移相全桥零电压开关PWM设计实现
- 格式:doc
- 大小:821.00 KB
- 文档页数:38
移相全桥零电压开关PWM电路图:
波形图:
原理: t0~t1时段,S1和S4都导通,直到t1时刻S1关断。
t1~t2时段:t1时刻开关
S1关断后,电容Cs1、Cs2与电感r L 、L 构成谐振回路。
谐振开始时i A U t u =)(
1 ,在谐振的过程中,0=A u ,S2VD 导通,电流Lr i 通过S2VD 续流。
t2~t3时段:t2时刻开关S2开通,由于此时其反并联二极管S2VD 正处于导通状态,因此S2开通时电压为零,开关过程中不会产生开关损耗,S2开通后电路状态不会改变,继续保持到t3时刻S4关断。
t3~t4时段:t3时刻开关S4关断后,这时变压器二次整流侧1VD 和2VD 同时导通,变压器一次和二次电压均为零,相当于短路,因此变压器一次侧Cs3、Cs4与r L 构成谐振回路。
谐振电感r L 的电流不断减小,B 点电压不断上升,直到S3的反并联二极管S3VD 导通。
这种状态维持到S3
开通。
S3开通前S3VD 导通,因此S3是在零电压的条件下开通,开通损耗为零。
t4~t5时段:S3开通后,谐振电感r L 的电流继续减小。
电感电流Lr i 下降到零后,便反向,不断增大,直到t5时刻T L Lr k I i / ,变压器二次侧整流管VD1的电流下降到零反而关断,电流L I 全部移到VD2中。
t0~t5时段正好是开关周期的一半,而在另一半开关周期t5~t0时段中,电路的工作过程与t0~t5时段完全对称。
移相控制零电压开关PWM变换器电流模式控制分析作者:郭健鹏,周鹏,李健,范梦萌,郭振东来源:《中小企业管理与科技·下旬刊》2013年第02期摘要:采用电流模式控制是移相控制零电压开关PWM变换器(PS-ZVS-PWM变换器)实现稳压源控制的模式之一。
对该控制模式进行分析研究,并提出克服电流型控制模式主要缺点的方法。
关键词:PS-ZVS-PWM变换器电流型控制分析研究1 概述电压型控制模式是传统的PWM开关稳压电源主要采用的控制模式,只对输出电压采样并作为反馈信号实现闭环控制,来稳定输出电压。
但仅采用电压方式稳压,有稳定性差,响应速度慢等缺点。
电流型控制器正是针对其缺点发展起来的。
它增加了一个电流环,很容易不受约束地得到完善的大、小信号特性和大的开环增益。
下面以PS-ZVS-PWM变换器为例来分析研究其电流模式控制。
2 电流模式控制移相控制零电压开关PWM变换器利用变压器的漏感和功率管的寄生电容来实现零电压开关,是中大功率直-直变换场合理想的方式之一。
PS-ZVS-PWM变换器实现的稳压源的控制模式有电压模式控制和电流模式控制,下面采用电流模式控制进行分析。
电流模式控制是指在电压环内增加了一个电感电流反馈的电流内环的双闭环控制系统。
其结构框图如图1所示[1]:图1 平均电流模式控制系统结构框图①电流控制器的设计[2,3,4],这里简单取电流反馈系数Kif=1,(S)对输出的传递函数Gid(S)带入参数如式:G(S)= =(1)则电流内环的控制对象为2Gid(S)。
控制目标是把内环变为一个快速跟随环节,电流环节开环BODE图如图2所示:电流控制器采用PI调节器。
将PI调节器具体整定为:GACR(S)= (2)调整后的电流内环的开环传递函数的BODE图如图3所示,其截止频率为1.26e4rad/sec,相角裕量为78.5deg;幅值裕量为inf。
②电压外环控制器的设计[2,3,4],电流内环有很好的跟随性,因此在设计电压外环时可以把电流内环视为一个比例环节。
ZVZCS移相全桥软开关工作原理(1)主电路拓扑本设计采用zvzcs PWM移相全桥变换器,采用增加辅助电路得方法复位变压器原边电流,实现了超前桥臂得零电压开关(ZVS)与滞后桥臂得零电流开关(ZCS)。
电路拓扑如图3、6所示。
图3、6全桥ZVZCS电路拓扑当、导通时,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端钳位电容充电。
当关断时,电源对充电,通过变压器初级绕组放电。
由于得存在,为零电压关断,此时变压器漏感与输岀滤波电感串联,共同提供能虽:,由于得存在使得变压器副边电压下降速度比原边慢,导致电位差并产生感应电动势作用于,加速了得放电,为得零电压开通提供条件。
当放电完全后,整流二极管全部导通续流,在续流期间原边电流已复位,此时关段,开通,由于漏感两边电流不能突变,所以为零电流关断,为零电流开通。
(2)主电路工作过程分析I?】半个周期内将全桥变换器得工作状态分为8种模式。
①模式1、导通,电源对变压器初级绕组正向充电,将能量提供给负载,同时,输出端箝位电容充电。
输岀滤波电感与漏感相比较大,视为恒流源,主电路简化图及等效电路图如图3、7所示。
(a)简化图(b)等效图图3、7模式1主电路简化图及等效电路图由上图可以得到如下方程:(3-3)(3-4)(3-5)由(3-3)式得:(3— 6 )将(3-6 )式代入(3-5)式得:(3-7)将(3-7)式代入(3-4)式得:(3-8)解微分方程:(3-9)其初始条件为:;(3-10)代入方程解得:(3-11)(3-12)(3-13)(其中)②模式2当时,达到最大值,此时〃;二极管关断,输岀侧电流流经、、、、与次级绕组,简化电路如图3、8所示。
此时满足一八③模式3S 1关断,原边电流从S1转移至C1与C 2 ,C1充电,C 2放电,简化电路如图3、9所示。
由于C1得存在,S1就是零电压关断。
变压器原边漏感与输出滤波电感串联,共同提供能量, 变压器原边电压与整流桥输出电压以相同得斜率线性下降,满足:。
2010年3月电工技术学报Vol.25 No. 3 第25卷第3期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Mar. 2010一种辅助电流可控的移相全桥零电压开关PWM变换器张欣陈武阮新波(南京航空航天大学航空电源航空科技重点实验室南京 210016)摘要提出了一种辅助电流可控的移相全桥零电压开关(Zero-Voltage-Switching, ZVS) PWM 变换器,它在传统全桥变换器的基础上加入了由电感和开关管构成的辅助网络,从而可以在宽电压输入和全负载范围内实现一次侧开关管的ZVS。
和传统的ZVS技术相比,该变换器实现滞后桥臂ZVS的辅助能量是受负载电流控制的:辅助电感的电流值随着负载电流值的变化而变化,使得变换器在全负载范围内不但实现了滞后桥臂ZVS,还明显减小了辅助网络的导通损耗,优化了电路效率。
本文阐述了电路的工作原理,详细地讨论了辅助网络的参数设计,并通过一台1kW/54V,100kHz的样机进行了实验验证。
关键词:全桥变换器 软开关 零电压开关 辅助电感中图分类号:TM46A Novel ZVS PWM Phase-Shifted Full-Bridge ConverterWith Controlled Auxiliary CircuitZhang Xin Chen Wu Ruan Xinbo(Nanjing University of Aeronautics and Astronautics Nanjing210016China) Abstract A novel PWM phase-shifted full-bridge converter with controlled auxiliary circuit is proposed featuring zero-voltage-switching (ZVS) of active switches over a wide range of input voltage and output load. In contrast to conventional techniques, the current through the auxiliary inductor of the proposed converter is controlled by the load current. Therefore, the ZVS operation over the wide conversion range is achieved without significantly increasing full-load conduction loss. The principle of the operation is described and the consideration in the design of auxiliary circuit are discussed.Performance of the proposed converter is verified with experiment results on 1kW, 100 kHz full-bridge converter.Keywords:Full-bridge converter, soft-switching, zero-voltage-switching, auxiliary inductor1引言目前很多行业标准(如“能源之星”标准)都从节能的角度对变换器效率提出了严格的要求,希望变换器在整个负载范围内,尤其是在轻载时仍可以高效工作[1]。
移相全桥为主电路的软开关电源设计详解2014-09-11 11:10 来源:电源网作者:铃铛移相全桥变换器可以大大减少功率管的开关电压、电流应力和尖刺干扰,降低损耗,提高开关频率。
如何以UC3875为核心,设计一款基于PWM软开关模式的开关电源?请见下文详解。
主电路分析这款软开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A。
采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS。
电路结构简图如图1,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,用来实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T 为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。
图1 1.2kw软开关直流电源电路结构简图其基本工作原理如下:当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。
通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。
由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。
当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb 充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。
一种新的移相全桥零电压开关PWM变换器
杨幼松;申群太
【期刊名称】《通信电源技术》
【年(卷),期】2010(027)001
【摘要】对于移相全桥零电压开关PWM变换器,在全负载范围内实现所有开关器件零电压开关和减少占空比丢失之间是矛盾的.如果在电路中增加一个辅助电路,根据负载情况在续流期间为滞后桥臂的零电压开关提供能量,能在全负载范围内实现所有开关器件的零电压开关和减少占空比丢失,但电路中存在严重的环流问题.文中提出新的拓扑结构通过增加一个双向开关和相应的驱动电路,有效地减少了环流带来的损耗.实例分析和仿真验证了这种拓扑的优点.
【总页数】4页(P1-3,14)
【作者】杨幼松;申群太
【作者单位】中南大学信息科学与工程学院,湖南,长沙,410083;中南大学信息科学与工程学院,湖南,长沙,410083
【正文语种】中文
【中图分类】TN86;TM46
【相关文献】
1.一种带辅助支路的移相全桥零电压PWM变换器 [J], 张恩利;夏峥;侯振义;余侃民
2.一种辅助电流可控的移相全桥零电压开关PWM变换器 [J], 张欣;陈武;阮新波
3.带饱和电感的移相全桥零电压开关PWM变换器 [J], 李剑;康勇;孟宇;陈坚
4.一种宽范围零电压开关移相全桥变换器的研究 [J], 陈桂涛;郭辉;孙强
5.新型移相全桥零电压开关PWM变换器 [J], 刘松斌;费跃;段志伟
因版权原因,仅展示原文概要,查看原文内容请购买。