第6章++高阶劳厄区电子衍射图的分析与应用
- 格式:ppt
- 大小:579.50 KB
- 文档页数:18
1.电子衍射产生的复杂衍射花样是高阶劳厄斑、超结构斑点、二次衍射、孪晶斑点和菊池花样。
2.当X射线管电压低于临界电压仅可以产生连续谱 X射线;当X射线管电压超过临界电压就可以产生连续谱X射线和特征谱X射线。
F表示,结构因素=0时没有衍射我们称3.结构振幅用 F 表示,结构因素用2结构消光或系统消光。
对于有序固溶体,原本消光的地方会出现弱衍射。
4.电磁透镜的像差包括球差、像散和色差。
5.衍射仪的核心是测角仪圆,它由辐射源、试样台和探测器共同组成测角仪。
6.X射线测定应力常用仪器有应力仪和衍射仪,常用方法有Sin2Ψ法和0º-45º法。
7.运动学理论的两个基本假设是双束近似和柱体近似。
8.电子探针包括波谱仪和能谱仪两种仪器。
1.X射线的本质是什么?是谁首先发现了X射线,谁揭示了X射线的本质?答:X射线的本质是一种电磁波?伦琴首先发现了X射线,劳厄揭示了X射线的本质?5.透射电镜主要由几大系统构成? 各系统之间关系如何?答:四大系统:电子光学系统,真空系统,供电控制系统,附加仪器系统。
其中电子光学系统是其核心。
其他系统为辅助系统。
6.透射电镜中有哪些主要光阑? 分别安装在什么位臵? 其作用如何?答:主要有三种光阑:①聚光镜光阑。
在双聚光镜系统中,该光阑装在第二聚光镜下方。
作用:限制照明孔径角。
②物镜光阑。
安装在物镜后焦面。
作用: 提高像衬度;减小孔径角,从而减小像差;进行暗场成像。
③选区光阑:放在物镜的像平面位臵。
作用: 对样品进行微区衍射分析。
7.什么是消光距离? 影响晶体消光距离的主要物性参数和外界条件是什么?和Ig在晶体深答:消光距离:由于透射波和衍射波强烈的动力学相互作用结果,使I度方向上发生周期性的振荡,此振荡的深度周期叫消光距离。
影响因素:晶胞体积,结构因子,Bragg角,电子波长。
1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片?答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。
电子衍射基本公式(几何分析公式)的厄瓦尔德图解几何分基本公式由于电子衍射2θ很小,g 与R 近似平行,上近似有gr d 1*1==CgR =gC R v v =电子衍射基本公式的矢量表达式式中:R ——透射斑到衍射斑的连接矢量,可称衍射斑点矢量相比,只是放大了C 倍(C 为相机常数).单晶电子衍射花样是所有与反射球相交的倒易点(构成的图形)的放大像.注意:放大像中去除了权重为零的那些倒易.倒易点的权重即指倒易点相应的(HKL )面衍射线之|F|2值.注意:电子衍射基本公式的导出运用了近似处理,应用此公式及其相关结论时具有一定的误差或近似性电子衍射花样的本质:衍射线形成以入射电子束为轴、不同,多晶电子衍射成像原理衍射圆锥与垂直于入射束的感光平面相交,其交线为一系列同心圆(称衍射圆即为多晶电子衍射花样.多晶电子衍射花样可视为倒易球面与反射球交线即参与衍射晶面倒易点的集合)的放大像.电子衍射基本公式及其各种改写形式也适用于多晶电子衍射分析,式中之R 即为衍射圆环之半径gC R v v =多晶电子衍射花样标定指多晶电子衍射花样指数化,即确定花样中各衍射圆环对应衍射晶面干涉指数(命名)各圆环.6.2.2 多晶电子衍射花样的标定——仅讨论立方晶系多晶电子衍射花样指数化222L KHa d ++=Rd=Cd=C /RR R 2=N N ——衍射晶面干涉指数平方和N=H 2+K 2+L 2对于同一物相、同一衍射花样各圆环而言,(C 2/a 2)为常数nN N :::2L 多晶电子衍射花样指数化原理及过程均与多晶多晶电子衍射指数化与多晶X 射线衍射指数化比较:单晶电子衍射成像原理单晶电子衍射厄瓦尔单晶电子衍射厄瓦尔德图解具有3个特点λ,由于电子波长λ很小,故反*平面上一定范围内的倒易阵(uvw)厚度很小,其倒易点阵中各阵点已不再是几何点,而是沿样品厚度方向扩展延伸为杆,从而增加了与反射球相交的机会.点阵平面上,以O*为中心的一定范围内各倒易与各交点的连接矢量即为(衍射线与垂直于入射束的感光平面的交点即构成单晶电子衍射花样.单晶电子衍射花样就是(uvw)0*零层倒易平面(去除权重为零的倒易点后)的放大像(入射线平行于晶带轴[uvw ])结论:gR 1、单晶体衍射标定依据第一、应用衍射分析基本公式:CRd =第二、单晶衍射花样的周期性.的特征.单晶体衍射花样的周期性之斑点指数.本例A 点对应{110}晶组晶面指数,因而A 点指数有12种选法.任选(110).次短之斑点指数并用φ校核.晶面族,故B 点指数有6种选法,任(200)后,计算(200)面与A 点相应晶=900不符,故B 指数不能标为注:立方系晶面夹角公式为:/)21L L +)(21N N ⋅]220[]011[=×][=ωuv =将其化为互质整数比,得单晶表面原子排列规则可用二维点阵描述5种布拉菲点阵低能电子衍射厄瓦尔德图解如图:,为二维倒易点阵原点,反射球半*O成像原理与衍射花样特征若倒易杆与反射球相交,则该倒易杆(点)相应之(HK)晶列满点与交点之连接矢量即为该晶列之衍射.低能电子衍射花样是样品表面二维倒易点阵的投影像.荧光屏上与倒易原点对应的衍射斑点(00)处于入射线的镜面反)低能电子衍射的厄瓦尔德图解、电子束正入射入射线与样品表面法线夹角,则(00)点平移距离d 0[(00)点与荧光由图可证明,电子束斜入射0sin θ低能电子衍射的厄瓦尔德图解低能电子衍射分析与应用利用低能电子衍射花样分析确定晶体表面及吸附层二维点阵单元网格的形状与大小;利用低能电子衍射谱及有关衍射强度理论分析确定表面原单元网格内原子位置、吸附原子相对于基底[原子及沿表面深度方向(两三个原子层)原子三维排列情层间距、层间原子相对位置、吸附是否导致表面重构依据低能电子衍射方法提供的多种信息,分析与研究晶体、低能电子衍射分析与研究晶体表面结构的应用利用衍射斑点的形状特征及相关的运动学理论等分析确定表点缺陷、台阶表面、镶嵌结构、应变结构、规则)等.低能电子衍射不仅应用于半导体、金属及合金等材料表面结偏析和重构相的分析.也应用于气体吸附、脱附及化学反应、外延生长、沉积、催低能电子衍射也可应用于表面动力学过程,如生长动力学和(a)及(b)分别为干净W 表面[(100)面]及吸附O 原子后W 表面的衍射花样.。