球化处理工艺
- 格式:doc
- 大小:38.50 KB
- 文档页数:1
球墨铸铁的球化与孕育处理工艺摘要:中国的球墨铸铁产量占世界的三分之一以上,与美国相比,同一球墨铸铁件的抗拉强度相差不大,但延伸率和冲击值较低,力学性能达不到要求,已成为生产高强度、高韧性球墨铸铁的瓶颈。
本文通过严格控制材料化学成分、优化冶炼工艺和孕育工艺等措施,生产出了满足qt600-10性能要求的铸造状态铸件。
关键词:球墨铸铁;球化处理工艺;孕育处理工艺1前言中国的球墨铸铁产量占世界的三分之一以上。
与美国相比,同一牌号球墨铸铁的抗拉强度相差不大,但伸长率和冲击值均较低,说明我国球墨铸铁生产原液态铁的冶金质量还有待提高。
技术水平有待提高。
高强度、高韧性球墨铸铁已成为qt600-10、qt700-5等高性能球墨铸铁生产的瓶颈。
qt600-10铸态生铁具有成本优势大,抗拉强度和伸长率高,但不易控制,需要发展相对稳定的球化工艺和合金,以保证高强度和高伸长率。
2化学成分的选择Qt600-10具有高强度、高伸长率的特点。
考虑到最大的经济性,铸造工艺可以满足技术条件,但必须严格控制化学成分。
化学成分选择如下:1)碳当量选择碳当量主要是为了提高铸件性能,消除铸件缺陷,获得良好的铸件,提高力学性能。
一般来说,碳当量的选择接近共晶点。
2)球墨铸铁中的锰、硫和氧在球化过程中可以中和镁和铈,少量的锰可以起到合金化元素的作用。
为了保证高伸长率,欧姆(Mn)的控制范围为:0.4%~0.6%。
3)磷和磷不影响石墨的球化,但可溶于铁溶液中,降低了铁溶液的共晶温度和凝固起始温度。
容易发生偏析,(P)一般控制在0.05%以下。
4)硫硫是抗石墨球化元素,在稀土和镁中加入铁和硫化物部分,其余的球化,属于有害杂质,(S)一般控制在0.02%以下。
5)加入少量铜可以改善铸件截面结构的均匀性,对基体有固溶强化和沉淀硬化的作用。
铜的质量分数一般控制在0.3%~0.5%之间。
6)加入微量元素锡和质量分数0.04%~0.08%,基体中珠光体含量显著增加。
球化退火是使钢中碳化物球化而进行的退火工艺。
将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。
这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。
而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。
另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。
球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。
在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。
因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。
球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。
普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。
等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。
等温后随炉冷至500℃左右出炉空冷。
和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。
软化退火热处理的热处理程序是将工件加热到600℃至650℃范围内(A1温度下方),维持一段时间之后空冷,其主要目的在於使以加工硬化的工件再度软化、回復原先之韧性,以便能再进一步加工。
此种热处理方法常在冷加工过程反覆实施,故又称之為製程退火。
大部分金属在冷加工后,材料强度、硬度会随著加工量渐增而变大,也因此导致材料延性降低、材质变脆,若需要再进一步加工时,须先经软化退火热处理才能继续加工。
提问者: 映月沙丘- 江湖新秀最佳答案球化退火球化退火是使钢中碳化物球化而进行的退火工艺。
将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。
这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。
而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。
另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。
球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。
在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。
因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。
球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。
普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。
等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。
等温后随炉冷至500℃左右出炉空冷。
和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。
合金钢的球化和石墨化合金钢是一种由铁和其他元素(如钼、铬、镍等)合金化而成的钢材。
球化和石墨化是两种常见的热处理方法,用于改善合金钢的力学性能和微观结构。
在下文中,我将详细介绍合金钢的球化和石墨化的原理和应用。
合金钢的球化是通过将钢材加热到一定温度,然后快速冷却,使其微观结构中的碳元素形成球状的碳化物。
球化处理能够提高合金钢的韧性和延展性,减少脆性。
这是因为球状的碳化物会改变钢材的晶界结构,减少晶界的应力集中,从而提高钢材的抗拉强度和塑性。
球化处理常用于高碳合金钢和合金元素含量较高的钢材。
石墨化是通过将合金钢加热到一定温度,然后冷却到室温,在适当的条件下,使钢材中的碳元素析出为石墨形态。
石墨化处理能够提高合金钢的切削性能和耐磨性。
石墨是一种具有良好自润滑性的材料,能够减少切削过程中的摩擦和磨损,提高切削效率和切削质量。
石墨化处理常用于切削工具和轴承等需要高耐磨性的应用领域。
球化和石墨化处理的具体方法和条件会根据不同的合金钢材料和应用要求而有所差异。
一般来说,球化处理的温度通常在900℃到950℃之间,冷却方式可以选择空冷、水淬或油淬。
而石墨化处理的温度通常在700℃到800℃之间,冷却方式可以选择空冷或水淬。
此外,球化和石墨化处理一般需要多次进行,以确保处理效果的稳定和一致性。
合金钢的球化和石墨化处理在工业制造中具有广泛的应用。
在航空航天、汽车制造和机械加工等领域,球化和石墨化处理能够显著提高合金钢的性能,延长材料的使用寿命。
例如,在航空航天领域,合金钢的球化处理可以提高材料的韧性和抗疲劳性能,增强零件的承载能力和抗冲击性能。
在汽车制造领域,合金钢的石墨化处理可以提高材料的耐磨性和降低切削力,从而提高发动机的工作效率和使用寿命。
在机械加工领域,合金钢的球化处理和石墨化处理可以提高切削刀具的切削性能和耐磨性,提高加工效率和质量。
总结起来,合金钢的球化和石墨化处理是一种重要的热处理方法,能够显著改善钢材的力学性能和微观结构。
42CrMo球化退火工艺:42CrMo有较高的淬透性,较好的强度和韧性,可用于较大截面与高强度的零件.球化退火是为了得到粒状珠光体组织.但得到粒状珠光体组织不一定要进行球化退火,采用淬火得到马氏体或贝氏体,再经高温回火使碳化物析出并球化的方法同样可达到目的.这种工艺得到的粒状珠光体较均匀,比较容易控制硬度.时间较短.工艺重显性好.C 0.38-0.43Si 0.15-0.35Mn 0.75-1.00Cr 0.8-1.10Mo 0.15-0.25S <0.040P <0.035球化退火是使钢中碳化物球化而进行的退火工艺。
将钢加热到Ac1以上20~30℃,保温一段时间,然后缓慢冷却,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
球化退火主要适用于共析钢和过共析钢,如碳素工具钢、合金工具钢、轴承钢等。
这些钢经轧制、锻造后空冷,所得组织是片层状珠光体与网状渗碳体,这种组织硬而脆,不仅难以切削加工,且在以后淬火过程中也容易变形和开裂。
而经球化退火得到的是球状珠光体组织,其中的渗碳体呈球状颗粒,弥散分布在铁素体基体上,和片状珠光体相比,不但硬度低,便于切削加工,而且在淬火加热时,奥氏体晶粒不易长大,冷却时工件变形和开裂倾向小。
另外对于一些需要改善冷塑性变形(如冲压、冷镦等)的亚共析钢有时也可采用球化退火。
球化退火加热温度为Ac1+(20~40)℃或Acm-(20~30)℃,保温后等温冷却或直接缓慢冷却。
在球化退火时奥氏化是“不完全”的,只是片状珠光体转变成奥氏体,及少量过剩碳化物溶解。
因此,它不可能消除网状碳化物,如过共析钢有网状碳化物存在,则在球化退火前须先进行正火,将其消除,才能保证球化退火正常进行。
球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。
普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。
等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。
球墨铸铁的炉前球化和孕育处理工艺
1球墨铸铁炉料按配料单数量,先后加入到感应电炉内,熔清,升温到出炉温度(1520℃),准备出炉。
其间可用炉前快速分析仪测定原铁水成分。
2浇注用的铁水球化包,要提前修好,筑好堤坝,并用木柴烘干烘透。
3球墨铸铁所用的球化剂、孕育剂要按每炉要求数量分别称好,备用。
4将球化剂放入铁水包堤坝一侧,盖上孕育剂量的60%(一次孕育),再盖上干净无锈的球铁屑,并注意捣实。
5铁水出炉时,要冲入堤坝的另一侧,防止球化剂过早反应。
铁水出尽,等球化反应完毕,扒净渣子,防止回硫。
再在铁水表面撒上孕育剂量的30%(二次孕育),略加搅拌,盖上覆盖剂。
起吊浇注。
6浇注过程尽量平稳迅速,浇注时间不应超过10分钟,以防止球化衰退。
浇注过程中,特别注意做好随流孕育(三次孕育),用量是孕育剂量的10%。
7浇注完毕,把铁水包中的剩余铁水倒尽,扒净渣子,以备再用。
8检测所需的试样、试块所用铁水,应取于浇注后期。
等温球化退火工艺曲线
等温球化退火工艺曲线是一种金属加工过程中常用的热处理工艺。
其目的是通过加热和冷却金属材料,使其达到一定的物理和化学性质,并增强其力学性能和耐腐蚀性。
等温球化退火工艺曲线包括以下几个步骤:
1. 预热阶段:将金属材料加热到一定温度,使其达到均匀的温度分布,通常在850℃以上进行。
2. 保温阶段:将金属材料保持在一定温度下,使其达到均匀的晶粒尺寸和分布。
保温时间通常在1-4小时之间,具体时间因材料种类和加工条件而异。
3. 冷却阶段:将金属材料从高温状态迅速冷却至室温,以使其晶粒尺寸保持在所需范围内,达到均匀的晶体结构。
等温球化退火工艺曲线的曲线图通常分为三个部分:加热曲线、保温曲线和冷却曲线。
加热曲线通常呈斜直线,表示金属材料的温度随时间的变化趋势。
保温曲线呈平直线,表示金属材料在一定温度下的保持时间。
冷却曲线呈陡峭直线,表示金属材料在迅速冷却下的温度变化趋势。
通过等温球化退火工艺曲线的控制,可以使金属材料达到最优的力学性能和耐腐蚀性。
同时,也可以控制金属材料的晶体形态,使其具有更好的加工性能和表面质量。
- 1 -。
球化退火的温度范围
球化退火是一种重要的金属热处理工艺,它通常被用于改善金属的力学性能和耐腐蚀性能。
在球化退火过程中,金属样品被加热到一定温度,然后缓慢冷却,以使金属晶粒重新排列成球形。
这种球形晶粒结构可以提高材料的韧性和延展性,从而使其更加适合于各种工业应用。
然而,球化退火的温度范围是非常关键的,因为如果温度太低或太高,金属晶粒可能无法完全球化或过度球化,从而导致材料性能不佳。
一般来说,球化退火的温度范围取决于金属的类型和要求的性能。
例如,对于碳钢而言,球化退火的温度范围通常在650°C到750°C之间。
在这个温度范围内,钢材晶粒可以充分球化,从而提高其韧性和耐腐蚀性能。
但是,如果温度过低,晶粒无法完全球化,从而导致钢材的硬度和强度下降;如果温度过高,晶粒会过度球化,从而导致钢材变得过于柔软,不适合于一些高强度应用。
对于其他金属,球化退火的温度范围也有所不同。
例如,铜的球化退火温度范围在450°C到650°C之间,而镍的球化退火温度范围则在800°C到1100°C之间。
因此,在进行球化退火之前,必须先
了解金属的性质和要求的性能,以确定合适的温度范围。
- 1 -。
第三节球化处理工艺球化处理主要包括以下内容:(1)铸铁化学成分的选择;(2)球化剂的选择、加入量;(3)球化处理方法;(4)球墨铸铁的孕育处理;(5)球化效果的检验。
球墨铸铁球化处理工艺的制订应充分考虑球墨铸铁的牌号及其对组织的要求、铸件几何形状及尺寸、铸型的冷却能力、浇注时间和浇注温度、铁液中微量元素的影响以及车间生产条件等因素。
一、球墨铸铁化学成分的选择同普通灰铸铁一样,球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。
对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。
同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。
下面着重介绍这些元素在球墨铸铁中的作用及其选择原则。
1、碳及碳当量碳是球墨铸铁的基本元素,碳高有助于石墨化。
由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。
铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。
将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。
但是,碳含量过高,会引起石墨漂浮。
因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。
2、硅硅是强石墨化元素。
在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。
但是,硅提高铸铁的韧脆性转变温度(见图4—6),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。
球墨铸铁中终硅量一般在—%。
选定碳当量后,一般采取高碳低硅强化孕育的原则。
硅的下限以不出现自由渗碳体为原则。
图4—6 硅对铁素体球墨铸铁脆性转变温度的影响球墨铸铁中碳硅含量确定以后,可用图4—7进行检验。
如果碳硅含量在图中的阴影区,则成分设计基本合适。
如果高于最佳区域,则容易出现石墨漂浮现象。
等离子球化工艺是一种新兴的材料加工技术,其原理是将气体放电产生的等离子体作为能量源,对材料表面进行加工。
这种技术具有高效、高精度、环保等优点,被广泛应用于材料制备、表面改性等领域。
第一段:等离子球化工艺的基本原理和特点
等离子球化工艺是一种利用气体放电产生的等离子体对材料表面进行加工的技术。
其特点是能够在常温下高效地加工材料表面,同时具有高精度和高质量的特点。
该技术不仅可以用于材料制备和表面改性,还可以用于纳米材料的制备和生物医学领域等。
第二段:等离子球化工艺的应用领域
等离子球化工艺在材料制备和表面改性等领域中具有广泛的应用。
例如,可以利用等离子球化工艺制备具有特殊形貌和结构的纳米材料,如纳米线、纳米棒等。
此外,该技术还可以用于改善材料表面的性能,如增强材料的耐磨性、耐腐蚀性等。
第三段:等离子球化工艺的优点和局限性
等离子球化工艺具有高效、高精度、环保等优点。
与传统的加工技术相比,它可以在常温下完成加工,降低了能源消耗和环境污染。
然而,该技术的局限性也很明显,如对材料的加工深度有限、加工速度较慢等。
第四段:等离子球化工艺的发展趋势
随着人们对材料加工技术的要求越来越高,等离子球化工艺也在不断发展。
未来,该技术将更加注重提高加工效率和加工质量,同时也将更加注重降低成本和环境污染。
第五段:等离子球化工艺在未来的应用前景
等离子球化工艺在未来的应用前景非常广阔。
随着材料科学和纳米技术的不断发展,等离子球化工艺将会在材料制备、表面改性、生物医学等领域发挥越来越重要的作用。
同时,该技术也将面临更多的挑战,如提高加工效率、降低成本等。
1/球化处理工艺
对球墨铸铁曲轴其球化处理工艺非常重要,曲轴的力学性能主要依靠球化质量来保证,我们选用低镁球化剂,球化反应比较平缓,铁水一次出完,球化效果比较好。
具体球化、覆盖等工艺改进如下。
球化剂(5%-7%Mg)→铁屑覆盖(1.5-2kg)→加铁水(400 g)一球化反应(50-70s)。
2/孕育处理工艺
加硅铁(一次孕育)→浇包加硅铁粉(二次孕育)→浇注随铁水流孕育(三次孕育)。
3 曲轴的清理
曲轴浇注后,大约在50~60min,可以翻箱倒铁丸取件,铸件冷却到50℃以下,可以去除冒口和浇注系统,曲轴用悬挂式抛丸机进行表面抛丸,每组20件,大约抛丸15min左右,曲轴表面要达到无粘砂,光亮为好。
采用电动角磨机和风动工具清理飞边毛刺。
4.1铁水的检验
要铸造优质的曲轴,必须保证铁水质量,特别是铁水的化学成分,其次是铁水的出炉温度(球化处理时铁水温度)和浇注温度。
铁水化学成分检验元素及检验频次见表4。
在重要铸件生产中,对材质要求高,如球墨铸铁要求P≯0.04%、S≯0.02%,铸钢要求P、S均≯0.025%,采用热分析技术及时准确控制C、Si含量,。