刚体运动方程时,应将刚体置于一般位置。
三、点的合成运动(重要)重点难点分析:1.重点:动点和动系的选择;三种运动的分析。
速度合成与加速度合成定理的运用。
2.难点:动点和动系的选择。
解题指导:1.动点的选择、动系的确定和三种运动的分析常常是同时进行的,不可能按顺序完全分开。
2.常见的运动学问题中动点和动系的选择大致可分以下五类:(1)两个(或多个)不坟大小的物体独立运动,(如飞机、海上的船舶等)对该类问题,可根据情况任选一个物体为动点,而将动系建立在另一个物体上。
由于不考虑物体的大小,因此动系(刚体)与物体(点)只在一个点上连接,可视为铰接,建立的是平移动坐标系。
(2)一个小物体(点)相对一个大物体(刚体)运动,此时选小物体为动点,动系建立在大物体上。
(3)两个物体通过接触而产生运动关系。
其中一个物体的接触只发生在一个点上,而另一个物体的接触只发生在一条线上。
选动点为前一物体的接触点,动系则建立在后一物体上。
理论力学运动学知识点总结第一篇:理论力学运动学知识点总结运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
• 角速度ω表示刚体转动快慢程度和转向,是代数量,以用矢量表示。
,当α与ω。
角速度也可• 角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示。
• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
• 传动比。
一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。
• 绝对运动:动点相对于定参考系的运动;• 相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。
2.点的速度合成定理。
• 绝对速度:动点相对于定参考系运动的速度;• 相对速度:动点相对于动参考系运动的速度;• 牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。
3.点的加速度合成定理。
• 绝对加速度:动点相对于定参考系运动的加速度;• 相对加速度:动点相对于动参考系运动的加速度;• 牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;• 科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。
• 当动参考系作平移或 = 0,或与平行时,= 0。
·1·第6章 点的合成运动6.1 主要内容6.1.1 点的绝对运动、相对运动和牵连运动1.定系和动系若存在两个有相对运动的坐标系,则可指定其中一个为定系,另一个即为动系。
但工程上一般以固定在地面上的坐标系为定系,相对于定系运动着的坐标系称为动系。
2.动点和牵连点动点为研究的对象,牵连点是动点在动系上的重合点,随动点的相对运动而变,是动系上的点,不同瞬时,有不同的牵连点。
3.三种运动的关系动点相对于定系的运动定义为绝对运动;动点相对于动系的运动定义为相对运动;动系相对于定系的运动定义为牵连运动。
本章的主要任务就是建立这三者之间的定量关系,从而用来解决工程实际某些运动分析问题。
6.1.2 点的速度合成定理动点的绝对速度等于它的牵连速度与相对速度的矢量和。
这就是点的速度合成定理。
a e r =+v v v6.1.3 牵连运动为平移时,点的加速度合成定理当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和。
a e r =+a a a6.1.4 牵连运动为转动时,点的加速度合成定理当牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对加速度与科氏加速度的矢量和,这就是牵连运动为转动时点的加速度合成定理。
a e r C =++a a a a其中r C v a ⨯=ω2。
当取平动动系时0=e ω;0=C a 。
6.2 基本要求1.掌握运动合成与分解的基本概念和方法,准确理解本章阐述的若干概念。
2.明确动点与动系的选择原则,能在具体问题中恰当地选择动点与动系,并正确地分析三种运动。
3.熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理及其应用。
4.掌握科氏加速度的概念和计算,准确应用牵连运动为转动时的加速度合成定理及其应用。
6.3 重点讨论应用点的合成运动理论解决实际问题时,其关键是正确地选择动点和动系。
选择原则因具体情况不同而略有区别。
常见的问题有三种题型。
1.两个独立运动的物体,研究两者的相对运动。
第二篇运动学·第六章点的运动学·6.1 矢量法2. 6-6.下列说法正确的是。
(A)点的位移就是点走过的路程(B)点的矢端曲线,就是点运动的轨迹(C)如果在运动中点的矢径保持不变,点必作直线运动(D)如果在运动中点的矢径没有增量,点的速度一定为零参考答案:BD3. 6-7.下列说法正确的是。
(A)位移是矢量(B)当点作直线运动时,位移不是矢量(C)当点作曲线运动时,位移也可以是代数量(D)不论运动轨迹如何,位移一定是矢量参考答案:AD4. 6-1.运动学是研究物体运动的几何性质的科学。
().参考答案:√5. 6-2.运动学中通常采用两种参考系:定参考系和动参考系。
().参考答案:√6. 6-3.运动方程反映了物体运动的速度与时间的对应规律。
().参考答案:×7. 6-4.点的加速度等于矢径对时间的一阶导数。
().参考答案:×第二篇运动学·第六章点的运动学·6.2 直角坐标法3. 6-13.下列说法正确的是。
(A)在直角坐标法中,点的坐标和时间的对应关系,就是点的运动方程(B)当点作直线运动时,位移就等于路程(C)点作匀变速直线运动时,点的加速度和速度方向一定相同(D)点作匀速直线运动时,加速度一定为零参考答案:AD4. 6-8.动点的速度在直角坐标轴上的投影等于该点的对应坐标对时间的一阶导数。
().参考答案:√5. 6-9.动点的加速度在直角坐标轴上的投影等于该点速度的对应投影对时间的一阶导数。
().参考答案:√6. 6-10.点作直线运动时,若有加速度存在,则加速度必沿着直线方向。
().参考答案:√第二篇运动学·第六章点的运动学·6.3 自然法2. 6-20.点M 沿螺线自外向内运动,它走过的弧长与时间的一次方成正比,则该点()。
(A)越跑越快(B)越跑越慢(C)加速度越来越大(D)加速度越来越小答题: A. B. C. D.参考答案:C6. 6-24.点作曲线运动,若其法向加速度越来越大,则该点的速度____________。
第6章 运动学基础一、是非题(正确的在括号内打“√”、错误的打“×”)1.动点速度的大小等于其弧坐标对时间的一阶导数,方向一定沿轨迹的切线。
( √ ) 2. 动点加速度的大小等于其速度大小对时间的一阶导数,方向沿轨迹的切线。
( × ) 3.在实际问题中,只存在加速度为零而速度不为零的情况,不存在加速度不为零而速度为零的情况。
( × ) 4.两个刚体做平动,某瞬时它们具有相同的加速度,则它们的运动轨迹和速度也一定相同。
( × ) 5.定轴转动刚体的角加速度为正值时,刚体一定越转越快。
( × ) 6.两个半径不等的摩擦轮外接触传动,如果不出现打滑现象,两接触点此瞬时的速度相等,切向加速度也相等。
( √ )二、填空题1. 描述点的运动的三种基本方法是矢径法、直角坐标法和自然坐标法。
2. 点做圆周运动,加速度由切向加速度和法向加速度组成,其中切向加速度反映了速度大小随时间的变化率,方向是沿圆周的切线;法向加速度反映了速度的方向随时间的变化率,方向是沿圆周的法线。
3. 质点运动时,如果d d st和22d d s t 同号,则质点做加速运动,反之则做减速运动。
4. 刚体运动的两种基本形式为平动和定轴转动。
5. 刚体平动的运动特征是刚体在运动的过程中其内的任一直线始终和原来的位置平行。
6. 定轴转动刚体上点的速度可以用矢积表示,它的表达式为r ωv ⨯=;刚体上点的加速度可以用矢积表示,它的表达式为v ωr εa ⨯+⨯=。
7. 刚体绕定轴转动时,在任一瞬时各点具有相同的角速度和角加速度,且各点轨迹均为 圆周。
8. 定轴转动刚体内点的速度分布规律为任何一条通过轴心的直径上各点的速度,若将速度矢的端点连成直线,此直线通过轴心。
9. 半径均为R 的圆盘绕垂直于盘面的O 轴做定轴转动,其边缘上一点M 的加速度如图6.23所示,试问两种情况下圆盘的角速度和角加速度的大小分别为:图(a):=ω0;=εRa。