第8章 连续时间信号的频谱分析
- 格式:pdf
- 大小:468.50 KB
- 文档页数:23
8. 选择带宽频谱分析技术(频率细化)根据第三章数字频谱分析的理论,有限离散傅氏变换(DFT)总是获得()N f -0区间内的频率分量(N f 是Nyquisit 折叠频率)。
当随机过程的信号样本的采样点数为N 时,在上述区间内的谱线数为N/2。
则频率分辨率为Nf N f f s N ==∆2/从上式可知,对于给定的采样点数N ,采样频率s f 越大时,f ∆就越大,亦即分辨率就越低。
另一方面,由上式可能直接想到,对于给定的采样频率s f ,可以通过增加采样点数N ,提高频率分辨率f ∆。
但是,从第五章功率谱分析中我们知道,对于随机过程来说,功率谱的周期图估计方法的样本点数不宜过大,当N 过大时,周期图沿频率轴振荡的现象将加重。
综上所述,为了对感兴趣的选定频段作详细的考察,必须将这个局部频段内的频谱图像进行“局部放大”。
因此,这种选择带宽频谱分析技术(Band-Selected Fourier Analysis, BSFA )也称为频率细化(ZOOM )技术。
频率细化分析技术经常用于模态分析、特征分析,以及故障诊断中。
常用的频率细化处理方法有频率移位法和相位补偿法。
8.1. 频率移位法频率细化的频率移位法(频移法),也称为复调制滤波法。
该方法的分辨率可以达到很高(一般可以达到82倍),计算精度好且计算速度快,其基本原理如图所示。
频移法细化技术的基本原理是DFT 的频移性质。
被分析的信号经过抗混叠滤波后,进入A/D 采样,然后送入高分辨率分析的与处理器中,进行频移、低通数字滤波和二次重采样。
8.1.1. 频移为了将感兴趣频段的下限频率移到0频位置,以便有可能将感兴趣频段放大到整个DFT 频率范围,首先需要对离散信号进行频率调制。
根据DFT 的频移性质,如果欲将某一频率移到0频率处,则在时域数字信号上,应乘以复数信号tn f j e ∆-02π。
通常,这种把时域信号移频的处理,也称之为对时域信号进行复数调制,或者载波。
《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
电子信息工程系实验报告课程名称:数字信号处理Array实验项目名称:用DFT(FFT)对连续信号进行频谱分析实验时间:班级:通信姓名: xxp 学号:一、实验目的:1.掌握用DFT(FFT)对模拟信号进行谱分析的方法,理解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
2.熟悉应用FFT实现两个序列的线性卷积的方法。
二、实验原理:1.用DFT(FFT)对连续信号进行频谱分析用DFT(FFT)对模拟信号做谱分析是一种近似的谱分析。
首先一般的模拟信号(周期信号除外)的频谱是连续谱,而用FFT做谱分析得到的是数字谱,因此应该取FFT的点数多一些,用它的包络作为模拟信号的近似谱。
另外,如果模拟信号不是严格的带限信号,会因为频谱混叠现象引起谱分析的误差,这种情况下可以预先将模拟信号进行预滤,或者尽量将采样频率取高一些。
最后要注意一般的模拟信号是无限长的,分析时要截断,截断的长度与对模拟信号进行频谱分析的分辨率有关。
如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍,如果不知道信号的周期,要尽量选择观测时间长一些,以减少截断效应的影响。
在运用DFT(FFT)对模拟信号进行谱分析的过程中主要可能产生以下三种误差:(1) 混叠现象对模拟信号进行谱分析时首先要对其采样,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原模拟信号的频谱。
避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。
(2) 截断效应实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。
连续时间信号的抽样及频谱分析-时域抽样信号的频谱__信号与系统课设1 引言随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。
传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。
仪器设备很大部分陈旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。
虚拟仪器正是解决这一矛盾的最佳方案。
基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。
在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。
信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。
将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。
信号的特征值分为幅值特征值、时间特征值和相位特征值。
尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。
信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。
频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。
信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。
常见连续时间信号的频谱频谱是用来描述信号在不同频率上的能量分布的。
在信号处理中,常见的连续时间信号包括正弦信号、方波信号和三角波信号等。
下面将分别描述它们的频谱特性。
正弦信号是指具有连续时间的周期性振荡特征的信号。
它的频谱是一个单独的线谱,频谱图上只有一个频率分量。
该频率分量的幅度表示正弦波的振幅,相位表示信号在时间上的延迟或提前。
方波信号是一种具有快速上升和下降的信号,它在一个周期内以高电平和低电平交替出现。
方波信号的频谱是一个线谱,其中包含一系列频率成分,这些频率成分形成了奇数谐波的谐波级数。
频谱图中,频率分量的幅度和频率成分的奇数谐波级数呈现出明显的衰减规律。
三角波信号是一种具有连续变化斜率的信号,其波形类似于一条斜边倾斜上升再倾斜下降的直角三角形。
三角波信号的频谱也是一个线谱,其中包含一系列频率成分,这些频率成分形成了奇数谐波的谐波级数。
与方波信号不同的是,频谱图中的频率分量衰减得更加平缓,且奇数谐波的幅度逐渐递减。
综上所述,正弦信号的频谱是一个单独的频率分量,方波信号和三角波信号的频谱都是由奇数谐波级数的频率成分组成的。
不同信号的频率分量的幅度和衰减规律不同,这些频谱特性对于信号的合成和分析具有重要的指导意义。
常见的连续时间信号除了正弦信号、方波信号和三角波信号外,还包括矩形信号、指数信号和高斯脉冲信号等。
它们各自具有不同的周期性和非周期性特征,在频域上也表现出不同的频谱特性。
矩形信号是一种具有平坦上升和下降沿的信号,其波形类似于一个矩形框。
矩形信号的频谱是一个线谱,其中包含一系列频率成分,这些频率成分与方波信号的频谱类似,形成了奇数谐波的谐波级数。
不同的是,矩形信号的谐波级数幅度衰减得更快,频率成分的振幅更低。
指数信号是指幅度随时间以指数形式衰减或增长的信号。
指数信号的频谱是一个连续谱,在整个频率范围内都存在频率分量。
频谱图中,频率分量的幅度随着频率的增加而逐渐减小,呈现出指数衰减的特征。
《信号与系统》期末复习重点一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,高等教育出版社,2007年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章 周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章 非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier 变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
连续时间信号与系统是信号处理和通信系统领域的重要基础知识。
以下是关于连续时间信号与系统的一些核心知识点总结:
1. 信号的基本概念:包括信号的定义、分类(连续、离散、确定、随机)、信号的表示方法(波形图、时域表达式、频域表示等)。
2. 连续时间信号的运算:包括信号的加、减、乘、卷积等基本运算,以及信号的平移、反转、尺度变换等变换。
3. 系统的基本概念:包括系统的定义、分类(线性时不变、线性时变、非线性等)、系统的描述方法(微分方程、差分方程、传递函数等)。
4. 线性时不变系统的分析:包括系统的响应(零状态响应和零输入响应)、系统的稳定性、系统的频率响应等。
5. 连续时间傅里叶分析:包括傅里叶级数、傅里叶变换及其性质、频率域的信号分析等。
6. 系统函数的性质和表示方法:包括系统函数的极点、零点,以及它们对系统特性的影响。
7. 信号通过线性时不变系统的分析:包括冲激响应和阶跃响应的分析,以及信号的频谱分析和系统对不同类型信号的响应。
8. 滤波器设计:包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计,以及滤波器的频率响应和群时延特性。
9. 采样定理与信号重建:包括采样定理的理解,以及由采样信号重建原始信号的方法。
10. 连续时间系统的模拟与实现:包括模拟电路和数字电路实
现连续时间系统的方法,以及模拟与数字系统之间的转换。
以上知识点为连续时间信号与系统的基础内容,掌握这些知识点有助于理解实际通信系统和信号处理应用的原理。
如需更深入的学习,建议参考相关的教材或专业课程。
信号与信息处理基础习题及题解信息与通信工程系2009年3月目录第1章绪论 (1)第2章连续时间信号的时域分析 (2)第3章连续时间信号的频域分析............................................................... 错误!未定义书签。
第4章连续时间信号的复频域分析........................................................... 错误!未定义书签。
第5章离散时间信号的时域分析............................................................... 错误!未定义书签。
第6章离散时间信号的时域分析............................................................... 错误!未定义书签。
第7章离散时间信号的复频域分析........................................................... 错误!未定义书签。
第8章信息论与编码................................................................................... 错误!未定义书签。
第1章绪论1-1结合具体实例,分析信息、消息和信号的联系和区别。
具体实例略。
信息、消息和信号三者既有区别又有联系,具体体现在:⑴信息的基本特点在于其不确定性,而通信的主要任务就是消除不确定性。
受信者在接收到信息之前,不知道发送的内容是什么,是未知的、不确定性事件。
受信者接收到信息后,可以减少或者消除不确定性。
⑵消息是信息的载体。
可以由消息得到信息,以映射的方式将消息与信息联系起来,如果不能建立映射关系就不能从消息中得到信息。
例如,一个不懂得中文的人看到一篇中文文章,就不能从中获取信息。
【课程信息】课程名称:信号与系统课程编码:任课教师:王秀贞【录入】王秀贞【章节】第一章信号的函数表示与系统分析方法【知识点】1、信号的函数表示说明:连续函数和奇异函数、信号分解2、系统数学模型说明:系统性质【单选题】1、f(5-2t )是如下运算的结果( )。
A .f (—2t )右移5B .f (—2t )左移5C .f (—2t )右移25D .f(—2t)左移25答案:C难度:1分值:2知识点:1【判断题】1.偶函数加上直流后仍为偶函数。
( )答案:T2。
不同的系统具有不同的数学模型。
( )答案:F3. 任何信号都可以分解为偶分量与奇分量之和。
( )答案:T4.奇谐函数一定是奇函数。
( )答案:T【简答题】1.信号、信息与消息的差别?答案:信号:随时间变化的物理量;消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2.单位冲激信号的物理意义及其取样性质?答案:冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到. 它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰【录入】王秀贞【章节】第二章连续时间系统的时域分析【知识点】【单选题】1.系统微分方程式),()(),(2)(2)(t u t x t x t y dtt dy ==+若 34)0(=-y ,解得完全响应y (t )=)0(,1312≥+-t e t当 则零输入响应分量为 ( )。
A .te 231-B .21133t e --C .t e 234-D .12+--t e答案:C难度:1分值:2知识点:12.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f ()。
数字信号处理课程实验实验报告实验一 利用FFT 分析连续信号频谱一、 实验目的1、 进一步加深离散傅里叶变换DFT 原理的理解;2、 应用离散傅里叶变换DFT (实际应用FFT 计算)分析连续信号的频谱;3、 深刻理解利用DFT 分析连续信号的频谱的原理,分析工程中常出现的现象及解决方法。
二、 实验原理1、 利用DFT 分析连续时间周期信号的频谱周期为Tp 的周期性连续时间信号)(t x p 的频谱(傅里叶级数的系数))(Ωjk x p 是非周期离散谱,定义为)(Ωjk x p =dt e t x p1tjk p p 0Ω-⎰)(T T 其中f 2p2ππ==ΩT 为信号的基频,Ωk 为信号的谐频,谱线间隔为Ω。
通过时域采样就可以利用DFT 分析连续周期信号的频谱。
其步骤为: ① 确定周期信号的基本周期Tp ;② 计算一个周期内的采样点数N ,若周期信号的最高频谱为Ωp ,则频谱中有2p+1 根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据实际需要)能量的前p+1 个谐波为近似的频谱范围,其余的谐波忽略不计。
取N ≥2p+1; ③ 对连续周期信号以采样间隔NT T p=进行采样 ; ④ 利用FFT 计算采样信号的N 点DFT ,得到()k X ; ⑤ 最后求出连续周期信号的频谱为)(Ωjk x p =N1()k X 。
因为对连续周期信号按采样间隔NT T p=进行采样,每个周期抽取N 点时,则有 t=nT ,Tp=NT那么 )(Ωjk x p =dt et x p 1tjk p p 0Ω-⎰)(T T =∑-=-10n n p 2jk e n x p N T T T T T π)( =∑-=-1n n N 2jk e n x N 1N T π)(=)(k N 1X若能按照满足采样定理的采样间隔进行抽样,并且采取整周期为信号分析的长度,则利用FFT 计算得到的离散频谱值等于连续周期信号频谱)(Ωjk x p 的准确值。