定积分高考试题精选
- 格式:doc
- 大小:352.46 KB
- 文档页数:3
高中数学定积分试题一.选择题(共32小题)1.=()A.4+πB.4+2πC.4+4πD.2+π2.的值为()A.e﹣2B.e C.e+1D.e﹣13.|1﹣x2|dx=()A.B.4C.D.4.P(a,b)为函数f(x)=x2(x>0)图象上一点,当直线x=0,y=b与函数的图象围成区域的面积等于时,a的值为()A.B.C.1D.5.计算的值为()A.ln2+1B.2ln2+1C.3ln2+3D.3ln2+1 6.如图,在矩形OABC内随机取一点,则它位于阴影部分的概率为()A.B.C.D.7.已知函数,则定积分的值为()A.B.C.D.8.定积分(x+e x)的值为()A.e B.e+C.e﹣D.e+19.定积分(+x)dx=()A.+B.C.+1D.10.若a=(x+1)dx,b=cos xdx,c=e x dx,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 11.计算:=()A.﹣1B.1C.﹣8D.812.抛物线y=x2+1和直线y=x+3所围成的封闭图形的面积是()A.B.C.D.13.函数f(x)在区间[﹣1,5]上的图象如图所示,g(x)=f(t)dt,则下列结论正确的是()A.在区间(﹣1,0)上,g(x)递增且g(x)>0B.在区间(﹣1,0)上,g(x)递增且g(x)<0C.在区间(﹣1,0)上,g(x)递减且g(x)>0D.在区间(﹣1,0)上,g(x)递减且g(x)<014.设,则二项式展开式的所有项系数和为()A.1B.32C.243D.102415.曲线,以及直线l:x=2所围成封闭图形的面积为()A.1B.3C.6D.816.如图所示阴影部分是由函数y=e x、y=sin x、x=0和x=围成的封闭图形,则其面积是()A.e+2B.e﹣2C.e D.2﹣e17.直线y=x与曲线y=围成的封闭图形的面积为()A.B.C.D.18.若函数f(x)=A sin(ωx﹣)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.﹣1+B.C.1﹣D.19.已知,由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S的值为()A.B.C.D.20.曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形的面积等于()A.e2﹣1B.e2﹣C.e2﹣D.e2﹣21.曲线y2=x与y=x2所围图形的面积为()A.B.C.D.﹣1 22.汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m23.曲线y=﹣x2﹣x与x轴所围成图形的面积被直线y=kx分成面积相等的两部分,则k的值为()A.B.C.D.24.求曲线y=x2与y=x所围成的图形的面积S,正确的是()A.B.C.D.25.直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A.1B.C.D.026.如图,阴影部分的面积为()A.2B.2﹣C.D.27.由曲线y=,直线y=x﹣2及x轴所围成的图形的面积为()A.B.C.D.828.由y=﹣x2与直线y=2x﹣3围成的图形的面积是()A.B.C.D.929.一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J30.圆(x﹣a)2+y2=r2(a,r∈R,且r>0)的面积等于()A.(a+)dyB.2(a+)dyC.dxD.2dx31.由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积(如图)是()A.(x2﹣4)dxB.|(x2﹣4)dx|C.|x2﹣4|dxD.(x2﹣4)dx+(x2﹣4)dx32.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数,其数据如表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y0.840.250.980.150.010.600.590.880.840.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.B.C.D.二.填空题(共18小题)33.cos xdx+dx=.34.计算定积分=.35.(e x+2x)dx=.36.计算:dx=.37.若,则a=.38.由曲线y=﹣x2+2x与直线y=x围成的封闭图形的面积为.39.由x的正半轴、y=x2和x=4所围成的封闭图形的面积是40.计算定积分sin xdx=.41.定积分=.42.的值为.43.由曲线,直线y=2x,x=2所围成的封闭的图形面积为.44.已知曲线y2=x与y=x﹣2的图象所围成的阴影部分面积为.45.直线x=0、直线y=e+1与曲线y=e x+1围成的图形的面积为.46.如图是平面直角坐标系下y=sin x与圆O:x2+y2=π2图象,在圆O内随机取一点,则此点落在右图中阴影部分的概率是.47.曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为.48.由函数y=e x,y=,x=e所围成的封闭图形的面积为.49.直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为1,则k=.50.计算2xdx=.参考答案与试题解析一.选择题(共32小题)1.=()A.4+πB.4+2πC.4+4πD.2+π【分析】对2和分别积分,结合定积分的几何意义求解即可.【解答】解:=+,而表示以原点为圆心,2为半径的上半个圆在[0,2]部分的面积,故=+=2x+=4+π,故选:A.【点评】本题考查了定积分的求法,考查了定积分的几何意义,主要考查计算能力,属于基础题.2.的值为()A.e﹣2B.e C.e+1D.e﹣1【分析】根据定积分的计算方法直接求解即可.【解答】解:=(x﹣lnx)=(e﹣1)﹣(1﹣0)=e﹣2,故选:A.【点评】本题考查了定积分的计算,主要考查计算能力,属于基础题.3.|1﹣x2|dx=()A.B.4C.D.【分析】根据函数|1﹣x2|为偶函数,将原式转化为[0,2]上的定积分,再分别转化为[0,1]和[1,2]上分别积分即可.【解答】解:∵函数|1﹣x2|为偶函数,∴|1﹣x2|dx=2=2+2=2(x﹣)|+2()|=4.故选:B.【点评】本题考查了定积分的计算,主要考查计算能力,属于基础题.4.P(a,b)为函数f(x)=x2(x>0)图象上一点,当直线x=0,y=b与函数的图象围成区域的面积等于时,a的值为()A.B.C.1D.【分析】画出图象,利用定积分求出即可.【解答】解:=b﹣=,b=1,故b=1,把b=1代入f(x)=x2(x>0),得a=1,故选:C.【点评】考查定积分的应用,基础题.5.计算的值为()A.ln2+1B.2ln2+1C.3ln2+3D.3ln2+1【分析】由定积分公式,求解.【解答】解:,故选:D.【点评】本题考查定积分,属于基础题.6.如图,在矩形OABC内随机取一点,则它位于阴影部分的概率为()A.B.C.D.【分析】利用定积分求出阴影面积,再求出概率.【解答】解:阴影部分的面积m=,矩形的面积为n=3,故阴影部分概率为,故选:B.【点评】考查了几何概型和用定积分求面积,基础题.7.已知函数,则定积分的值为()A.B.C.D.【分析】依题意,=(﹣x+2)dx+,根据定积分的几何意义,表示已(3,0)为圆心,以1为半径的上半个圆的面积,计算即可.【解答】解:依题意,=(﹣x+2)dx+其中表示已(3,0)为圆心,以1为半径的上半个圆的面积,如图,所以=(﹣x+2)dx+=(2x﹣)|+=,故选:C.【点评】本题考查了定积分的计算,定积分的几何意义,属于基础题.8.定积分(x+e x)的值为()A.e B.e +C.e ﹣D.e+1【分析】直接利用定积分的应用求出结果.【解答】解:==.故选:C.【点评】本题考查的知识要点:利用定积分的关系式的应用求出结果,主要考察学生的运算能力和转换能力,属于基础题型.9.定积分(+x)dx=()A .+B .C .+1D .【分析】直接利用定积分的运算和几何意义的应用求出结果.【解答】解:==.故选:A.【点评】本题考查的知识要点:定积分的应用,定积分的几何意义的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.若a =(x+1)dx,b =cos xdx,c =e x dx,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 【分析】直接利用定积分和三角函数的值的应用求出结果.【解答】解:a =(x+1)dx =.b =cos xdx =,c =e x dx =所以:c>a>b故选:C.【点评】本题考查的知识要点:定积分的应用,定积分的几何意义的应用,主要考察学生的运算能力和转换能力,属于基础题型.11.计算:=()A.﹣1B.1C.﹣8D.8【分析】根据题意,由定积分的计算公式可得=(x2+2x ),进而计算可得答案.11【解答】解:根据题意,=(x2+2x )=(4+4)﹣(4﹣4)=8;故选:D.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式,属于基础题.12.抛物线y=x2+1和直线y=x+3所围成的封闭图形的面积是()A .B .C .D .【分析】根据题意分析,封闭图形面积即为(x+3)﹣(x2+1)在x=﹣1到x=2上定积分的值.【解答】解:令x+3=x2+1,得x1=﹣1,x2=2,则S ===,故选:C.【点评】本题考查定积分的基本定理,涉及定积分的计算,属于基础题.13.函数f(x)在区间[﹣1,5]上的图象如图所示,g(x )=f(t)dt,则下列结论正确的是()A.在区间(﹣1,0)上,g(x)递增且g(x)>0B.在区间(﹣1,0)上,g(x)递增且g(x)<0C.在区间(﹣1,0)上,g(x)递减且g(x)>0D.在区间(﹣1,0)上,g(x)递减且g(x)<0【分析】由定积分,微积分基本定理可得:f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x 增大时,面积减小,减小,g(x)增大,故g(x)递增且g(x)<0,得解.【解答】解:如图,g(x )=f(t)dt =﹣,因为x∈(﹣1,0),12所以t∈(﹣1,0),故f(t)>0,故f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x 增大时,面积减小,减小,g(x)增大,故g(x)递增且g(x)<0,故选:B.【点评】本题考查了定积分,微积分基本定理,属中档题.14.设,则二项式展开式的所有项系数和为()A.1B.32C.243D.1024【分析】由定积分、微积分基本定理及二项式展开式的系数得a ==﹣cos x=2,所以二项式(2x +)5展开式中令x=1可得:二项式(2x +)5展开式的所有项系数和为(2+1)5=243,得解【解答】解:因为a ==﹣cos x=2,所以二项式(2x +)5展开式中令x=1可得:二项式(2x +)5展开式的所有项系数和为(2+1)5=243,故选:C.【点评】本题考查了定积分、微积分基本定理及二项式展开式的系数,属基础题.15.曲线,以及直线l:x=2所围成封闭图形的面积为()A.1B.3C.6D.8【分析】联立得交点A(2,4),联立,得交点B(2,﹣4),解得A(2,4),B(2,﹣4),由曲线,以及直线l:x=2围成的封闭图形面积S,即可判断出正误.【解答】解:联立得交点A(2,4),联立,得交点B(2,﹣4),所以曲线,以及直线l:x=2所围成封闭图形的面积为:S ===2x2=2×22﹣2×02=8,13故选:D.【点评】本题主要考查积分的应用,求出积分上限和下限,是解决本题的关键.16.如图所示阴影部分是由函数y=e x、y=sin x、x=0和x =围成的封闭图形,则其面积是()A.e+2B.e﹣2C.e D.2﹣e【分析】直接利用定积分的应用求出结果.【解答】解:根据封闭图形的组成,所以:==.故选:B.【点评】本题考查的知识要点:定积分的应用,主要考察学生的运算能力和转换能力,属于基础题型.17.直线y=x与曲线y =围成的封闭图形的面积为()A .B .C .D .【分析】利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【解答】解:y=x与曲线y =围成的封闭图形的面积S ===.14故选:D.【点评】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属基础题.18.若函数f(x)=A sin(ωx ﹣)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.﹣1+B .C.1﹣D .【分析】先求出f(x)的解析式,以及对应的零点,积分即可.【解答】解:依题意A=1,==π,∴T=2π,ω==1,∴f(x)=sin(x ﹣),故当x =时,f(x)=0.∴阴影面积为==cos(x ﹣)|=1﹣.故选:C.【点评】本题考查了正弦型函数的图象,定积分,主要考查计算能力,属于基础题.19.已知,由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S的值为()A .B .C .D .15【分析】由题意利用积分法求出由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积.【解答】解:由题意,令S =x2dx =x 3=×(1﹣0)=,∴由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S =.故选:B.【点评】本题考查了定积分的几何意义与应用问题,是基础题.20.曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形的面积等于()A .e2﹣1B .e2﹣C .e2﹣D.e2﹣【分析】先求出曲线与直线的交点,设围成的平面图形面积为S,利用定积分求出S 即可.【解答】解:由题意,曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形如图所示∴S ==()=﹣=故选:A.【点评】本题主要考查定积分求面积.用定积分求面积时,要注意明确被积函数和积分区间,属于基本运算.21.曲线y2=x与y=x2所围图形的面积为()A .B .C .D .﹣1【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数在区间[0,1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.16【解答】解:由,解得或,则曲线y2=x与y=x2所围图形的面积为S =(﹣x2)dx =(﹣x3)=(﹣)﹣0=,故选:C.【点评】本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.22.汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m【分析】根据题意,由定积分定理,可得汽车在第1s至第2s间的1s内经过的位移S =(3t+1)dt,计算即可得答案.【解答】解:根据题意,汽车在第1s至第2s间的1s内经过的位移S =(3t+1)dt =(+t )=5.5;故选:C.【点评】本题考查了微积分基本定理,关键是理解定积分的几何意义.23.曲线y=﹣x2﹣x与x轴所围成图形的面积被直线y=kx分成面积相等的两部分,则k的值为()A .B .C .D .【分析】先计算出曲线y=﹣x2﹣x与x轴围成区域的面积,然后求出曲线y=﹣x2﹣x与直线y=kx的交点坐标,然后利用定积分计算直线y=kx与曲线y=﹣x2﹣x围17成区域的面积,等于曲线y=﹣x2﹣x与x轴围成区域的面积的一半,列方程求出k 的值.【解答】解:曲线y=﹣x2﹣x与x轴交于(﹣1,0)和原点,所以,曲线y=﹣x2﹣x与x轴围成的平面区域的面积为,联立,解得或,即直线y=kx与曲线y=﹣x2﹣x交于点(﹣k﹣1,﹣k2﹣k)和坐标原点,所以,曲线y=﹣x2﹣x位于直线y=kx上方区域的面积为==,解得,故选:D.【点评】本题考察利用定积分计算曲边三角形的面积,关键在于积分函数与积分区间,属于中等题、24.求曲线y=x2与y=x所围成的图形的面积S,正确的是()A .B .C .D .【分析】根据题意,画出图象确定所求区域,结合定积分的几何性质分析可得答案.【解答】解:根据题意,如图所示,阴影部分为曲线y=x2与y=x所围成的图形,其面积S=S△ABO﹣S曲边梯形ABO =(x﹣x2)dx;故选:A.【点评】本题考查定积分的几何意义,要注意明确被积函数和积分区间.1825.直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A.1B .C .D.0【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为﹣1的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:联立方程可得,解得x=﹣1,0,1,∴直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积S=2(x﹣x3)dx=2()=2(﹣)=,故选:C.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.26.如图,阴影部分的面积为()A.2B.2﹣C .D .【分析】确定积分区间与被积函数,求出原函数,即可求得定积分.【解答】解:由题意阴影部分的面积等于(3﹣x2﹣2x)dx=(3x ﹣x3﹣x2)=(3﹣﹣1)﹣(﹣9+9﹣9)=,故选:C.19【点评】本题考查定积分求面积,考查导数知识的运用,考查学生的计算能力,属于基础题.27.由曲线y =,直线y=x﹣2及x轴所围成的图形的面积为()A .B .C .D.8【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2与直线y=6x围成的封闭图形的面积,即可求得结论.【解答】解:由解得,∴曲线y =,直线y=x﹣2及x轴所围成的图形的面积S =﹣(x ﹣2)dx =﹣()=﹣2=.故选:A.【点评】本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.28.由y=﹣x2与直线y=2x﹣3围成的图形的面积是()A .B .C .D.9【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=﹣x2与直线y=2x﹣3的面积,即可求得结论.【解答】解:由y=﹣x2与直线y=2x﹣3联立,解得y=﹣x2与直线y=2x﹣3的交点为(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2与直线y=2x﹣3围成的图形的面积是S =(﹣x2﹣2x+3)dx =(﹣x3﹣x2+3x )=.故选:B.【点评】本题给出y=﹣x2与直线y=2x﹣3,求它们围成的图形的面积,着重考查了20定积分的几何意义和定积分计算公式等知识,属于基础题.29.一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J【分析】由物理学知识知,变力F(x)所作的功对应“位移﹣力”只要求W=∫12(5﹣x2)•cos30°dx,进而计算可得答案.【解答】解:由于F(x)与位移方向成30°角.如图:F在位移方向上的分力F′=F•cos30°,W=∫12(5﹣x2)•cos30°dx=∫12(5﹣x2)dx=(5x﹣x3)|12=故选:C.【点评】本题属于物理学科的题,体现了数理结合的思想方法,属于基础题.30.圆(x﹣a)2+y2=r2(a,r∈R,且r>0)的面积等于()A.(a+)dyB.2(a+)dyC.dxD.2dx【分析】由圆的方程求得y关于x的解析式,再求出x的取值范围,根据圆的对称性和定积分的几何意义,写出圆的面积表达式.【解答】解:由圆(x﹣a)2+y2=r2(a,r∈R,且r>0),得y=±,由(x﹣a)2≤r2,解得a﹣r≤x≤a+r;根据圆的对称性和定积分的几何意义,计算圆的面积为S圆=2dx.故选:D.【点评】本题考查了圆的方程与定积分的应用问题,是基础题.31.由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积(如图)是()A.(x2﹣4)dxB.|(x2﹣4)dx|C.|x2﹣4|dxD.(x2﹣4)dx+(x2﹣4)dx【分析】由题意结合定积分的几何意义整理计算即可求得最终结果.【解答】解:定积分表示曲边梯形的面积,位于x轴上方为正面积,位于x轴下方为负面积,据此可得:由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积是.故选:C.【点评】本题考查定积分的几何意义及其应用,重点考查学生对基础概念的理解和计算能力,属于中等题.32.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数,其数据如表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y0.840.250.980.150.010.600.590.880.840.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.B.C.D.【分析】首先确定所给数据中唯一曲边三角形的点的个数,然后利用频率近似概率,结合几何概型求解曲边三角形的面积即可.【解答】解:由表可知,向矩形区域{(x,y)|1⩽x⩽e,0⩽y⩽1}内随机抛掷10个点,其中有6个点在曲边三角形内,其横坐标分别为2.5,1.22,2.52,2.17,1.89,2.22其频率为.∵矩形区域的面积为e﹣1,∴曲边三角形面积的近似值为.故选:D.【点评】本题考查了蒙特卡洛模拟的方法,频率值近似为概率值,将古典概型与几何概型联系起来即可,属于常考题目.二.填空题(共18小题)33.cos xdx+dx=1+.【分析】cos xdx可以直接积分,dx根据几何意义积分即可.【解答】解:dx表示单位圆在[0,1]上的部分的面积,即个单位圆的面积,∴cos xdx+dx=sin x+=1+,故答案为:1+.【点评】本题考查了定积分的求法,考查了定积分的几何意义,主要考查计算能力,属于基础题.34.计算定积分=.【分析】=dx﹣dx,前式根据定积分的几何意义求解,后式直接积分即可得到所求.【解答】解:=dx﹣dx,dx表示半圆y=在[0,1]上部分的面积,即个单位圆的面积,∴=dx﹣dx=﹣x=.故答案为:.【点评】本题考查了定积分的求法,定积分的几何意义,主要考查计算能力,属于基础题.35.(e x+2x)dx=e2+3.【分析】直接利用定积分运算法则求解即可【解答】解:(e x+2x)dx=e2﹣1+(22﹣0)=e2+3,故答案为:e2+3【点评】题考查定积分的运算法则的应用,考查计算能力36.计算:dx=π﹣.【分析】根据定积分的几何意义,结合圆的知识求解即可.【解答】解:依题意,dx表示半圆y=,在x=1和x=2之间的部分与x轴围成的区域的面积,如图中阴影所示,依题意,△AOB为等边三角形,故B的纵坐标为∴dx=π×22﹣=π﹣,故答案为:π﹣.【点评】本题考查了定积分的求法,考查定积分的几何意义,主要考查计算能力和直观想象,属于中档题.37.若,则a=2.【分析】直接利用关系式求出函数的被积函数的原函数,进一步求出a的值.【解答】解:若,则,即,所以a=2.故答案为:2.【点评】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.38.由曲线y=﹣x2+2x与直线y=x围成的封闭图形的面积为.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2+2x与直线y=x所围成的封闭图形的面积,即可求得结论.【解答】解:将直线方程与曲线方程联立可得,所以正直线y=x和抛物线y=﹣x2+2x交点坐标为(0,0),(1,1),结合图象可知围成的封闭图形的面积为.故答案为:.【点评】本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.本题属于基础题.39.由x的正半轴、y=x2和x=4所围成的封闭图形的面积是【分析】根据定积分的几何意义和积分法则求解即可.【解答】解:根据定积分的几何意义,由x的正半轴、y=x2和x=4所围成的封闭图形的面积是:S===﹣0=,故答案为:.【点评】本题主要考查了定积分的几何意义与计算问题,是基础题.40.计算定积分sin xdx=2.【分析】根据题意,由定积分的计算公式可得sin xdx=(﹣cos x),进而计算可得答案.【解答】解:根据题意,sin xdx=(﹣cos x)=cos0﹣cosπ=2;故答案为:2.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式.41.定积分=+e.【分析】根据题意,由定积分的计算公式可得=(+e x),进而计算可得答案.【解答】解:根据题意,=(+e x)=(+e)﹣(0+1)=+e,故答案为:+e.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式.42.的值为8π.【分析】利用定积分性质和圆的面积求出即可.【解答】解:根据定积分的性质,y=sin3x为奇函数,在[﹣4,4]图象关于原点对称,定积分为0,y=在x∈[﹣4,4]的面积为以(0,0)为圆心,半径为4的圆的面积的一半,故为8π,故答案为:8π.【点评】本题考查定积分的计算,考查学生分析解决问题的能力,属于中档题.43.由曲线,直线y=2x,x=2所围成的封闭的图形面积为3﹣2ln2.【分析】求出曲线,直线y=2x的交点坐标,根据定积分的几何意义列式求解即可.【解答】解:依题意,由解得,∴封闭的图形面积为=(x2﹣2lnx)=3﹣2ln2.故答案为:3﹣2n2.【点评】本题考查了定积分的几何意义,定积分的求法,主要考查分析解决问题的能力和计算能力,属于基础题.44.已知曲线y2=x与y=x﹣2的图象所围成的阴影部分面积为.【分析】联立直线和抛物线,可得交点坐标,对y积分即可求得面积.【解答】解:联立y2=x与y=x﹣2可得,直线与抛物线的交点为(1,﹣1),(4,2),根据定积分的意义,图象所围成的阴影部分面积:S==()=,故答案为:.【点评】本题考查了定积分的应用,定积分的几何意义,属于基础题.45.直线x=0、直线y=e+1与曲线y=e x+1围成的图形的面积为1.【分析】根据定积分的几何意义求解即可.【解答】解:依题意,令e+1=e x+1,得x=1,所以直线x=0,y=e+1与曲线y=e x+1围成的区域的面积为S===(ex﹣e x)|=1,故答案为:1.【点评】本题考查了定积分的几何意义,定积分的计算,属于基础题.46.如图是平面直角坐标系下y=sin x与圆O:x2+y2=π2图象,在圆O内随机取一点,则此点落在右图中阴影部分的概率是.【分析】计算出阴影面积,圆的面积,代入几何概型的概率计算公式即可.【解答】解:依题意,图中阴影面积为S=2=﹣2cos x|=4,而圆的面积为S'=π×π2=π3,所以圆O内随机取一点,则此点落在右图中阴影部分的概率是=.故答案为:.【点评】本题考查了定积分的求法,圆的方程与面积,几何概型的概率计算,属于基础题.47.曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为.【分析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积【解答】解:由曲线y=与直线y=2x﹣1构成方程组,解得,由直线y=2x﹣1与y=0构成方程组,解得;∴曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为:S=dx﹣(2x﹣1)dx=﹣(x2﹣x)=﹣=.故答案为:.【点评】本题考查了定积分的计算问题,关键是求出积分的上下限,是基础题.48.由函数y=e x,y=,x=e所围成的封闭图形的面积为e e﹣2e.【分析】运用定积分知识计算围城曲边梯形的面积可得结果.【解答】解:根据题意得,联立得;∴S==e e﹣e﹣e(lne﹣ln1)=e e﹣2e故答案为e e﹣2e.【点评】本题考查由定积分计算围成图形的面积.49.直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为1,则k=±6.【分析】求出直线y=kx+1与抛物线y=kx2+1(k≠0)的两个交点,确定被积函数和被积区间,利用定积分可求出围成的封闭区域的面积,即可求出k的值.【解答】解:当k>0时,直线y=kx+1与抛物线y=kx2+1交于(0,1)和(1,k+1)两点,且当0<x<1时,直线y=kx+1在抛物线y=kx2+1上方,此时,直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为=k,得k =6;当k<0时,直线y=kx+1与抛物线y=kx2+1交于(0,1)和(1,k+1)两点,且当0<x<1时,直线y=kx+1在抛物线y=kx2+1下方,此时,直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为,得k=﹣6.故答案为:±6.【点评】本题考查利用定积分来计算面积,解决本题的关键是确定被积函数和被积区间,属于中等题.50.计算2xdx=8.【分析】直接根据定积分的计算法则即可.【解答】解:2xdx=x2=32﹣12=8,故答案为:8【点评】本题考查了定积分的计算,属于基础题。
第十四节 定积分与微积分基本定理(理)一、选择题1.(2013·江西卷)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 解析 本题考查微积分基本定理.S 1=⎠⎛12x 2d x =x 33|21=73. S 2=⎠⎛121x d x =ln x |21=ln 2-ln 1=ln 2.S 3=⎠⎛12e x d x =e x |21=e 2-e =e (e -1). 令e =2.7,∴S 3>3>S 1>S 2.故选B .A .3B .4C .3.5D .4.5答案 C3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是( )A .⎪⎪⎪⎪⎠⎛02(x 2-1)d x B .⎠⎛02(x 2-1)d x C.⎠⎛02|x 2-1|d x D .⎠⎛01(x 2-1)d x +⎠⎛02(x 2-1)d x解析 面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.4.(2012·湖北卷)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π25.(2013·湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln5B .8+25ln 113 C .4+25ln5D .4+50ln2解析 令v (t )=0,7-3t +251+t=0 ∴3t 2-4t -32=0,∴t =4,则汽车行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )|40=7×4-32×42+25ln5-0=4+25ln5,故选C.6.(2014·武汉调研)如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A.ln22B.1-ln22C.1+ln22D.2-ln22二、填空题(本大题共3小题,每小题5分,共15分) 7.(2013·湖南卷)若⎠⎛0T x 2d x =9,则常数T 的值为________.解析 ∵⎠⎛0T x 2d x =x 33|T 0=T 33=9,∴T =3.答案 38.(2014·厦门市质检)计算:⎠⎛01(x 2+1-x 2)d x =______.解析 ⎠⎛01(x 2+1-x 2)d x =⎠⎛01x 2d x +⎠⎛011-x 2d x =x 3310+14π=13+π4.9.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B ⎝ ⎛⎭⎪⎫12,5、C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解析 设直线为y =kx +b ,代入A ,B 两点,得y =10x .代入B ,C 两点,则⎩⎨⎧5=12k +b ,0=k +b ,∴k =-10,b =10.∴f (x )=⎩⎪⎨⎪⎧10x , 0≤x ≤12,-10x +10, 12<x ≤1.∴y =xf (x )=⎩⎪⎨⎪⎧10x 2, 0≤x ≤12,-10x 2+10x , 12<x ≤1.三、解答题(本大题共3小题,每小题10分,共30分)10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x 的值.解 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0). 由⎠⎛01(ax +b )d x =5,得⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5.①由⎠⎛01xf (x )d x =176,得⎠⎛01(ax 2+bx )d x =176. 即⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=176. ∴13a +12b =176.②解①②,得a =4,b =3.∴f (x )=4x +3.于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln2-4=4+3ln2.11.(2013·日照调研)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1, 所以抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-x 33|10=12-13=16.又可得抛物线y =x -x 2与y =kx 两交点的横坐标为x ′1=0,x ′2=1-k , 所以S 2=∫1-k 0(x -x 2-kx )d x=⎝ ⎛⎭⎪⎫1-k 2x 2-x 33|1-k 0 =16(1-k )3.又知S =16,所以(1-k )3=12.于是k =1-312=1-342.12.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2.(1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积.解 (1)由题意知,f ′(x )=3x 2+2ax +b ,f (1)=-2,且f ′(1)=0, 即⎩⎪⎨⎪⎧ 1+a +b =-2,3+2a +b =0,解得⎩⎪⎨⎪⎧a =0,b =-3.(2)由(1)可知,f (x )=x 3-3x .作出曲线y =x 3-3x 的草图如图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,所以函数图象关于原点成中心对称.所以所求图形的面积为。
高三数学积分试题1.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.2.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.3.(e x+2x)dx等于()A.1B.e﹣1C.e D.e2+1【答案】C1=e+1﹣1=e【解析】(e x+2x)dx=(e x+x2)|故选C.4.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.【答案】A【解析】设旋转体的体积为V,1则=.故旋转体的体积为:.故选A.5. 2.=()A.B.C.D.【答案】A【解析】=∵,∴圆的面积的四分之一,即.6.设函数的定义域为,若对于给定的正数k, 定义函数则当函数时,定积分的值为【答案】【解析】由定义可知,当时,,即,则====.【考点】定积分的运算.7.定积分的值为____________.【答案】【解析】.【考点】定积分.8.定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.【答案】9【解析】因为F(x,y)=(1+x)y,所以f(x)=F(1,log2(x2-4x+9))==x2-4x+9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),f'(x)=2x-4.所以解得B(3,6),所以S=(x2-4x+9-2x)dx=(-3x2+9x)=9.9.若S1=x2d x,S2=d x,S3=e x d x,则S1,S2,S3的大小关系为().A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1==;S2=ln x=ln 2<ln e=1;S3=e x=e2-e≈2.72-2.7=4.59,所以S2<S1<S3.10.若,,则、的大小关系为 .【答案】【解析】,,.【考点】积分的计算.11.二项式的展开式的第二项的系数为,则的值为()A.3B.C.3或D.3或【答案】B【解析】∵,第二项的系数为,∴,∴.【考点】1.二项展开式的系数;2.积分的计算.12.设,则的值为()A.B.C.D.【答案】C【解析】,选C.【考点】1.分段函数;2.定积分13.曲线与直线及所围成的封闭图形的面积为()A.B.C.D.【答案】D【解析】在同一直角坐标系中,作出,和的图像,如图所示,则阴影部分面积为S==.【考点】定积分的几何意义.14.由曲线,,直线所围成的区域的面积为___________【答案】【解析】画出这三条曲线可以看出,它们所围成的图形的面积为.【考点】定积分的几何意义.15.二项式的展开式的第二项的系数为,则的值为()A.B.C.或D.或【答案】C【解析】,所以,解得,当时,,当时, ,故选C.【考点】定积分的应用,二项式定理的应用,二项式定理的通项以及组合数的计算.16.曲线与直线及所围成的封闭图形的面积为( )A.B.C.D.【答案】D.【解析】如图,所求面积为阴影部分面积,其面积为四边形的面积减去不规则图形的面积,故,选D.【考点】定积分.17.已知.(Ⅰ)写出的最小正周期;(Ⅱ)求由,,,以及围成的平面图形的面积.【答案】(Ⅰ);(Ⅱ).【解析】1.解答第(Ⅱ)问,首先要正确画出示意图.2.要注意的是,当面积在轴上方的时候,定积分算出来是正数;当面积在轴下方的时候,定积分算出来是负数.很多考生没有注意到这一点而导致出错:.3.充分运用对称性,否则就要计算三个定积分了.试题解析:(Ⅰ)∵,∴.∴的最小正周期为.(Ⅱ)设由,,,以及围成的平面图形的面积为,∵,∴.∵,∴.∴由,,以及围成的平面图形的面积为.【考点】考查三角函数的化简计算、定积分的应用.18.一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.【答案】36【解析】把0到4的积分根据题意分成2段,再分别求积分,即.【考点】考查积分的运算.19.如图,设是图中边长为2的正方形区域,是函数的图象与轴及围成的阴影区域.向中随机投一点,则该点落入中的概率为( )A.B.C.D.【答案】B【解析】依题意,两个阴影部分的面积相等,即阴影部分的面积为:,向中随机投一点,则该点落入中的概率,故选B.【考点】微积分基本定理,几何概型.20.设的展开式中的常数项等于 .【答案】-160【解析】所以常数项为-160.【考点】定积分;二项式定理。
高三数学积分计算练习题及答案一、选择题1. 设函数f(x)在区间[0, 2]上连续,下列函数与f(x)定积分相等的是:()。
(A) 定积分∫[1, 2] f(2x) dx(B) 定积分∫[0, 1] f(x^2) dx(C) 定积分∫[0, 1] f(1-x) dx(D) 定积分∫[2, 4] f(x/2) dx2. 函数y = f(x)在区间[0, 2]上连续,曲线的长度L为:()。
(A) 定积分∫[0, 2] √(1+(f'(x))^2) dx(B) 定积分∫[0, 2] √(1+(f(x))^2) dx(C) 定积分∫[0, 2] √(x^2+(f'(x))^2) dx(D) 定积分∫[0, 2] √(1+(f''(x))^2) dx3. 设函数f(x)在区间[0, 1]上连续,那么下列哪个等式成立?()。
(A) 定积分∫[0, 1] f(x) dx = ∫[0, 1] f(1-x) dx(B) 定积分∫[0, 1] f(x) dx = ∫[0, 1] f(x+1) dx(C) 定积分∫[0, 1] f(x) dx = ∫[0, 1/2] f(2x) dx + ∫[1/2, 1] f(2x-1) dx(D) 定积分∫[0, 1] f(x) dx = ∫[0, 1] f(2-x) dx4. 函数f(x)在区间[0, 1]上连续,且f(x) > 0,那么下列哪个积分值最大?()。
(A) 定积分∫[0, 1] f(x) dx(B) 定积分∫[0, 1] f(x)^2 dx(C) 定积分∫[0, 1] 1/f(x) dx(D) 定积分∫[0, 1] e^f(x) dx二、计算题1. 计算定积分∫[0, 1] [x^2 + 2x + 1] dx。
解:∫[0, 1] [x^2 + 2x + 1] dx = ∫[0, 1] x^2 dx + ∫[0, 1] 2x dx + ∫[0, 1] 1 dx = [x^3/3]∣₀¹ + [x^2]∣₀¹ + [x]∣₀¹= 1/3 + 2 + 1所以,定积分∫[0, 1] [x^2 + 2x + 1] dx = 2 1/3。
高三数学积分试题答案及解析1..【答案】【解析】=.考点:定积分2.由直线y=2与函数y=2cos2(0≤x≤2π)的图象围成的封闭图形的面积为________.【答案】2π【解析】y=2cos2=cos x+1,则所求面积为S=dx=(x-sin x)=2π.3.(e x+2x)dx等于()A.1B.e﹣1C.e D.e2+1【答案】C1=e+1﹣1=e【解析】(e x+2x)dx=(e x+x2)|故选C.4.设.若曲线与直线所围成封闭图形的面积为,则______.【答案】【解析】.5.已知通过点(1,2),与有一个交点,交点横坐标为,且.如图所示:设与所围成的面积为S,则S取得最小值为.【答案】【解析】由通过点(1,2)可得,即,由与联立方程组,解得.则与所围成的面积S为.∵由得,由得或,所以当时,S取得极小值,即最小值.此时,最小值.6.设函数,若,则x的值为______.【答案】【解析】,又,∴.7.下列结论中正确命题的序号是(写出所有正确命题的序号).①积分的值为2;②若,则与的夹角为钝角;③若,则不等式成立的概率是;④函数的最小值为2.【答案】①③【解析】,①正确;时,与的夹角为钝角或为,②不正确;由几何概型概率的计算公式得,时,不等式成立的概率是,③正确;,令在是减函数,在是增函数,所以,函数的无最小值,④不正确;综上知,答案为①③.【考点】定积分,平面向量的数量积,几何概型,指数函数的性质.8.已知,若,则= ( )A.1B.-2C.-2或4D.4【答案】D【解析】,即,解得,(因为),故选D.【考点】定积分基本定理9..给出下列命题:①已知线性回归方程,当变量增加2个单位,其预报值平均增加4个单位;②在进制计算中,;③若,且,则;④ “”是“函数的最小正周期为4”的充要条件;⑤设函数的最大值为M,最小值为m,则M+m=4027,其中正确命题的个数是个。
【解析】①由线性回归方程的意义可得结论正确;②,正确③由正态分布函数的性质可知正确;④由定积分的知识得:a=,所以根据周期公式知T=4,正确;⑤根据函数f(x)在单调递增和是一个奇函数,然后进行整体运算.【考点】(1)线性回归方程;(2)正态分布函数;(3)定积分;(4)函数的性质.10.由曲线,直线所围成封闭的平面图形的面积为()A.B.C.D.【答案】B【解析】如图所示,由曲线与直线的交点为.方法一:则封闭的平面图形的面积为.方法二:.【考点】定积分的简单应用11.已知函数与的图象所围成的阴影部分(如图所示)的面积为,则_____.【答案】【解析】,解得.【考点】定积分的几何意义.12.由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A.B.2-ln 3C.4+ln 3D.4-ln 3【解析】如图所示,所求面积为S=3-d x-=8-ln x-4=4-ln 3,故选D.13.d x=________.【答案】π【解析】设y=,则x2+y2=4(y≥0),由定积分的几何意义知d x的值等于半径为2的圆的面积的.∴d x=×4π=π.14.________.【答案】1【解析】.【考点】定积分的应用.15.设a=,b=,c=,则下列关系式成立的是().A.<<B.< <C.D.【答案】C【解析】a==ln x=ln 2,b==ln x=ln3,c==ln x=ln5,所以,,,因为,()6=32=9,所以,()10=25=32,()10=52=25,所以<,即<<,所以16.把函数的图像向左平移后,得到的图像,则与的图像所围成的图形的面积为( )A.4B.C.D.2【答案】D【解析】函数的图像向左平移后,得到,得交点为,,则与的图像所围成的图形的面积为.【考点】三角函数平移变化,定积分.17.若,则f(2016)等于()A.0B.C.D.【答案】D【解析】,选D.【考点】1、分段函数及函数的周期性;2、定积分.18.= .【答案】0.【解析】因为是奇函数,所以=0.【考点】定积分的计算.19.由曲线与直线所围成的平面图形(图中的阴影部分)的面积是 .【答案】【解析】.【考点】1.积分的运算;2.利用积分求面积.20.已知,,记则的大小关系是()A.B.C.D.【答案】C.【解析】由已知,联想到定积分的几何意义得:为在上的定积分,即为曲边梯形的面积,而梯形的面积(如图),,故选C.【考点】定积分的几何意义.21.已知为常数,则使得成立的一个充分而不必要条件是 ( )A.B.C.D.【答案】C.【解析】由已知及牛顿-莱布尼茨公式得.由已知要求选项能推出,但不能推出选项.,但不能推出,故选C.【考点】1.定积分的计算;2充分、必要、充要条件的判断.22.在平面直角坐标系中,记抛物线y=x-与x轴所围成的平面区域为M,该抛物线与直线y =kx(k>0)所围成的平面区域为A,向区域M内随机抛掷一点P,若点P落在区域A内的概率为,则k的值为__________.【答案】【解析】根据题意画出图象如图,则,,则区域的面积,区域的面积为,由题意知,化简得,解得.【考点】定积分的计算.23.已知,直线交圆于两点,则.【答案】.【解析】由定积分的几何意义可知,,圆心到直线的距离.【考点】1.定积分的计算;2.直线与圆(相交弦长公式).24.由曲线,直线及轴所围成的图形的面积为_______.【答案】【解析】曲线y=,直线y=x-2及y轴所围成的图形如图所示,故:=.【考点】定积分的计算25.曲线,所围成的封闭图形的面积为 .【答案】【解析】曲线,的交点为,所求封闭图形面积为.【考点】曲边梯形面积.26.若,,,则从小到大的顺序为 .【答案】【解析】,,,故.【考点】微积分基本定理.27.=.【答案】3【解析】,或画出函数的图象,可以求出它在区间与轴围成的面积是3,由定积分的几何意义知答案为3.【考点】定积分的计算、定积分的几何意义.28.曲线和曲线围成的图形面积是.【答案】【解析】解得,或,则所求面积为 .【考点】定积分29.设,则二项式展开式中的第四项为()A.B.C.D.【答案】A【解析】∵,∴,∴,选A.【考点】微积分基本定理,二项式定理.30.在的展开式中的常数项为p,则 .【答案】11【解析】,令,即,,则.【考点】二项展开式的通项、定积分的运算.31.设函数,其中则的展开式中的系数为()A.-360B.360C.-60D.60【答案】D【解析】令的系数为【考点】定积分函数导数与二项式定理点评:本题中涉及到的知识点较多,主要有定积分的计算(首要找到被积函数的原函数)函数求导数及二项式定理:的展开式中通项为32.设的展开式中的常数项等于 .【答案】-160【解析】所以常数项为-160.【考点】定积分;二项式定理。
导数与定积分(一):高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.已知991001101,,ln100100a b e c -===,则,,a b c 的大小关系为()A .a b c <<B .a c b <<C .c a b<<D .b a c<<2.曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积是()A .0B .2C .4D .π3.已知某商品的进价为4元,通过多日的市场调查,该商品的市场销量y (件)与商品售价x (元)的关系为e x y -=,则当此商品的利润最大时,该商品的售价x (元)为()A .5B .6C .7D .84.21232x dx x -+=+⎰()A .22ln +B .32ln -C .62ln -D .64ln -5.数列{}n a 为等差数列,且2020202204a a x π+=⎰,则()2021201920212023a a a a ++=()A .1B .3C .6D .126.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征,如函数2()af x x x=+(a R ∈)的图像不.可能..是()A .B .C .D .7.设函数()()211ln 2f x x a x a x =-++有两个零点,则实数a 的取值范围为()A .()1,0-B .1,02⎛⎫- ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭8.已知21232m x dx =-⎰,则4()(2)m m x y x y ++-中33x y 的系数为()A .80-B .40-C .40D .80二、填空题9.211x dx x ⎛⎫+= ⎪⎝⎭⎰=________.10.若211(2)3ln 2mx dx x+=+⎰,则实数m 的值为____________.11.设R a ∈,若不等式ln xa x>在()1,x ∈+∞上恒成立,则a 的取值范围是______.三、解答题12.已知函数21(log )f x x x=-(1)求()f x 的表达式;(2)不等式2(2)()0t f t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.13.求由曲线2y x=与直线3x y +=所围图形的面积.14.已知函数3()2f x x ax b =++在2x =-处取得极值.(1)求实数a 的值;(2)若函数()y f x =在[0,4]内有零点,求实数b 的取值范围.15.已知函数()ln f x ax x x =+的图像在e x =(e 为自然对数的底数)处取得极值.(1)求实数a 的值;(2)若不等式()(1)f x k x >+在[e,)+∞恒成立,求k 的取值范围.参考答案:1.C 【解析】【分析】利用两个重要的不等式1x e x ≥+,ln 1≤-x x 说明大小即可【详解】先用导数证明这两个重要的不等式①1x e x ≥+,当且仅当0x =时取“=”()1x y e x =-+'1x y e =-()',0,0x y ∈-∞<,函数递减,()'0,,0x y ∈+∞>函数递增故0x =时函数取得最小值为0故1x e x ≥+,当且仅当0x =时取“=”②ln 1≤-x x ,当且仅当1x =时取“=”()ln 1y x x =--'11y x=-()'0,1,0x y ∈>,函数递增,()'1,,0x y ∈+∞<函数递减,故1x =时函数取得最大值为0,故ln 1≤-x x ,当且仅当1x =时取“=”故991009911100100e->-+=1011011ln 1100100100c =<-=故选:C 2.C 【解析】根据积分的几何意义化为求20sin (sin )S xdx x dx πππ=+-⎰⎰可得结果.【详解】曲线sin y x =,[0,2]x πÎ与x 轴所围成的面积20sin (sin )S xdx x dx πππ=+-⎰⎰20cos cos x xπππ=-+(cos cos 0)cos 2cos πππ=--+-(11)1(1)=---+--4=.故选:C 【点睛】结论点睛:由上下两条连续曲线2()y f x =与1()y f x =及两条直线x a =与x b =()b a >所围成的平面图形的面积为[]21()()baS f x f x dx =-⎰.3.A 【解析】【分析】根据题意求出利润函数的表达式,结合导数的性质进行求解即可.【详解】根据题意可得利润函数()()4e xf x x -=-,()e x f x -'=()()4e 5e x x x x ----=-,当5x >时,0,()f f x '<单调递减,当05x <<时,0,()f f x '>单调递增,所以当5x =时,函数()f x 取最大值,故选:A .4.D 【解析】先求出不定积分,再代入上下限来求定积分.【详解】由题,2211231d 2d 22x x x x x --+⎛⎫=- ⎪++⎝⎭⎰⎰21[2ln(2)]x x -=-+(4ln 4)(2ln1)6ln 4=----=-.故选:D 【点睛】本题考查定积分的运算,属于基础题.【解析】【分析】根据定积分的几何意义求20202022a a +,再应用等差中项的性质求目标式的值.【详解】∵0x ⎰表示半径为2的四分之一圆面积(处于第一象限),∴20202022044a a x π+==⎰,又{}n a 为等差数列,∴20212020202224a a a =+=,则()220212019202120232021312a a a a a ++==.故选:D.6.A 【解析】【分析】根据函数的奇偶性,分类0a =,0a <和0a >三种情况分类讨论,结合选项,即可求解.【详解】由题意,函数2()()af x x a R x=+∈的定义域为(,0)(0,)x ∈-∞⋃+∞关于原点对称,且()()f x f x -=,所以函数()f x 为偶函数,图象关于原点对称,当0a =时,函数2()f x x =且(,0)(0,)x ∈-∞⋃+∞,图象如选项B 中的图象;当0a <时,若0x >时,函数2()a f x x x =+,可得322()0x af x x-'=>,函数()f x 在区间(0,)+∞单调递增,此时选项C 符合题意;当0a >时,若0x >时,可得2()a f x x x =+,则3222()2a x af x x x x -'=-=,令()0f x '=,解得x =当x ∈时,()0f x '<,()f x 单调递减;当)x ∈+∞时,()0f x '>,()f x 单调递增,所以选项D 符合题意.故选:A.【解析】【分析】求出导函数()()()1x x a f x x--'=,分a 的符号,以及a 与1的大小关系讨论函数的单调性,从而分析其零点情况,得出答案.【详解】由()()211ln 2f x x a x a x =-++()0x >,则()()()()11x x a a f x x a x x--'=-++=,①0a <时,()f x 在()0,1上递减,在()1,+∞上递增,0x →时,()f x →+∞,x →+∞时,()f x →+∞,所以,要使函数()f x 有2个零点,则()10f <,所以有102a -<<,②0a =时,()212f x x x =-在()0,∞+上只有1个零点,不符合题意,③01a <<时,()f x 在()0,a 上递增,在(),1a 上递减,在()1,+∞上递增,因为()21ln 02f a a a a a =--+<,所以()f x 在()0,∞+上不可能有2个零点,不符合题意,④1a =时,()f x 在()0,∞+上递增,不可能有2个零点,不符合题意,⑤1a >时,()f x 在()0,1上递增,在()1,a 上递减,在(),a +∞上递增,因为()1102f a =--<,所以()f x 在()0,∞+不可能有2个零点,综上,1,02a ⎛⎫∈- ⎪⎝⎭时,方程()f x 有两个零点.故选:B .8.C 【解析】【分析】先计算积分得到m =1,利用二项式展开式对33x y 的构成进行分类,求出33x y 的系数.【详解】32232222213321122322(32)2(32)2[(3)|]2[(3)|]1m x dx x dx x dx x x x x =-=-+-=-+-=⎰⎰⎰,则45()(2)()(2)m m x y x y x y x y ++-=+-,5(2)x y -的通项公式555155(2)()(1)2r r r r r r r r r T C x y C x y ---+=⋅⋅-=-⋅⋅⋅⋅,则两个通项公式为5615(1)2r r r r r r x T C x y --+⋅=-⋅⋅⋅⋅,当3r =时3335440C x y -⋅⋅=-,55115(1)2r r r r r r y T C x y --++⋅=-⋅⋅⋅⋅,当2r =时2335880C x y ⋅⋅=,则33x y ⋅的系数为408040-+=.故选:C.【点睛】方法点睛:在与二项式定理有关的问题中,主要表现为一项式和三项式转化为二项式来求解;若干个二项式积的某项系数问题转化为乘法分配律问题.9.3ln 2+2【解析】【分析】直接利用微积分基本原理求211x dx x ⎛⎫+ ⎪⎝⎭⎰的值.【详解】根据题意得211x dx x ⎛⎫+ ⎪⎝⎭⎰=221113ln |ln 22(0)ln 2222x x +=+-+=+.故答案为3ln2+2【点睛】本题主要考查微积分基本原理求定积分,意在考查学生对该知识的掌握水平和分析推理能力.10.1【解析】【分析】先求12mx x+的原函数()F x ,再令(2)(1)3ln 2F F -=+即可.【详解】易得12mx x+的原函数2()ln F x x mx =+,所以211(2)(2)(1)3ln 2mx dx F F x +=-=+⎰,即ln 243ln 2m m +-=+,故1m =故答案为1【点睛】本题主要考查定积分的基本运算,属于基础题型.11.1e>a 【解析】【分析】构造ln ()xf x x=,利用导数求其最大值,结合已知不等式恒成立,即可确定a 的范围.【详解】令ln ()xf x x=,则21ln ()x f x x -'=且()1,x ∈+∞,若()0f x '>得:1e x <<;若()0f x '<得:e x >;所以()f x 在(1,e)上递增,在(e,)+∞上递减,故1()(e)ef x f ≤=,要使ln xa x >在()1,x ∈+∞上恒成立,即1e>a .故答案为:1e>a .12.(1);(2).【解析】【详解】试题分析:(1)令,利用换元法进行求解;(2)分离参数,将不等式恒成立问题转化为求函数的最值问题.试题解析:(1)令,则,则,即;(2)22112(2)(222t t tt tm o -+-≥即1112(2)(2(20222t tt t t t tm +-+-≥1[1,2],202t tt ∈-> 2(21)t m ∴≥-+所以对于上恒成立;因为,即,所以考点:1.函数的解析式;2.不等式恒成立问题.13.32ln 22-.【解析】【分析】联立方程组,求得积分上限和下限,结合微积分基本定理,即可求解.【详解】由方程组32x y y x +=⎧⎪⎨=⎪⎩,解得1x =或2x =,由定积分的几何意义,可得面积为2221123=[(3)](32ln )|2ln 222x S x dx x x x --=--=-⎰.14.(1)6a =-;(2)1616b - .【解析】【分析】(1)由题意可得(2)1220f a -=+=',从而可求出a 的值;(2)先对函数求导,求得函数的单调区间,从而可由函数的变化情况可知,要函数()y f x =在[0,4]内有零点,只要函数在[0,4]内的最大值大于等于零,最小值小于等于零,然后解不等式组可得答案【详解】解:(1)23()32,()2f x x a f x x ax b =+=++'在2x =-处取得极值,∴(2)1220f a -=+=',∴6a =-.经验证6a =-时,()f x 在2x =-处取得极值.(2)由(1)知32()12,()3123(2)(2)f x x x b f x x x x =-+=-=-+',∴()y f x =极值点为2,2-.将x ,()f x ,()'f x 在[0,4]内的取值列表如下:x0(0,2)2(2,4)4()'f x /-0+/()f x b极小值16b -16b +由此可得,()y f x =在[0,4]内有零点,只需max min ()160,()160,f x b f x b =+⎧⎨=-⎩∴1616b -.15.(1)2a =-(2)ee 1k <-+【解析】【分析】(1)由(e)0f '=求得a 的值.(2)由()(1)f x k x >+分离常数k ,通过构造函数法,结合导数求得k 的取值范围.(1)因为()ln f x ax x x =+,所以()ln 1f x a x '=++,因为函数()ln f x ax x x =+的图像在点e x =处取得极值,所以(e)20f a '=+=,2a ∴=-,经检验,符合题意,所以2a =-;(2)由(1)知,()2ln f x x x x =-+,所以()1f x k x <+在[e,)+∞恒成立,即2ln 1x x x k x -+<+对任意e x ≥恒成立.令2ln ()1x x xg x x -+=+,则2ln 1()(1)x x g x x +-'=+.设()ln 1(e)h x x x x =+-≥,易得()h x 是增函数,所以min ()(e)e 0h x h ==>,所以2ln 1()0(1)x x g x x +-'=>+,所以函数()g x 在[e,)+∞上为增函数,答案第9页,共9页则min e ()(e)e 1g x g ==-+,所以e e 1k <-+.。
定积分练习题一、基本概念题1. 计算定积分 $\int_{0}^{1} (3x^2 + 4) \, dx$。
2. 计算定积分 $\int_{1}^{2} (x^3 2x) \, dx$。
3. 设函数 $f(x) = x^2 3x + 2$,求 $\int_{1}^{3} f(x) \,dx$。
4. 已知函数 $g(x) = \sqrt{1 x^2}$,求 $\int_{1}^{1} g(x) \, dx$。
5. 计算 $\int_{0}^{\pi} \sin x \, dx$。
二、定积分的性质题6. 利用定积分的性质,计算 $\int_{0}^{2} (3x^2 + 4x) \,dx$。
7. 已知 $\int_{0}^{1} f(x) \, dx = 2$,求 $\int_{1}^{2}f(x) \, dx$。
8. 设 $f(x)$ 是奇函数,证明 $\int_{a}^{a} f(x) \, dx = 0$。
9. 已知 $\int_{0}^{1} (f(x) + g(x)) \, dx = 5$,$\int_{0}^{1} (f(x) g(x)) \, dx = 3$,求 $\int_{0}^{1} f(x) \, dx$ 和 $\int_{0}^{1} g(x) \, dx$。
三、定积分的计算题10. 计算 $\int_{0}^{\pi} x \cos x \, dx$。
11. 计算 $\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx$。
12. 计算 $\int_{1}^{e} \frac{1}{x} \, dx$。
13. 计算 $\int_{0}^{1} \frac{1}{\sqrt{1 x^2}} \, dx$。
14. 计算 $\int_{0}^{2} |x 1| \, dx$。
四、定积分的应用题15. 计算由曲线 $y = x^2$,直线 $x = 2$ 和 $y = 0$ 所围成的图形的面积。
定积分复习题1. 下列等于1的积分是( ) A .dx x ⎰10 B .dx x ⎰+10)1( C .dx ⎰101 D .dx ⎰1021 2. dx e e x x ⎰-+10)(= ( )A .ee 1+ B .2e C .e 2 D .e e 1- 3. 曲线]23,0[,cos π∈=x x y 与坐标轴围成的面积 ( )A .4B .2C .25D .3 4、由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、5、由曲线y=x 2,y=x 3围成的封闭图形面积为( )A 、B 、C 、D 、6、由曲线xy=1,直线y=x ,y=3所围成的平面图形的面积为( )A 、B 、2﹣ln3C 、4+ln3D 、4﹣ln37、从如图所示的正方形OABC 区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为( )A 、B 、C 、D 、 8、⎰+10)2(dx x e x 等于( ) A 、1B 、e ﹣1C 、eD 、e 2+1 9、dx x ⎰421等于( )A 、﹣2ln2B 、2ln2C 、﹣ln2D 、ln2 A 、π B 、2C 、π﹣2D 、π+2 10、已知则⎰-a a xdx cos =)0(21>a ,则⎰a xdx 0cos =( ) A 、2 B 、1 C 、 D 、11、曲线y=x 2+2与直线y=3x 所围成的平面图形的面积为( )A 、B 、C 、D 、112、下列计算错误的是( )A 、0sin =⎰-ππxdx B 、3210=⎰dx xC 、⎰⎰=-2022cos 2cos πππxdx xdx D 、0sin 2=⎰-ππxdx 13、计算⎰-2024dx x 的结果是( )A 、4πB 、2πC 、πD 、14、若0)32(02=-⎰dx x x k,则k 等于( )A 、0B 、1C 、0或1D 、以上均不对15、曲线y=x 2和曲线y=围成一个叶形图(阴影部分),其面积是( )A 、1B 、C 、D 、16、在113)23(x x -的展开式中任取一项,设所取项为有理项的概率为p ,则dx x p ⎰10=( ) A 1 B 76 C 67 D 131117. 计算dx x ⎰-+22)cos 1(ππ的值为( )A .πB .2C .2π-D .2π+18、已知1220()(2)f a ax a x dx =⎰-,则()f a 的最大值是A .23 B .29 C .43 D .4919. 由直线1x =,x=2,曲线sin y x =及x 轴所围图形的面积为A .πB .sin 2sin1-C .sin1(2cos11)-D .21cos12cos 1+-20. 22-⎰的值是A .2πB .πC .2πD .4π21. 给出下列四个结论:①⎰=π200sin xdx ;②命题“2,0"x R x x ∃∈->的否定是“2,0x R x x ∀∈-≤”;③“若22,am bm < 则a b <”的逆命题为真;④集合}1)(|{},014|{2<-=<--=a x x B x x x A ,则“)3,2(∈a ”是“A B ⊆”充要条件. 则其中正确结论的序号为A.①③ B.①② C.②③④ D.①②④22. 设函数()m f x x ax =+的导函数'()21f x x =+,则21()f x dx -⎰的值等于( )A.56B.12C.23D.1623、如图中阴影部分的面积是( )A 、B 、C 、D 、24、由曲线x y =,直线2-=x y 及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、625、设)(x f y =为区间[0,1]上的连续函数,且恒有1)(0≤≤x f ,可以用随机模拟方法近似计算积分⎰10)(dx x f ,先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…x N 和y 1,y 2,…y N ,由此得到N 个点(x i ,y i )(i=1,2,…,N ),再数出其中满足)(i i x f y ≤(i=1,2,…,N )的点数N 1,那么由随机模拟方案可得积分⎰10)(dx x f 的近似值为 .26、如图所示,计算图中由曲线22x y =与直线2=x 及x 轴所围成的阴影部分的面积S= .27、由曲线和直线y=x ﹣4,x=1,x=2围成的曲边梯形的面积是 .28、从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分部分的概率为 .29、设函数f (x )=ax 2+c (a≠0),若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为 .30、由三条曲线y=x 2,4y=x 2,y=1 所围图形的面积 .31、由曲线y 2=2x 和直线y=x ﹣4所围成的图形的面积为 .。
高三数学积分试题1..【答案】【解析】=.考点:定积分2.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.3.直线在第一象限内围成的封闭图形的面积为()A.B.C.D.4【答案】D【解析】由已知得,,故选D.【考点】定积分的应用.4. [2014·汕头模拟]设f(x)=,则等于()A.B.C.D.不存在【答案】C【解析】本题画图求解,更为清晰,如图,=+=x3+(2x-x2)=+(4-2-2+)=.5.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于() A.B.2C.D.【答案】C【解析】由C:x2=4y,知焦点P(0,1).直线l的方程为y=1.所求面积S===.6.已知二次函数的图象如图所示,则它与轴所围图形的面积为()A.B.C.D.【答案】B【解析】根据图像可得:,再由定积分的几何意义,可求得面积为.7.设函数的图象与直线轴所围成的图形的面积称为在上的面积,则函数上的面积为.【答案】【解析】用积分表示面积.【考点】定积分8.设,若曲线与直线,,所围成封闭图形的面积为2,则()A.2B.e C.2e D.【答案】D【解析】,∴.【考点】定积分.9.已知t>0,若(2x-1)dx=6,则t的值等于()A.2B.3C.6D.8【答案】B【解析】(2x-1)dx=2xdx-1·dx=x2-x=t2-t,由t2-t=6得t=3或t=-2(舍去).【方法技巧】定积分的计算方法(1)利用定积分的几何意义,转化为求规则图形(三角形、矩形、圆或其一部分等)的面积.(2)应用微积分基本定理:求定积分f(x)dx时,可按以下两步进行,第一步:求使F'(x)=f(x)成立的F(x);第二步:计算F(b)-F(a).10.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为.【答案】-1【解析】f'(x)=-3x2+2ax+b,∵f'(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).=-(-x3+ax2)dx=a4=,∴a=-1.S阴影11.________.【答案】1【解析】.【考点】定积分的应用.12.dx + .【答案】+1【解析】,,所以的图像是半圆,由定积分的几何意义可知,所以。
定积分高考试题精选
1、(2013江西卷(理))若222
2123111
1,,,x
S x dx S dx S e dx x ===⎰⎰⎰则123S S S 的大小关系为 ( )
A .123S S S <<
B .213S S S <<
C .231S S S <<
D .321S S S <<
【答案】B
2、(2013北京卷(理))直线l 过抛物线C: x 2
=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 ( )
A .
4
3
B .2
C .
83
D .
162
3
【答案】C 3、(2013湖南卷(理))若
20
9,T
x dx T =⎰
则常数的值为_________.
【答案】3
4、(2013湖北卷(理))一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25
731v t t t
=-+
+(t 的单位:s ,v 的单位:/m s )行驶至停止,在此期间汽车继续行驶的距离(单位:m )是( )
A .125ln5+
B .11
825ln 3
+ C .425ln5+ D .450ln 2+ 【解析】令 ()257301v t t t =-+
=+,则4t =。
汽车刹车的距离是402573425ln51t dt t ⎛⎫
-+=+ ⎪+⎝
⎭⎰,故选C 。
【相关知识点】定积分在实际问题中的应用 5、【2012湖北理3】已知二次函数()y f x =的图象如图所示,则它与 x 轴所围图形的面积为
A .2π
5
B .43
C .32
D .π2
【答案】B
【解析】根据图像可得: 2()1y f x x ==-+,再由定积分的几何意义,可求得面积为
1
2311114
(1)()33
S x dx x x --=-+=-+=⎰. 6、【2012江西理11】计算定积分
=+⎰
-dx x x 1
1
2)sin (___________。
【答案】
3
2
【命题立意】本题考查微积分定理的基本应用。
【解析】
3
2)cos 31()sin (1
131
1
2=-=+--⎰x x dx x x 。
7、【2012山东理15】设0a >.若曲线y x =与直线,0x a y ==所围成封闭图形的面积为2
a ,则a =______.
【答案】9
4
=a
【解析】由已知得2
23023032|32a a x x S a a ====⎰,所以3221
=a ,所以9
4=a 。
8、【2012上海理13】已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,2
1
(B 、)0,1(C ,函数
)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 。
【答案】4
5
【解析】当2
1
0≤≤x ,线段AB 的方程为x y 10=,
当121≤<x 时。
线段BC 方程为12
110
50--=
--x y ,整理得1010+-=x y , 即函数⎪⎪⎩
⎪⎪⎨⎧
≤<+-≤≤==1
21,10102
10,10)(x x x x x f y ,
所以⎪⎪⎩
⎪⎪⎨
⎧≤<+-≤≤==1
21,10102
10,10)(22
x x x x x x xf y , 函数与x 轴围成的图形面积为
dx x x dx x )1010(1021
2
1210
2+-=+⎰⎰
12
12321
3
)5310(310
x x x +-
+=45=。
9、【2012福建理6】如图所示,在边长为1的正方形OABC 中任取一点P ,
则点P 恰好取自阴影部分的概率为
A.
14 B. 15 C. 16 D. 17
【答案】C.
【解析】根据定积分的几何意义可知阴影部分的面积61
|)2132()(102231
0=-=-=⎰x x dx x x S ,而正
方形的面积为1,所以点P恰好取自阴影部分的概率为6
1
.故选C.
10、(2011新课标卷理科9)由曲线y x =,直线2y x =-及y 轴所围成的图形的面积为
(A )103 (B )4 (C )163
(D )6
【答案】C 解析:因为⎩⎨
⎧-==2
x y x y 的解为⎩⎨
⎧==2
4
y x ,所以两图像交点为)2,4(,
于是面积⎰⎰
=--=
4
04
)2(dx x dx x S 31604)22
1(04322
23
=--x x x 故选C
点评:本题考查定积分的概念、几何意义、运算及解决问题的能力。
求曲线围成的图形的面积,就是
要求函数在某个区间内的定积分。
11、(2011湖南卷理科6)由直线0,3
,3
==
-=y x x π
π
与曲线x y cos =所围成的封闭图形的面积为
A.
2
1
B. 1
C. 23
D. 3
答案:D
解析:由定积分的几何意义和微积分基本定理可知S=3)023
(20
3sin 2cos 2
3
=-⋅==⎰
π
π
x xdx 。
故
选D 评析:本小题主要考查定积分的几何意义和微积分基本定理等知识. 12、(2011陕西卷理科11)设2
0lg ,0
()3,0
a x x f x x t dx x >⎧=⎨
+⎰≤⎩,若((1))1f f =,则a = 【答案】1
【解析】((1))(lg1)(0)f f f f ==233
0003|a a t dt t a =+⎰==11a =⇒=
13、(2010山东卷理科7)由曲线y=2x ,y=3
x 围成的封闭图形面积为
(A )
1
12
(B)
14
(C)
13
(D)
712
【答案】A
【解析】由题意得:所求封闭图形的面积为123
0x -x )dx=
⎰(111
1-1=3412
⨯⨯,故选A 。
【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。
14、(2010湖南卷理科5)
4
21
dx x ⎰等于( )
A 、2ln2-
B 、2ln 2
C 、ln 2-
D 、ln 2
【解析】因为()/
1ln x x
=,所以44221ln ln 4ln 2dx x x ==-⎰,故选D
15、(2010宁夏卷13)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方
法近似计算积分
1
()f x dx ⎰
,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,
由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分
1
()f x dx ⎰
的近似值为 。
【答案】1
N N
解析:
10
()f x dx ⎰
的几何意义是函数()(0()1)f x f x ≤≤其中的图像与轴、直线0x =和直线1x =所
围成图形的面积,根据几何概型易知
1
1
()N f x dx N
≈
⎰
. 16、(2010陕西卷理科13)从如图所示的长方形区域内任取一个点 ()y x M ,,则点M 取自阴影部分的概率为____________.
【解析】本题属于几何概型求概率,∵131
031
02===⎰x dx x S 阴影
331=⨯=长方形S ,∴所求概率为3
1==
长方形
阴影S S P . 17、(09福建理4)
22
(1cos )x dx π
π-+⎰等于
A .π B. 2 C. π-2 D. π+2 答案:D
解析:∵2
2
sin (
sin )[sin()]22222
x
x x x
π
πππ
π-
=+=+--+-=+原式.故选D。