联系测量
- 格式:ppt
- 大小:1.28 MB
- 文档页数:27
第一章联系测量第一节联系测量的定义一、联系测量的定义将地面坐标系统和高程系统传递到地下,确定地下控制点、控制边,作为地下控制导线的起算数据,这一过程测量工作叫做联系测量。
将地面平面坐标系统传递到地下的测量称为平面联系测量,简称定向。
将地面高程系统传递到地下的测量称高程联系测量,简称导入高程[1]。
联系测量工作应包括地面趋近导线测量趋近水准测量、通过竖井斜井通道的定向测量和传递高程测量以及地下趋近导线测量地下趋近水准测量[2]。
二、联系测量的任务联系测量的任务在于:(1)、确定地下经纬仪导线起算边的坐标方位角;(2)、确定地下经纬仪导线起算点的平面坐标x和y;(3)、确定地下水准点的高程H[1]。
前两项任务是通过平面联系测量定向来完成的;第三个任务是通过导入高程来完成的。
这样就获得了地下平面与高程测量的起算数据[1]。
第二节联系测量的种类联系测量分为平面联系测量(简称为定向)和高程联系测量(简称为导入高程)。
平面联系测量说来可分为两大类:一类是从几何原理出发的几何定向;另一类是以物理特性为基础的物理定向[1]。
几何定向分为:1、通过平硐或斜井的几何定向;2、通过一个立井的几何定向(一井定向);3、通过两个立井的几何定向(两井定向)[1]。
物理定向可分为:1、用精密磁性仪器定向;2、用投向仪(投点仪)定向;3、用陀螺经纬仪定向[1]。
通过平硐或斜井的几何定向,只需要通过平硐或斜井敷设经纬仪导线,对地面和地下进行联测即可[1]。
但是在地铁工程中由于地下铁道本身的特点,并没有平硐或斜井,有的只是竖井(出土井或下灰井或是更宽敞的明挖车站),因此,通过平硐或斜井的几何定向在地铁的平面联系测量中一般不用,只在矿山测量中有应用。
在地铁平面联系测量中的导线直接传递法、竖直导线定向法的原理和通过平硐或斜井几何定向的原理是一样的[1]。
第三节几何定向这里主要讲的是立井几何定向。
在立井中悬挂钢丝垂线由地面向地下传递平面坐标和方向的测量工作成为立井几何定向。
精心整理第一章联系测量第一节联系测量的定义一、联系测量的定义将地面坐标系统和高程系统传递到地下,确定地下控制点、控制边,作为地下控制导线的起算数据,这一过程测量工作叫做联系测量。
将地面平面坐标系统传递到地下的测量称为平面联系测量,简称定向。
将地面高程系统传递到地下的测量称高程联系测量,简称导入高程[1]。
联系测量工作应包括地面趋近导线测量趋近水准测量、通过竖井斜井通道的定向测量和传递高程测量以及地下趋近(1)(2)(3)这样就[1]。
123123即可[1]。
但是在地铁工程中由于地下铁道本身的特点,并没有平硐或斜井,有的只是竖井(出土井或下灰井或是更宽敞的明挖车站),因此,通过平硐或斜井的几何定向在地铁的平面联系测量中一般不用,只在矿山测量中有应用。
在地铁平面联系测量中的导线直接传递法、竖直导线定向法的原理和通过平硐或斜井几何定向的原理是一样的[1]。
第三节几何定向这里主要讲的是立井几何定向。
在立井中悬挂钢丝垂线由地面向地下传递平面坐标和方向的测量工作成为立井几何定向。
立井几何定向概要地说,就是在井筒内悬挂钢丝垂线,钢丝的一端固定在地面,另一端系有定向专用的垂球自由悬挂于定向水平,一般称作垂球线。
再按地面坐标系统求出垂球线的平面坐标及其连线的方位角;在定向水平上把垂球线与地下永久导线点连接起来,这样便能将地面的方向和坐标传递到地下,而达到定向的目的。
因此,可把立井定向工作分为两个部分:由地面向定向水平投点(简称投点);在地面和定向水平上与垂球线连接(简称连接)。
立井几何定向分为一井定向和两井定向[1]。
一井定向方法有连接三角形法、四边形法和适合小型矿井的瞄直法等。
这里仅介绍连接三角形法[1]。
一、一井定向(一)投点采用连接三角形进行一井定向时,要在井筒内挂两根垂球线。
投点时,一般都采用垂球线单重投点法,即在投点过程中,垂球的重量不变。
单重投点可分为两类:单重稳定投点和单重摆动头点。
单重稳定投点法是将垂球放在水桶内,使其基本上处于静止状态;在定向水平上测角量边时均与静止的垂球线进行连接。
矿井联系测量的类型与方法一、矿井联系测量的概述矿井联系测量是指在矿井开采过程中,为了保证矿井内部各种设施和结构的安全、稳定和正常运行,而进行的测量工作。
矿井联系测量主要包括平面联系测量和高程联系测量两个方面。
平面联系测量主要是为了确定矿井内各个设施和结构之间的平面位置关系,而高程联系测量则是为了确定各个设施和结构之间的高程关系。
二、平面联系测量平面联系测量是指通过测量矿井内各个设施和结构之间的平面位置关系,以确定它们之间的相对位置关系。
平面联系测量主要包括以下几种方法:1.直接测量法直接测量法是指在矿井内直接使用测量仪器,如全站仪、经纬仪等,对各个设施和结构进行测量,以得到它们之间的平面位置关系。
2.间接测量法间接测量法是指通过测量矿井内一些已知位置的点,以及这些点与待测设施或结构之间的角度或距离关系,来推算出待测设施或结构之间的平面位置关系。
三、高程联系测量高程联系测量是指通过测量矿井内各个设施和结构之间的高程关系,以确定它们之间的相对高程关系。
高程联系测量主要包括以下几种方法:1.直接测量法直接测量法是指在矿井内直接使用测量仪器,如水准仪、三角高程仪等,对各个设施和结构进行高程测量,以得到它们之间的相对高程关系。
2.间接测量法间接测量法是指通过测量矿井内一些已知高程的点,以及这些点与待测设施或结构之间的水平距离关系,来推算出待测设施或结构之间的相对高程关系。
四、矿井联系测量的重要性矿井联系测量是矿井开采过程中不可或缺的一环,它的重要性主要体现在以下几个方面:1.保证设施和结构的安全通过矿井联系测量,可以及时发现设施和结构之间的位置和高程关系是否符合要求,如果存在偏差或错误,可以及时采取措施进行调整,从而保证设施和结构的安全。
2.提高矿井开采效率矿井联系测量可以确定设施和结构之间的相对位置和高程关系,为矿井开采提供准确的数据支持,从而提高开采效率。
联系测量————————————————————————————————作者: ————————————————————————————————日期:ﻩ第一章联系测量第一节联系测量的定义一、联系测量的定义将地面坐标系统和高程系统传递到地下,确定地下控制点、控制边,作为地下控制导线的起算数据,这一过程测量工作叫做联系测量。
将地面平面坐标系统传递到地下的测量称为平面联系测量,简称定向。
将地面高程系统传递到地下的测量称高程联系测量,简称导入高程[1]。
联系测量工作应包括地面趋近导线测量趋近水准测量、通过竖井斜井通道的定向测量和传递高程测量以及地下趋近导线测量地下趋近水准测量[2]。
二、联系测量的任务联系测量的任务在于:(1)、确定地下经纬仪导线起算边的坐标方位角;(2)、确定地下经纬仪导线起算点的平面坐标x和y;(3)、确定地下水准点的高程H[1]。
前两项任务是通过平面联系测量定向来完成的;第三个任务是通过导入高程来完成的。
这样就获得了地下平面与高程测量的起算数据[1]。
第二节联系测量的种类联系测量分为平面联系测量(简称为定向)和高程联系测量(简称为导入高程)。
平面联系测量说来可分为两大类:一类是从几何原理出发的几何定向;另一类是以物理特性为基础的物理定向[1]。
几何定向分为:1、通过平硐或斜井的几何定向;2、通过一个立井的几何定向(一井定向);3、通过两个立井的几何定向(两井定向)[1]。
物理定向可分为:1、用精密磁性仪器定向;2、用投向仪(投点仪)定向;3、用陀螺经纬仪定向[1]。
通过平硐或斜井的几何定向,只需要通过平硐或斜井敷设经纬仪导线,对地面和地下进行联测即可[1]。
但是在地铁工程中由于地下铁道本身的特点,并没有平硐或斜井,有的只是竖井(出土井或下灰井或是更宽敞的明挖车站),因此,通过平硐或斜井的几何定向在地铁的平面联系测量中一般不用,只在矿山测量中有应用。
在地铁平面联系测量中的导线直接传递法、竖直导线定向法的原理和通过平硐或斜井几何定向的原理是一样的[1]。
1. 了解矿井联系测量的目的和任务。
2. 掌握矿井联系测量的基本原理和方法。
3. 熟悉矿井联系测量在实际生产中的应用。
二、实验原理矿井联系测量是指将地面坐标和高程导入硐内,使硐内各点与设计一致,从而控制坑道。
联系测量的目的在于将硐内各点联系起来,对硐内各点进行评差,确保点的坐标正确。
三、实验步骤1. 准备工作:收集矿井地质资料、设计图纸,了解矿井硐内情况。
2. 测量仪器准备:准备经纬仪、水准尺、花杆、记录板、粉笔、计算器、量角器、图纸等。
3. 测量方法:(1)安置仪器:将经纬仪安置于测站点,按照对中整平步骤进行。
(2)观测:按照观测员、记录员、立尺员、立杆员、绘图员等分工,进行观测。
(3)计算:根据视距测量的公式,计算测站点到碎部点的水平距离和高差,最后计算出碎部点的高程。
(4)展绘:根据观测和计算的数据,用地形半圆仪和比例尺展绘碎部点,并绘制成图。
4. 结果分析:对测量结果进行分析,判断硐内各点坐标是否正确,是否符合设计要求。
四、实验结果与分析1. 通过实验,掌握了矿井联系测量的基本原理和方法。
2. 实验过程中,测量结果准确,硐内各点坐标符合设计要求。
3. 实验表明,矿井联系测量在实际生产中具有重要意义,可以有效控制坑道,确保矿井安全生产。
1. 矿井联系测量是矿井生产中不可或缺的重要环节,对矿井安全生产具有重要意义。
2. 在实验过程中,应严格按照测量规程进行操作,确保测量结果的准确性。
3. 矿井联系测量技术不断发展,应关注新技术、新方法的应用,提高测量精度和效率。
4. 本实验对矿井联系测量有了更深入的了解,为今后实际生产中的测量工作奠定了基础。
高程联系测量的方法
高程联系测量主要有以下几种方法:
1.水准测量法:使用水准仪测量地面上不同点的高程差,通过
测量仪器上的水平气泡或电子水平仪来确定观测点的高程。
2.大地水准测量法:利用地球重力场的垂直方向来确定高差,
通过测量水平线上不同点的位置来计算高程差。
3.三角测量法:根据三角形的几何原理,通过测量三角形的边
长和角度来求解高程差。
4.测距测高法:利用激光或电磁波等辐射信号,测量观测点与
仪器之间的距离差和高差。
5.全站仪测量法:使用全站仪测量地面上不同点的水平角度和
垂直角度,通过测量点的位置和仪器的高程来计算观测点的高程。
6.差分GPS测量法:利用差分GPS技术精确定位不同点的位置,通过位置的坐标变化来确定高程差。
以上是常见的高程联系测量方法,根据不同的测量需求和条件,可以选择适合的方法进行测量。