中考数学压轴题精编-安徽篇(试题及答案)
- 格式:doc
- 大小:612.50 KB
- 文档页数:13
安徽中考数学大题题型之压轴题1.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC 的中点,连接MD和ME,试判断△MED的形状.答:.2.已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE =BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.3.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN 于Q,直接写出AQ、AP的长.4.【问题背景】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,BE,点P为DC的中点.【观察猜想】观察图1,猜想线段AP与BE的数量关系是,位置关系是.(2)【拓展探究】把△ADE绕点A逆时针方向旋转到图2的位置,(1)中的结论是否仍然成立,若成立,请证明:否则写出新的结论并说明理由.(3)【问题解决】把△ADE绕点A在平面内自由旋转,若DE=4,BC=8,请直接写出线段AP长的取值范围.5.如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗请说明理由.(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.①求∠CAM的度数;②当FH DM=4时,求DH的长.6(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系为.(2)拓展研究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一条直线上,CM为△DCE 中DE边上的高,连接BE,请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD,若点P满足PD=2,且∠BPD=90°,请直接写出点A到BP的距离.7.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.8.问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值若存在,请求出其最大值;若不存在,请说明理由.9.如图1,在平面直角坐标系中,O是坐标原点,抛物线2y=+与x轴正半轴交于点A,与y轴交于点B,连接AB,点,OA AB的中点.Rt CDE Rt ABOM N分别是,∆始终保持边ED∆≅∆,且CDE经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空,OA的长是,ABO∠的度数是度(2)如图2,当//DE AB,连接HN①求证:四边形AMHN是平行四边形;②判断点D是否在抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时(此时点O与点G重合),过点D作//DO OB,交AB延长线上于点O,延长ED到点K,使DK DN=,过点K作//PDK∠=︒(若,P O在直线KI OB,在KI上取一点P,使得45ED的同侧),连接PO,请直接..写出的PO长.+x轴交于点A、B(点A在点B右侧),10.如图1,在平面直角坐标系中,抛物线y2x x点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个11.如图,在平面直角坐标系中,点A在抛物线A= -x2+4x上,且横坐标为1,点A与点A关于抛物线的对称轴对称,直线AA与y轴交于点A,点A为抛物线的顶点,点A的坐标为(1,1)(1)求线段AA的长;(2)点A为线段AA上方抛物线上的任意一点,过点A作AA的垂线交AA于点A,点A为y轴上一点,AA的最小值;当△AAA的面积最大时,求PH+HF+12(3)在(2)中,PH+HF+12AA取得最小值时,将△AAA绕点A顺时针旋转60°后得到△AA′A′,过点A′作AA′的垂线与直线AA交于点A,点A为抛物线对称轴上的一点,在平面直角坐标系中是否存在点A,使得点A,A,A,A为顶点的四边形为菱形,若存在,请直接写出点A的坐标,若不存在,请说明理由.12.在图1,2,3中,已知Y ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.(1)如图1,当点E与点B重合时,∠CEF=__________°;(2)如图2,连接AF.①填空:∠FAD__________∠EAB(填“>”“<”“=”);②求证:点F在∠ABC的平分线上.(3)如图3,连接EG,DG,并延长DG交BA的延长线于点H,当四边形AEGH是平行四边形时,求BC AB的值.13问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)。
中考数学试题及答案安徽一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. 0.33333...C. πD. 0.5答案:C2. 一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 5答案:C3. 一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),则该二次函数的对称轴是:A. x = 0B. x = 1C. x = -1D. x = 2答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 圆C. 等腰梯形D. 矩形答案:B5. 计算下列表达式的值:(2x+3)(x-1)-(2x-5)(x+2)A. 4x^2 - 7x + 1B. 4x^2 + x - 7C. 4x^2 + 7x - 1D. 4x^2 - x + 7答案:C6. 如果一个数的平方等于它本身,那么这个数是:A. 0或1B. 0或-1C. 1或-1D. 0或2答案:A7. 一个圆的半径为r,那么它的面积是:A. πr^2B. 2πrC. πrD. πr^3答案:A8. 一个等腰三角形的底角为45°,那么它的顶角是:A. 45°B. 60°C. 90°D. 120°答案:C9. 一个正数x的算术平方根是3,那么x的立方根是:A. 3B. 9C. 27D. √3答案:D10. 一个数列的前三项为1,2,4,那么这个数列的第四项是:A. 8B. 7C. 6D. 5答案:A二、填空题(每题3分,共15分)11. 一个直角三角形的两条直角边长分别为6和8,那么它的斜边长是________。
答案:1012. 计算(3x^2 - 2x + 1) ÷ (x - 1)的商是________。
答案:3x + 113. 一个等差数列的首项为2,公差为3,那么它的第五项是________。
2024-2025年安徽省初中学业水平考试数学压轴题集(本卷收录近10年安徽省中考的第10、14、22、23题)一、选择题每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.如图,在矩形ABCD 中,AB =5,AD =3.动点P 满意13PABABCDS S=矩形 .则点P 到A ,B 两点距离之和P A +PB 的最小值为( )A.29B.34C.52D.412.如图,Rt △ABC ,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满意∠P AB =∠PBC ,则线段CP 长的最小值为( ) 32 B.2 C.81313D.121313A.第1题图 第2题图3.如图,一次函数1y x =和二次函数22+y ax bx c =+图象相交于P ,Q 两点,则函数2(1)y ax b x c=+-+的图象可能是( )A. B. C. D.第3题图4.如图,正方形ABCD 的对角线BD 长为22,若直线l 满意: ①点D 到直线l 的距离为3;②A ,C 两点到直线l 距离相等.则符合题意的直线l 的条数是( ) A.1 B.2 C.3 D.45.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下推断中,不正确的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥AC C.当PO ⊥AC 时,∠ACP =30°D.当∠ACP =30°时,△BPC 是直角三角形第4题图第5题图6.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.45C.10或45D.10或217第6题图7.如图所示,P是菱形ABCD的对角线AC上一点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形态是A. B.第7题图C. D.8.甲、乙两个打算在一段长为1200米的笔直马路上进行跑步,甲、乙跑步的速度分别为4m/s和6m/s,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y(m)与时间t(s)的函数图象是()A. B. C. D.9.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是A.120°B.125°C.135°D.150°10.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于A.65B.95C.125D.125第10题图第11题图二、填空题11. 在三角形纸片ABC 中,∠A =90°,∠C =30°,AC =30cm ,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去△CDE 后得到双层△BDE (如图2),再沿着过△BDE 某顶点的直线将双层三角形剪开,使得绽开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为__________cm.12. 如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③3=2ABG FGH S S △△;④AG +DF =FG .其中正确的是 .(把全部正确结论的序号都选上)第12题图 第14题图13.已知实数a 、b 、c 满意a b ab c +==,有下列结论:①若c ≠0,则111ab+=;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 .(把全部正确结论的序号都选上)14. 如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中肯定成立的是 .(把全部正确结论的序号都填在横线上) ①12DCF BCD ∠=∠;②EF =CF ;③=2BEC CEF S S △△;④∠DFE =3∠AEF .15.已知矩形纸片ABCD 中,AB =1,BC =2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E ,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下推断: ①当四边形A’CDF 为正方形时,EF =2;②当EF =2时,四边形A’CDF 为正方形; ③当EF =5时,四边BA’CD 为等腰梯形;④当四边形BA’CD 为等腰梯形时,EF =5. 其中正确的是 .(把全部正确结论的序号都填在横线上) 16.如图,P 是矩形ABCD 内的随意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:①S 1+S 2=S 3+S 4;②S 2+S 4= S 1+S 3;③若S 3=2S 1,则S 4=2S 2 ④若S 1=S 2,则P 点在矩形的对角线上.其中正确的结论的序号是 .(把全部正确结论的序号都填在横线上)第15题图 第16题图 第18题图 17.定义运算(1)a b a b ⊗=-,下面给出了关于这种运算的几个结论:①2(2)6⊗-=;②a b b a ⊗=⊗;③若0a b +=,则()()2a a b b ab ⊗+⊗=;④若0a b ⊗=,则a =0.其中正确结论的序号是 .(填上你认为全部正确结论的序号)18.如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是 ________ _.(把全部正确答案的序号都填写在横线上)①∠BAD =∠ACD ;②∠BAD =∠CAD ;③AB +BD =AC +CD ;④AB -BD =AC -CD .19.已知二次函数的图象经过原点及点11(,)24--,且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .20.如图为二次函数2y ax bx c =++的图象,在下列说法中:①a c <0;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当x >1时,y 随x 的增大而增大.正确的说法有__________.(把正确的答案的序号都填在横线上)第20题图三、解答题21. 某超市销售一种商品,成本每千克40元,规定每千克不低于成本,且不高于80元.经市场调查,每天的销售量y (千克)与每千克售价x (元)满意一次函数关系,部分数据如下表:售价x (元/千克) 50 60 70 销售量y (千克) 100 80 60(1)求y 与x 之间的函数表达式; (2)设商品每天的总利润为W (元),求W 与x 之间的函数表达式(利润=收入-成本); (3)试说明(2)中总利润W 随售价x 的改变而改变的状况,并指出售价为多少元时获得最大 利润, 最大利润是多少?22.已知正方形ABCD ,点M 为AB 的中点.(1)如图1,点G 为线段CM 上的一点,且∠AGB =90°,延长AG 、BG 分别与边BC 、CD 交于点E 、F .①求证:BE =CF ;②求证:2BE BC CE =⋅.(2)如图2,在边BC 上取一点E ,满意2BE BC CE =⋅,连接AE 交CM 于点G ,连接BG 并延长交CD 于点F ,求tan ∠CBF 的值.第22题图 1 第22题图223.如图,二次函数2+y ax bx =的图象经过点(2,4)A 与(6,0)B .(1)求a ,b 的值; (2)点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.24.如图,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.第24题图1 第24题图2 第24题图325.为了节约材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?第25题图26.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD 的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线相互垂直,求ADEF的值.第26题图1 第26题图227.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数2212421y x mx m =-++和225y ax bx =++,其中1y 的图象经过点(1,1)A ,若12y y +与1y 为“同簇二次函数”,求函数2y 的表达式,并求出当0≤x ≤3时,2y 的最大值.28.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N .(1)①∠MPN = ;②求证:PM +PN =3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM =ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,推断四边形OMGN 是否为特别四边形?并说明理由.第28题图1 第28题图2 第28题图329.某高校生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p (件)50p x =- 销售单价q (元/件)当1≤x ≤20时,1302q x =+;当21≤x ≤40时,52520q x=+(1)请计算第几天该商品的销售单价为35元/件;(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?30.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”;如图1,四边形ABCD 即为“准等腰梯形”;其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形;(画出一种示意图即可) (2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证:AB BEDC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,状况又将如何?写出你的结论.(不必说明理由)第30题图1 第30题图2 第30题图331.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c . (1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相像,求证:BG ⊥CG .第31题图1 第31题图232.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满意关系式2(6)y a x h =-+.已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m. (1)当h =2.6时,求y 与x 的关系式;(不要求写出自变量x 的取值范围) (2)当h =2.6时,球能否越过球网?球会不会出界?请说明理由; (3)若球肯定能越过球网,又不出边界,求h 的取值范围.第32题图33.在△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC 绕顶点C 顺时针旋转,旋转角为(0180)θθ︒︒<<,得到△A’B’C’..第33题图1 第33题图2 第33题图3 (1)如图(1),当AB ∥BC 时,设BA 与CD 相交于点D ,证明:△CDA 是等边三角形; (2)如图(2),连接A’A 、B’B ,设△ACA’和△BCB’的面积分别为'ACA S和'BCB S.求证:'':1:3ACA BCB SS=.(3)如图(3),设AC 中点为E ,B’A’中点为P ,AC =a ,连接EP ,当θ= °时,E P 长度最大,最大值为 .34.如图,正方形ABCD 的四个顶点分别在四条平行线l 1、l 2、l 3、l 4上,这四条直线中相邻两条之间的距离依次为h 1、h 2、h 3(h 1>0,h 2>0,h 3>0). (1)求证h 1=h 3;(2)设正方形ABCD 的面积为S .求证22231()S h h h =++;(3)若12312h h +=,当h 1改变时,说明正方形ABCD 的面积S 随h 1的改变状况.第34题图35.春节期间某水库养殖场为适应市场需求,连续用20天时间,采纳每天降低水位以削减 捕捞成本的方法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模爱好小组依据调查,整理出第x 天(1≤x ≤20且x 为整数)的捕捞与销售的相关信息如下:鲜鱼销售单价(元/kg ) 20单位捕捞成本(元/kg ) 55x - 捕捞量(kg )950x - (1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何改变的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y 随x 的改变状况,并指出在第几天y 取得最大值,最大值是多少?36.如图,已知△ABC ∽△A 1B 1C 1,相像比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1.(1)若c =a 1,求证:a =kc(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a、b、c和a1、b1、c1都是正整数,并加以说明;(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1,使得k=2?请说明理由.第36题图37.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中三对相像三角形,并证明其中的一对;(2)连结FG,假如α=45°,AB=42,AF=3,求FG的长.第37题图38.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.第38题图1 第38题图239.已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.第39题图1 第39题图240.刚回营地的两个抢险分队又接到救灾吩咐:一分队马上动身往30千米的A镇;二分队因疲惫可在营地休息a(0≤a≤3)小时再往A镇参与救灾.一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形困难,必需由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时.(1)若二分队在营地不休息,问二分队几小时能赶到A镇?(2)若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?(3)下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为全部可能合理的代号,并说明它们的实际意义.(a)(b)(c)(d)第40题图。
题型一选择压轴题之函数图象问题类型1根据函数性质判断函数图象在同一平面直1.[2020甘肃天水]若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx角坐标系中的图象大致是()A B C D2.[2019浙江杭州]已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()(a≠0)在同一坐标系中的图象可能是() 3.[2020山东威海]一次函数y=ax-a与反比例函数y=axA B C D4.[2020山东泰安]在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A BC D5.[2020淮北地区模拟]已知函数y=-(x-m)(x-n)(其中m<n)的图象如图所示,则一次函数y=mx+n与的图象可能是()反比例函数y=m+nx的图象如图所示,则二次函数y=ax2+bx+c 6.[2019四川自贡]一次函数y=ax+b与反比例函数y=cx的大致图象是()A B C D类型2分析几何图形中的函数图象题7.[2019山东菏泽]如图,正方形ABCD的边长为2 cm,动点P,Q同时从点A出发,在正方形的边上,分别按A→D→C,A→B→C的方向、以1 cm/s的速度运动,到达点C时运动终止,连接PQ,设运动时间为x s,△APQ的面积为y cm2,则下列图象中能大致表示y与x之间的函数关系的是()8.[2020蚌埠六中三模]如图,△ABC为等边三角形,AB=2,点D为边AB上一点(不与点A,B重合),过点D作DE∥AC,交BC于点E,过点E作EF⊥DE,交AB的延长线于点F,设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()9.[2020宿州第一中学二模]如图,在矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处,作∠BPF的平分线交AB于点E,设BP=x,BE=y,则表示y与x的函数关系的图象大致是()10.[2019四川达州]如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合,现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与点B重合时停止,在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数关系的图象大致是()⏜的中点,点E,F分别在弦AC和直径11.[2020怀远实验中学一模]如图,AB是半圆O的直径,C为ABAB上,连接CF,EF,且∠CFE=45°,若设BF=x,AE=y,则y关于x的函数图象大致是()A B C D类型3分析实际问题中的函数图象题12.[2020浙江台州]如图(1),小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图(2),则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()图(1)图(2)A B C D13.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,表示甲、乙两车之间的距离y(千米)关于行驶时间x(小时)的函数图象如图所示,下列说法错误的是()A.乙出发0.5小时后甲出发B.甲的速度是80千米/时C.甲出发0.5小时后两车相遇小时D.甲到B地比乙到A地早11214.[2020湖北武汉]一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4 min内只进水不出水,从第4 min到第24 min内既进水又出水,从第24 min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A.32B.34C.36D.38类型4分析函数图象判断结论正误15.[2013安徽]图(1)所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图(2)所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()图(1)图(2)A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC·CF的值增大D.当y增大时,BE·DF的值不变16.[2020湖南衡阳中考改编]如图(1),在平面直角坐标系中,▱ABCD在第一象限,且BC∥x轴.直线y=x从原点O出发沿x轴正方向平移.在平移过程中,直线被▱ABCD截得的线段长度n与直线在x轴上平移的距离m的函数图象如图(2)所示.下列说法正确的是()图(1)图(2)A.AD=7B.∠C=67.5°C.▱ABCD的面积为2√2D.当m=8时,直线y=x与▱ABCD有1个交点参考答案题型一选择压轴题之函数图象问题的图象位1.B因为抛物线开口向上、与y轴交点位于x轴上方,所以a>0,c>0,故反比例函数y=cx于第一、三象限.由抛物线的对称轴在y轴右侧,得-b>0,故b<0,故函数y=ax+b的图象经过第一、2a三、四象限.故选B.2.A根据题意,令y1=y2,则ax+b=bx+a,(a-b)x=a-b,∵a≠b,∴a-b≠0,∴x=1,即一次函数y1与y2的图象交点的横坐标为1.A项中,由两个函数的图象,均可得a>0,b>0,故A项符合题意;B项中,不妨设经过第一、二、三象限的函数为y1=ax+b,则a>0,b>0,由函数y2的图象可得b<0,a>0,矛盾,故B项不符合题意;C项中,由两函数的图象都经过第一、二、四象限,可得a<0,b<0,由两函数的图象与y 轴均交于正半轴,可得a>0,b>0,矛盾,故C 项不符合题意;D 项中,不妨设经过第二、三、四象限的函数为y 1=ax+b ,则a<0,b<0,由函数y 2的图象可得b>0,a<0,矛盾,故D 项不符合题意.故选A. 3.D 当a>0时,函数y=ax-a 的图象经过第一、三、四象限,函数y=ax 的图象位于第一、三象限,题目选项中的函数图象均不符合此种情况;当a<0时,函数y=ax-a 的图象经过第一、二、四象限,函数y=ax 的图象位于第二、四象限,选项D 中的图象符合此种情况.故选D .4.C 对于选项A ,由y=ax 2+bx+b 的图象可知a>0,-b2a >0,b>0,矛盾,故选项A 不符合题意.对于选项B ,由y=ax 2+bx+b 的图象可知a<0,b<0;由y=ax+b 的图象可知a>0,b<0,矛盾,故选项B 不符合题意.对于选项C ,由y=ax 2+bx+b 的图象可知a>0,b<0;由y=ax+b 的图象可知a>0,b<0,故选项C 符合题意.对于选项D ,由y=ax 2+bx+b 的图象可知a>0,-b2a >0,b=0,矛盾,故选项D 不符合题意.故选C. 5.C 根据题中二次函数的图象可知m<-1,n=1,∴一次函数y=mx+n 的图象经过第一、二、四象限且与y 轴相交于点(0,1),m+n<0,∴反比例函数y=m+n x 的图象位于第二、四象限,故选C.6.A 由一次函数与反比例函数的图象,可知a<0,b>0,c>0,∴-b2a >0,∴二次函数y=ax 2+bx+c 的图象开口向下,与y 轴交于正半轴,且对称轴在y 轴右侧.故选A .7.A ①当0≤x ≤2时,点P 在AD 上,点Q 在AB 上,此时y=S △APQ =12·AQ ·AP=12x 2,函数图象为开口向上的抛物线的一部分;②当2≤x ≤4时,点P 在CD 上,点Q 在BC 上,此时y=S △APQ =S 正方形ABCD -S △CPQ -S △ABQ -S △APD =2×2-12(4-x )2-2×12×2×(x-2)=-12x 2+2x ,函数图象为开口向下的抛物线的一部分.故选A . 8.A 由题易得△DBE 为等边三角形,ED=DB=2-x (0<x<2),∴∠EDF=60°,∴EF=√3ED=√3(2-x ),∴y=12ED ·EF=12(2-x )·√3(2-x )=√32(2-x )2,此函数的图象为开口向上且对称轴为直线x=2的抛物线的一部分.故选A.9.C 由折叠和角平分线的性质可知∠CPD=∠FPD ,∠BPE=∠FPE ,∴∠CPD+∠BPE=90°.又∠BPE+ ∠BEP=90°,∴∠BEP=∠CPD.又∵∠B=∠C=90°,∴△BPE ∽△CDP ,∴BP CD =BEPC ,即x3=y5−x ,∴y=-13x 2+53x (0<x<5),故选C.10.C 当0<t ≤2时,重叠部分为直角三角形,且两直角边的长分别为t ,√3t ,所以重叠部分的面积S=12t ·√3t=√32t 2,此时函数图象为以原点为顶点、开口向上的抛物线的一部分.当2<t ≤4时,点G 在正方形内部,重叠部分为四边形,所以重叠部分的面积S=12×√32×4×4-12×(4-t )×√3(4-t )=-√32(t-4)2+4√3,此时函数图象为以直线t=4为对称轴、开口向下的抛物线的一部分.故选C .11.D 连接BC ,易得∠CAF=∠CBF=∠EFC=45°.∵∠CFA=∠CFE+∠AFE=∠FCB+∠CBF ,∴∠AFE= ∠FCB ,∴△AEF ∽△BFC ,∴AE BF =AFBC .设半圆O 的半径长为r ,则AB=2r ,BC=√2r ,AF=2r-x ,∴y x =√2r,即y=-√22r x 2+√2x ,故选D.12.C 由题图(2)可知小球从左侧的斜坡滚下是匀变速运动,可设小球在左侧时v=kt (k>0),∴y=kt 2,故运动的路程y 是关于t 的二次函数,图象为开口向上且对称轴为y 轴的抛物线的一部分.故选C.13.D 由题图可得,乙出发0.5小时后甲出发,A 选项中的说法正确;分析图象可知乙的速度为100−700.5=60(千米/时),则乙车从B 地到A 地共行驶100÷60=53(小时),所以甲车的速度为1001.75−0.5=1001.25=80(千米/时),故选项B 中的说法正确;从甲出发,到甲、乙两车相遇,所用时间为70÷(60+80)=0.5(小时),故甲出发0.5小时后两车相遇,故选项C 中的说法正确;1.75-53=112,故乙到A 地比甲到A 地早112小时,故选项D 中的说法错误.14.C 由题图知,进水管每分钟进水20÷4=5(L ). 设出水管每分钟出水m L ,则35-20=(5-m )×(16-4),解得m=154.当x=24时,容器内的水量为20+(5-154)×(24-4)=45(L ),这45 L 水全部放完,所需时间为45÷154=12(min ),此时a=24+12=36.故选C.15.D 由题意可知△BCE 和△DCF 都是等腰直角三角形,所以BE=BC=x ,DF=CD=y ,根据反比例函数的性质可得xy=3×3=9.当x=3时,y=3,所以CE=CF=3√2,所以EC=EM ,故选项A 中的结论错误;当y=9时,x=1,则CE=√2,EM=12(CE+CF )=12(√2+9√2)=5√2,所以EM>CE ,故选项B 中的结论错误;因为xy=9,所以CE ·CF=√2x ·√2y=18,BE ·DF=BC ·CD=xy=9,故选项C 中的结论错误,选项D 中的结论正确. 16.B 由题图(2)知,当m=4时直线经过点A ,当m=6时直线经过点B 且n=2,当m=7时直线经过点D ,∴AD=7-4=3,故选项A 错误.设当m=6时,直线与AD 交于点E ,则AE=BE=2.∵AD ∥BC ∥x 轴,直线y=x 在平移过程中与x 轴所夹锐角为45°,∴∠AEB=45°,∴∠C=∠DAB=180°−45°2=67.5°,故选项B 正确.过点B 作BH ⊥AE 于点H ,则BH=√22BE=√22×2=√2,∴S 平行四边形ABCD =AD ·BH=3√2,故选项C 错误.分析可知,当m=9时,直线过点C ,∴当m=8时,直线与边CD ,BC 各有1个交点,故选项D 错误.故选B.。
安徽省中考数学试题分类解析汇编————押轴题汇总(1)一、选择题1. (2001安徽省4分)⊙O 1、⊙O 2和⊙O 3是三个半径为1的等圆,的等圆,且圆心在同一条直线上.若⊙O 2分别与⊙O 1,⊙O 3相交,⊙O 1与⊙O 3不相交,则⊙O 1与⊙O 3的圆心距d 的取值范围是的取值范围是。
2-1. (2002安徽省4分)如图,在△ABC 中,中,BC BC BC==a ,B 1,B 2,B 3,B 4是AB边的五等分点;边的五等分点;C C 1,C 2.C 3.C 4是AC 边的五等分点,则B 1C 1+B 2C 2+B 3C 3+B 4C 4=.2-2.(2002安徽省4分)(华东版教材实验区试题)如图是2002年6月份的日历,现有一矩形在日历任意..框出4个数a b c d,请用一个等式表示,请用一个等式表示a 、b 、c 、d 之间的关系:之间的关系:。
3. 如图,在平行四边形ABCD 中,中,AC=4AC=4AC=4,,BD=6BD=6,,P 是BD 上的任一点,过P 作EF∥AC,与平行四边形的两条边分别交于点E ,F 。
设BP=x BP=x,,EF=y EF=y,则能反映,则能反映y 与x 之间关系的图象为【之间关系的图象为【】A :B :C :D :4. (2004安徽省4分)“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉.当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用S 1、S 2分别表示乌龟和兔子所行的路程,分别表示乌龟和兔子所行的路程,t t 为时间,则下列图象中与故事情节相吻合的是【为时间,则下列图象中与故事情节相吻合的是【 】.】.(A)(B) (C) (D)5. (2005安徽省大纲4分)下图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是【年,人口数大约是【】A 、180万B 、200万C 、300万D 、400万6. (2005安徽省课标4分)如图所示,圆O 的半径OA=6OA=6,以,以A 为圆心,为圆心,OA OA 为半径的弧交圆O 于B 、C 点,则BC 为【为【】 A. 63 B.62 C. 33 D. 32 7. (2006安徽省大纲4分)生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y 和月份n 之间函数关系式为2y n 14n 24=-+-,则该企业一年中应停产的月份是【应停产的月份是【】 A .1月、月、22月、月、33月 B .2月、月、33月、月、44月 C .1月、月、22月、月、1212月 D .1月、月、1111月、月、1212月8. (2006安徽省课标4分)如图是由10把相同的折扇组成的“蝶恋花”把相同的折扇组成的“蝶恋花”(图(图1)和梅花图案和梅花图案(图(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为【中的折扇无重叠),则梅花图案中的五角星的五个锐角均为【】A .36° B.42° C.45° D.48°9. (2007安徽省4分)如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形,BC∥QR,则∠AOQ=【接正方形,BC∥QR,则∠AOQ=【】 A .60° B.65° C.72° D.75°10. (2008安徽省4分)如图,在△ABC 中,中,AB=AC=5AB=AC=5AB=AC=5,,BC=6BC=6,点,点M 为BC 中点,MN⊥AC于点N ,则MN 等于【等于【】 A.65 B. 95 C. 125 D. 16511. (2009安徽省4分)△ABC 中,中,AB AB AB==AC AC,∠A ,∠A 为锐角,为锐角,CD CD 为AB 边上的高,边上的高,I I 为△ACD 的内切圆圆心,则∠AIB 的度数是【的度数是【】 A .120° B.125° C.135° D.150°12. (2009安徽省4分)甲、乙两个准备在一段长为1200米的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s 和6m/s 6m/s,起跑前乙在起点,甲在乙前面,起跑前乙在起点,甲在乙前面100米处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离y (m )与时间t (s )的函数图象是【)的函数图象是【】 A . B . C . D .13. (2011安徽省4分)如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点.设AC AC==2,BD BD==1,AP AP==x ,△AMN 的面积为y ,则y 关于x 的函数图象大致形状是【状是【】 14. (2012安徽省4分)在一张直角三角形纸片的两直角边上各取一点,在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是【的斜边长是【】 A.10 B.54 C. 10或54 D.10或172 二、填空题1. (2001安徽省4分)如图,如图,AB AB 是⊙O 的直径,的直径,l l 1,l 2是⊙O 的两条切线,且l 1∥AB∥l 2,若P 是PA PA、、PB 上一点,直线PA PA、、PB 交l 2于点C 、D ,设⊙O 的面积为S 1,△PCD 的面积为S 2,则12S S =【 】 A .π B .2p C .4p D .8p 2. (2002安徽省4分)如图,在矩形ABCD 中,中,AB AB AB==3,AD AD==4.P 是AD 上的动点,PE⊥AC 于E ,PE⊥BD 于F .则PE PE++PF 的值为【的值为【】 A .512 B .2 C .25 D .5133. (2003安徽省4分)如图,如图,l l 是四形形ABCD 的对称轴,如果AD∥BC,有下列结论:①AB∥CD ②AB=BC ③AB⊥BC ④AO=OC 其中正确的结论是其中正确的结论是。
中考数学压轴题汇编1、(安徽)按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。
(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解】(1)当P=12时,y=x +()11002x -,即y=1502x +。
∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)……3分 又当x=20时,y=1100502⨯+=100。
而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;……6分(2)本题是开放性问题,答案不唯一。
若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。
如取h=20,y=()220a x k -+,……8分∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ① 令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+。
………14分2、(常州)已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)由(1)2(m m -=+,得m =-k =. ····· 2分(2)如图1,作BE x ⊥轴,E 为垂足,则3CE =,BE =BC =30BCE = ∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ····························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF m m =>,则1AF =,12AD m =,由点(1A --,,得点11(1)D m -+-,.因此11(1)()m --=,解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足,则60DCH =∠,设22(0)CH m m =>,则2DH =,22CD m =由点(10)C -,,得点22(1)D m -+, 因此22(1)m -+=.解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(2D -,四边形ABCD 是梯形. ·············· 9分综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边图1图2形为梯形,点D的坐标为:6D ⎛ ⎝⎭或(1D或(2D -,. ······ 10分3、(福建龙岩)如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.解:(1)抛物线的对称轴5522a x a -=-=………2分(2)(30)A -, (54)B ,(04)C ,…………5分 把点A 坐标代入254y ax ax =-+中,解得16a =-………6分 215466y x x ∴=-++…………………………………………7分(3)存在符合条件的点P 共有3个.以下分三类情形探索.设抛物线对称轴与x 轴交于N ,与CB 交于M .过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =, 5.5AN =,52BM =① ······························································································································ 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= ················· 8分在1Rt ANP △中,12PN ====1522P ⎛∴- ⎝⎭, ························· 9分 ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ====10分25822P ⎛∴ ⎝⎭, ························11分 ③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△. 312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = ··············· 13分 3(2.51)P ∴-, ··························· 14分注:第(3)小题中,只写出点P 的坐标,无任何说明者不得分.4、(福州)如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4.(1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 . (2) 解法一:如图12-1,∵ 点C 在双曲线上,当y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 . S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 . 解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F , ∵ 点C 在双曲线8y x=上,当y = 8时,x = 1 . ∴ 点C 的坐标为( 1, 8 ).图12x y 21xy 8=∵ 点C 、A 都在双曲线8y x=上 , ∴ S △COE = S △AOF = 4 。
专题07解答压轴题(圆的综合)通用的解题思路:一、切割线定理当出现圆中一条弦和一条切线(或另一条弦)所在直线交于圆外一点时,可利用相似三角形解决线段相关问题。
二、解决三角形外接圆的问题做这类题时可通过连接圆心(外心)和三角形的顶点,或过圆心(外心)作边的垂线,进而应用圆周角定理、垂径定理及勾股定理解决问题。
三、证切线的方法1、已知半径证垂直;2、已知垂直证半径。
1.(2023-安徽•中考真题)已知四边形班CD内接于。
,对角线如是。
的直径.⑴如图1,连接OA,C4,若求证;04平分乙BCD;(2)如图2,E为。
内一点,满足AE±BC,CE±AB,若BD=30AE=3,求弦BC的长.2.(2022.安徽.中考真题)已知AB^jQO的直径,。
为。
上一点,D为BA的延长线上一点,连接CQ.c c图1上AB图2⑴如图1,若COLAB,20=30。
,0A=L求AQ的长;(2)如图2,若OC与。
0相切,E为OA上一点,且ZACD=ZACE,求证:CE±AB.3.(2021.安徽.中考真题)如图,圆0中两条互相垂直的弦AB,CQ交于点E.(1)M是CD的中点,(W=3,CD=12,求圆。
的半径长;(2)点尸在CQ上,>CE=EF,求证:AF1BD.1.(2024-安徽六安•一模)如图,4ABC内接于O。
,是。
的直径,0D1AB交O。
于点E,交AC于点KDF=DC.D\R(1)求证:CD是。
的切线;(2)若。
F=而,BC=6,求DE的长.2.(2024.安徽•一模)如图,已知点尸为。
外一点,点A为。
上一点,直线P4与。
的另一个交点为点B,AC是。
的直径,APAC的平分线刀。
交。
于点Q,连接CD并延长交直线霹于点M,连接OQ.(1)求证:OD||BM;(2)若tan ZACD-,。
的直径为4,求刀B的长度.3.(2024-安徽合肥•二模)如图,AB为。
的直径,的和吨是。
的弦,连接AD f CD.P(1)若点C为AP的中点,且PC=PD,求ZB的度数;⑵若点。
中考数学压轴题100题精选【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax2+bx 过A 、C 两点. (1)直接写出点A 的坐标,并求出抛物线的解析式;A P 图16(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G .当t 为何值时,线段EG 最长? ②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。
一、中考数学压轴题1.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围. 2.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.3.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.4.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.5.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A 停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.6.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.7.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.8.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.9.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是 ;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.10.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.11.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()3,0B ,()0,3C ,点M 是抛物线的顶点.(1)求二次函数的关系式.(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D .若OD m =,PCD 的面积为S .①求S 与m 的函数关系式,写出自变量m 的取值范围.②当S 取得最值时,求点P 的坐标.(3)在MB 上是否存在点P ,使PCD 为直角三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D 落在矩形ABOC 内(不包括边界),求线段CE 长度的取值范围. (2)若折叠后,△ABD 是等腰三角形,请直接写出此时点D 的坐标.13.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.14.(1)探究发现数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”经过一番讨论,小组成员展示了他们的解答过程:在直线21y x =-上任取点()01A -,, 向左平移3个单位得到点()31,'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.因为2y x n =+过点()31,'--A , 所以61n -+=-,所以5n =,填空:所以平移后所得直线所对应函数表达式为(2)类比运用已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式;(3)拓展运用将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .15.已知:菱形 ABCD ,点 E 在线段 BC 上,连接 DE ,点 F 在线段 AB 上,连接 CF 、DF , CF 与 DE 交于点 G ,将菱形 ABCD 沿 DF 翻折,点 A 恰好落在点 G 上.(1)求证:CD=CF ;(2)设∠CED = x ,∠DCF = y ,求 y 与 x 的函数关系式;(不要求写出自变量的取值范围) (3)在(2)的条件下,当 x =45°时,以 CD 为底边作等腰△CDK ,顶角顶点 K 在菱形 ABCD 的内部,连接 GK ,若 GK ∥CD ,CD =4 时,求线段 KG 的长.16.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式; (2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点.①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.17.如图,在等边△ABC 中,AB =BC =AC =6cm ,点P 从点B 出发,沿B →C 方向以1.5cm/s 的速度运动到点C 停止,同时点Q 从点A 出发,沿A →B 方向以1cm/s 的速度运动,当点P 停止运动时,点Q 也随之停止运动,连接PQ ,过点P 作BC 的垂线,过点Q 作BC 的平行线,两直线相交于点M .设点P 的运动时间为x (s ),△MPQ 与△ABC 重叠部分的面积为y (cm 2)(规定:线段是面积为0的图形).(1)当x = (s )时,PQ ⊥BC ;(2)当点M 落在AC 边上时,x = (s );(3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.18.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.19.ABC 内接于O ,AB BC =,连接BO ;(1)如图1,连接CO 并延长交O 于点M ,连接AM ,求证://AM BO ;(2)如图2,延长BO 交AC 于点H ,点F 为BH 上一点,连接AF ,若AH HF AB BF =,求证:BAF HAF ∠=∠;(3)在(2)的条件下,如图3,点E 为AB 上一点,点D 为O 上一点,连接ED 、OE ,若CBD 3ABH 90∠+∠=︒,若OF 3=,FH 4=,13623EBD S ∆=,连接OE ,求线段OE 的长.20.如图①,△ABC 是等腰直角三角形,在两腰AB 、AC 外侧作两个等边三角形ABD 和ACE ,AM 和AN 分别是等边三角形ABD 和ACE 的角平分线,连接CM 、BN ,CM 与AB 交于点P .(1)求证:CM =BN ;(2)如图②,点F 为角平分线AN 上一点,且∠CPF =30°,求证:△APF ∽△AMC ; (3)在(2)的条件下,求PF BN的值. 21.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 22.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值; (2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?23.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0xy =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ;(2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.24.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数? (2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.25.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEPS=,求sin APB ∠的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)直线x=0;(2)B (0,1a );(3)2-≤a ≤13-或13≤a 2 【解析】 【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A 的坐标,再利用关于x 轴对称的点的坐标规律得出点B 坐标; (3)分a >0和a <0两种情况分别讨论,画图图像,求出a 的范围. 【详解】解:(1)在抛物线21y ax a=-中, 002a-=, ∴对称轴为直线x=0,即y 轴; (2)∵抛物线与y 轴交于点A ,∴A (0,1a-), ∵点A 关于x 轴的对称点为点B ,∴B (0,1a); (3)当a >0时,点A (0,1a-)在y 轴负半轴上, 当点P 恰好在抛物线上时,代入得:11a a a-=,解得:2a=或2-(舍),当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=或13-(舍),∴当13≤a≤2时,抛物线与线段PQ恰有一个公共点;当a<0时,点A(0,1a-)在y轴正半轴上,同理可知:当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=(舍)或2-,当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=(舍)或13-,∴当2-≤a≤13-时,抛物线与线段PQ只有一个公共点;综上:若抛物线与线段PQ恰有一个公共点,a的取值范围是2-≤a≤13 -或13≤a2.【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答.2.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】 【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KGAK的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k , ∴229=5MF CF CM k -=, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.3.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+,2QN m 4sin QHN QH5∠+===,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN 2∠∴=,则sin QHN 5∠=将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--. 【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.4.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】 【分析】(1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到OF ===线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论. 【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠, 即HOD EOA ∠=∠, HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x, ∴AF=4-x , ∴FN=2-x , ∴()222222248OF FN ON x x x =+=-+=-+,∴248EF y x x =--+, ∵AM⊥A C , ∴AE∥OB, ∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x -+≤=<;(3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE , ∵∠EAO=90°, ∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形, 如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴241482x xPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xxx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴22EQ AO==∴24242()xAE ExQ-===,∴43x=,∴BF=2或43.【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.5.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】 【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案. 【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒,即有11169622CD AD AD =⨯=,解得12AD =. 所以12,16AD CD ==.(2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-,可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-, 可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.6.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤. 【解析】 【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可. 【详解】(1)()1,2D -到线段BC 的距离为2,22(12)(20)1332DC =--+-=<⨯ ∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯ ∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点; (2)设直线l 上“倍增点”的横坐标为m , 当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=, 得1131m =+,2131m =- 当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时, T(9,0),此时T 的横坐标为最大值, 当点H(0,1)为T “倍增点”时,则T(63-,0),此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.7.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45° 【解析】 【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解; (2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解; ②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍. 【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。
初三中考数学压轴题精选100题(含答案)一、中考压轴题1.在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点C1落在直线BC上(点C1与点C不重合),(1)如图,当∠C>60°时,写出边AB1与边CB的位置关系,并加以证明;(2)当∠C=60°时,写出边AB1与边CB的位置关系(不要求证明);(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.【分析】(1)AB1∥BC.因为等腰三角形,两底角相等,再根据平行线的判定,内错角相等两直线平行,可证明两直线平行.(2)当∠C=60°时,写出边AB1与边CB的位置关系也是平行,证明方法同(1)题.(3)成立,根据旋转变换的性质画出图形.利用三角形全等即可证明.【解答】解:(1)AB1∥BC.证明:由已知得△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(5分)(2)如图1,∠C=60°时,AB1∥BC.(7分)(3)如图,当∠C<60°时,(1)、(2)中的结论还成立.证明:显然△ABC≌△AB1C1,∴∠BAC=∠B1AC1,∴∠B1AB=∠C1AC,∵AC1=AC,∴∠AC1C=∠ACC1,∵∠C1AC+∠AC1C+∠ACC1=180°,∴∠C1AC=180°﹣2∠ACC1,同理,在△ABC中,∵BA=BC,∴∠ABC=180°﹣2∠ACC1,∴∠ABC=∠C1AC=∠B1AB,∴AB1∥BC.(13分)【点评】考查图形的旋转,等腰三角形的性质,平行线的判定.本题实质是考查对图形旋转特征的理解,旋转前后的图形是全等的.2.我们学习了利用函数图象求方程的近似解,例如:把方程2x﹣1=3﹣x的解看成函数y =2x﹣1的图象与函数y=3﹣x的图象交点的横坐标.如图,已画出反比例函数y=在第一象限内的图象,请你按照上述方法,利用此图象求方程x2﹣x﹣1=0的正数解.(要求画出相应函数的图象;求出的解精确到0.1)【分析】根据题意可知,方程x2﹣x﹣1=0的解可看做是函数y=和y=x﹣1的交点坐标,所以根据图象可知方程x2﹣x﹣1=0的正数解约为1.1.【解答】解:∵x≠0,∴将x2﹣x﹣1=0两边同时除以x,得x﹣1﹣=0,即=x﹣1,把x2﹣x﹣1=0的正根视为由函数y=与函数y=x﹣1的图象在第一象限交点的横坐标.如图:∴正数解约为1.1.【点评】主要考查了反比例函数和一元二次方程之间的关系.一元二次方程的解都可化为一个反比例函数和一次函数的交点问题求解.3.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?【分析】(1)需先算出从2005年到2007年,每年盈利的年增长率,然后根据2005年的盈利,算出2006年的利润;(2)相等关系是:2008年盈利=2007年盈利×每年盈利的年增长率.【解答】解:(1)设每年盈利的年增长率为x,根据题意得1500(1+x)2=2160解得x1=0.2,x2=﹣2.2(不合题意,舍去)∴1500(1+x)=1500(1+0.2)=1800答:2006年该公司盈利1800万元.(2)2160(1+0.2)=2592答:预计2008年该公司盈利2592万元.【点评】本题的关键是需求出从2005年到2007年,每年盈利的年增长率.等量关系为:2005年盈利×(1+年增长率)2=2160.4.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.6.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.7.如图1,在直角坐标系中,点A的坐标为(1,0),以OA为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连接BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由;(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.【分析】(1)由等边三角形的性质知,OBA=∠CBD=60°,易得∠OBC=∠ABD,又有OB=AB,BC=BD故有△OBC≌△ABD;(2)由1知,△OBC≌△ABD⇒∠BAD=∠BOC=60°,可得∠OAE=60°,在Rt△EOA 中,有EO=OA•tan60°=,即可求得点E的坐标;(3)由相交弦定理知1•m=n•AG,即AG=,由切割线定理知,OE2=EG•EF,在Rt△EOA中,由勾股定理知,AE==2,故建立方程:()2=(2﹣)(2+n),就可求得m与n关系.【解答】解:(1)两个三角形全等.∵△AOB、△CBD都是等边三角形,∴OBA=∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD;∵OB=AB,BC=BD,△OBC≌△ABD;(2)点E位置不变.∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∠OAE=180°﹣60°﹣60°=60°;在Rt△EOA中,EO=OA•tan60°=,或∠AEO=30°,得AE=2,∴OE=∴点E的坐标为(0,);(3)∵AC=m,AF=n,由相交弦定理知1•m=n•AG,即AG=;又∵OC是直径,∴OE是圆的切线,OE2=EG•EF,在Rt△EOA中,AE==2,()2=(2﹣)(2+n)即2n2+n﹣2m﹣mn=0解得m=.【点评】命题立意:考查圆的相交弦定理、切线定理、三角形全等等知识,并且将这些知识与坐标系联系在一起,考查综合分析、解决问题的能力.8.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.9.一个不透明的口袋里有红、黄、绿三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有1个,任意摸出一个黄球的概率为.(1)试求口袋里绿球的个数;(2)若第一次从口袋中任意摸出一球(不放回),第二次任意摸出一球,请你用树状图或列表法,求出两次都摸到红球的概率.【分析】(1)根据概率的求解方法,利用方程求得绿球个数;(2)此题需要两步完成,所以采用树状图法或者列表法都比较简单,解题时要注意是放回实验还是不放回实验,此题为不放回实验.【解答】解:(1)设口袋里绿球有x个,则,解得x=1.故口袋里绿球有1个.(2)红一红二黄绿红一红二,红一黄,红一绿,红一红二红一,红二黄,红一绿,红二黄红一,黄红二,黄绿,黄绿红一,绿红二,绿黄,绿故,P(两次都摸到红球)=.【点评】(1)解题时要注意应用方程思想;(2)列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.设AP=x.(1)当PQ∥AD时,求x的值;(2)当线段PQ的垂直平分线与BC边相交时,求x的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设△EPQ的面积为S,求S关于x的函数关系式,并写出S的取值范围.【分析】(1)根据已知条件,证明四边形APQD是矩形,再根据矩形的性质和AP=CQ 求x即可;(2)连接EP、EQ,则EP=EQ,设BE=y,列出等式(8﹣x)2+y2=(6﹣y)2+x2然后根据函数的性质来求x的取值范围;(3)由图形的等量关系列出方程,再根据函数的性质来求最值.【解答】解:(1)当PQ∥AD时,则∠A=∠APQ=90°,∠D=∠DQP=90°,又∵AB∥CD,∴四边形APQD是矩形,∴AP=QD,∵AP=CQ,AP=CD=,∴x=4.(2)如图,连接EP、EQ,则EP=EQ,设BE=y.∴(8﹣x)2+y2=(6﹣y)2+x2,∴y=.∵0≤y≤6,∴0≤≤6,∴≤x≤.(3)S△BPE=•BE•BP=••(8﹣x)=,S△ECQ==•(6﹣)•x=,∵AP=CQ,∴S BPQC=,∴S=S BPQC﹣S△BPE﹣S△ECQ=24﹣﹣,整理得:S==(x﹣4)2+12(),∴当x=4时,S有最小值12,当x=或x=时,S有最大值.∴12≤S≤.【点评】解答本题时,涉及到了矩形的判定、矩形的性质、勾股定理以及二次函数的最值等知识点,这是一道综合性比较强的题目,所以在解答题目时,一定要把各个知识点融会贯通,这样解题时才会少走弯路.11.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A 类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.12.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.13.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.14.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.【分析】(1)在△AEC和△DEB中,已知AE=DE,BE=CE,且夹角相等,根据边角边可证全等.(2)由图可知,在连接EO并延长EO交BC于点F,连接AD之后,整个图形是一个以EF所在直线对称的图形.即△AEO和△DEO面积相等,只要求出其中一个即可,而三角形AEO面积=•OE•FB,所以解题中心即为求出OE和FB,有(1)中结论和已知条件即可求解.【解答】(1)证明:∵∠AEB=∠DEC=90°,∴∠AEB+∠BEC=∠DEC+∠BEC,即∠AEC=∠DEB,∵△BEC是等边三角形,∴CE=BE,又AE=DE,∴△AEC≌△DEB.(2)解:连接EO并延长EO交BC于点F,连接AD.由(1)知AC=BD.∵∠ABC=∠DCB=90°,∴∠ABC+∠DCB=180°,∴AB∥DC,AB==CD,∴四边形ABCD为平行四边形且是矩形,∴OA=OB=OC=OD,又∵BE=CE,∴OE所在直线垂直平分线段BC,∴BF=FC,∠EFB=90°.∴OF=AB=×2=1,∵△BEC是等边三角形,∴∠EBC=60°.在Rt△AEB中,∠AEB=90°,∠ABE=∠ABC﹣∠EBC=90°﹣60°=30°,∴BE=AB•cos30°=,在Rt△BFE中,∠BFE=90°,∠EBF=60°,∴BF=BE•cos60°=,EF=BE•sin60°=,∴OE=EF﹣OF==,∵AE=ED,OE=OE,AO=DO,∴△AOE≌△DOE.∴S△AOE=S△DOE∴S阴影=2S△AOE=2וEO•BF=2×××=(cm2).【点评】考查综合应用等边三角形、等腰三角形、解直角三角形、直角三角形性质,进行逻辑推理能力和运算能力.15.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.16.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.17.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.19.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.【分析】(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt △BDO中,利用勾股定理列式求解即可.【解答】(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠P AE+∠OAD=90°,∴∠AOD=∠P AE,在△AOD和△P AE中,,∴△AOD≌△P AE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.【点评】本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.20.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.。
2014中考数学压轴题精编----安徽篇1.(安徽省)如图,已知△ABC ∽△A 1B 1C 1,相似比为k (k >1),且△ABC 的三边长分别为a 、b 、c (a >b >c ),△A 1B 1C 1的三边长分别为a 1、b 1、c 1. (1)若c =a 1,求证:a =kc ;(2)若c =a 1,试给出符合条件的一对△ABC 和△A 1B 1C 1,使得a 、b 、c 和a 1、b 1、c 1都是正整数,并加以说明;(3)若b =a 1,c =b 1,是否存在△ABC 和△A 1B 1C 1,使得k =2?请说明理由.1.解(1)证:∵△ABC ∽△A 1B 1C 1,且相似比为k (k >1),∴1a a=k ,∴a =ka 1 又∵c =a 1,∴a =kc ·················································································· 3分 (2)解:取a =8,b =6,c =4,同时取a 1=4,b 1=3,c 1=2 ······························ 8分此时1a a =1b b =1c c=2,∴△ABC ∽△A 1B 1C 1且c =a 1 ····································· 10分注:本题也是开放型的,只要给出的△ABC 和△A 1B 1C 1符合要求就相应赋分. (3)解:不存在这样的△ABC 和△A 1B 1C 1.理由如下: 若k =2,则a =2a 1,b =2b 1,c =2c 1 又∵b =a 1,c =b 1,∴a =2a 1=2b =4b 1=4c∴b =2c ································································································· 12分 ∴b +c =2c +c =3c <4c =a ,而b +c >a故不存在这样的△ABC 和△A 1B 1C 1,使得k =2. ··········································· 14分注:本题不要求学生严格按反证法的证明格式推理,只要能说明在题设要求下k =2的情况不可能即可.2.(安徽省B 卷)如图,Rt △ABC 内接于⊙O ,AC =BC ,∠BAC 的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结OG . (1)判断OG 与CD 的位置关系,写出你的结论并证明; (2)求证:AE =BF ; (3)若OG ·DE =3(2-2),求⊙O 的面积.B C AA 1 a b cB 1C 1 a 1 b 1c 1 A C B F D EO G2.解:(1)猜想:OG ⊥CD .证明:如图,连结OC 、OD ,则OC =OD .∵G 是CD 的中点∴由等腰三角形的性质,有OG ⊥CD . ················· 2分(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°.而∠CAE =∠CBF (同弧所对的圆周角相等). 在Rt △ACE 和Rt △BCF 中∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ∴Rt △ACE ≌Rt △BCF .(ASA )∴AE =BF . ············································································ 6分(3)解:如图,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点.∴OH =21AD ,即AD =2OH . 又∠CAD =∠BAD ,∴CD =∠BD ,∴OH =OG . 在Rt △BDE 和Rt △ADB 中∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB . ∴AD BD =DBDE,即BD 2=AD ·DE . ∴BD 2=AD ·DE =2OG ·DE =6(2-2). ······································ 8分 又BD =FD ,∴BF =2BD .∴BF 2=4BD 2=24(2-2).……………………………………①. ······· 9分 设AC =x ,则BC =x ,AB =2x .∵AD 是∠BAC 的平分线,∴∠F AD =∠BAD . 在Rt △ABD 和Rt △AFD 中∵∠ADB =∠ADF =90°,AD =AD ,∠F AD =∠BAD ∴Rt △ABD ≌Rt △AFD .(ASA ) ∴AF =AB =2x ,BD =FD .∴CF =AF -AC =2x -x =(2-1)x . 在Rt △BCF 中,由勾股定理,得BF 2=BC 2+CF 2=x2+[(2-1)x ]2=2(2-2)x2.…………②. ······ 10分由①、②,得2(2-2)x2=24(2-2).∴x2=12,∴x =32或32-(舍去).∴AB =2x =2·32=62.∴⊙O 的半径长为6. ····························································· 11分 ∴S ⊙O =π·(6)2=6π. ·························································· 12分3.(安徽省B 卷)已知:抛物线y =ax2+bx +c (a ≠0)的对称轴为x =-1,与x 轴交于A 、B 两点,与y轴交于点C ,其中A (-3,0)、C (0,-2).ACBF D E HO G(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得△PBC 的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE ∥PC 交x 轴于点E ,连接PD 、PE .设CD 的长为m ,△PDE 的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.3.解:(1)由题意得⎪⎪⎩⎪⎪⎨⎧2 0 391 2----+===c c b a a b································································· 2分解得a =32,b =34,c =-2.∴这条抛物线的函数表达式为y =32x2+34x -2 ·································· 4分(2)如图,连结AC 、B C .由于BC 的长度一定,要使△PBC 的周长最小,必须使PB +PC 最小. 点B 关于对称轴的对称点是点A ,AC 与对称轴x =-1的交点即为所求的点P . 设直线AC 的表达式为y =kx +b ,则⎩⎨⎧203--+ ==b b k ················································· 6分 解得k =-32,b =-2. ∴直线AC 的表达式为y =-32x -2 ······························把x =-1代入上式,得y =-32×(-1)-2=-34. ∴点P 的坐标为(-1,-34) ························································· 8分 (3)S 存在最大值,理由如下:∵DE ∥PC ,即DE ∥AC ,∴△OED ∽△OAC .∴OD OE =OC OA ,即m OE -2=23,∴OE =3-23m ,∴AE =23m .方法一: 连结OPS =S △POE +S △POD -S △OED=21×(3-23m )×34+21×(2-m )×1-21×(3-23m )×(2-m ) =-43m2+23m ········································································· 10分 ∵-43<0,∴S 存在最大值. ······················································· 11分 ∵S =-43m2+23m =-43(m -1)2+43 ∴当m =1时,S 最大=43. ··························································· 12分 方法二:S =S △OAC-S △OED-S △P AE-S △PCD=21×3×2-21×(3-23m )×(2-m )-21×23m ×34-21×m ×1 =-43m2+23m ········································································· 10分 以下同方法一.4.(安徽省芜湖市)(本小题满分12分)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧上一点,过M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于N 点. (1)求证:PM =PN ; (2)若BD =4,P A =23AO ,过B 点作BC ∥MP 交⊙O 于C4.解:(1)证明:连接OM ··································· 1分∵MP 是⊙O 的切线,∴OM ⊥MP ∴∠OMD +∠DMP =90°∵OA ⊥OB ,∴∠OND +∠ODM =90° 又∵∠MNP =∠OND ,∠ODM =∠OMD ∴∠DMP =∠MNP ,∴PM =PN ··············· 4分 (2)解:设BC 交OM 于点E ,∵BD =4,∴OA =OB =21BD =2 ∴P A =23AO =3,∴PO =5 ································································· 5分 ∵BC ∥MP ,OM ⊥MP ,∴OM ⊥BC ,∴BE =21BC ··································· 7分 ∵∠BOM +∠MOP =90°,在Rt △OMP 中,∠MPO +∠MOP =90° ∴∠BOM =∠MPO ,又∵∠BEO =∠OMP =90° ∴△OMP ∽△BEO ,∴OP OM =BOBE······················································· 10分得:52=2BE ,∴BE =54,∴BC =58··················································· 12分 5.(安徽省芜湖市)如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-334,0)的直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′.(1)求折痕所在直线EF 的解析式;(2)一抛物线经过B 、E 、B ′三点,求此二次函数解析式;(3)能否在直线EF 上求一点P ,使得△PBC 周长最小?如能,求出点P 的坐标;若不能,说明理由.5.解:(1)由于折痕所在直线EF 过E (-3,1)、F (-334,0) ∴tan ∠EFO =3,直线EF 的倾斜角为60° ∴直线EF 的解析式为:y -=tan60°[x -(-3)]化简得:y =3x +4. ············································································ 3分 (2)设矩形沿直线EF 向右下方翻折后,B 、C 的对应点为B ′(x 1,y 1),C ′(x 2,y 2) 过B ′作B ′A ′⊥AE 交AE 所在直线于A ′点∵B ′E =BE =32,∠B ′EF =∠BEF =60° ∴∠B ′EA ′=60°,∴A ′E =3,B ′A ′=3∴A 与A ′重合,B ′在y 轴上,∴x 1=0,y 1=-2,即B ′(0,-2)【此时需说明B ′(x 1,y 1)在y 轴上】 ························································ 6分 设二次函数的解析式为:y =ax2+bx +c∵抛物线经过B (-33,1)、E (-3,1)、B ′(0,-2)∴⎩⎨⎧27a -33b +c =13a -3b +c =1c =-2解得⎪⎪⎪⎩⎪⎪⎪⎨⎧233431--- ===c b a∴该二次函数解析式为:y =-31x2-334x -2 ·············································· 9分 (3)能,可以在直线EF 上找到P 点,连接B ′C 交EF 于P 点,再连接BP 由于B ′P =BP ,此时点P 与C 、B ′在一条直线上,故BP +PC =B ′P +PC 的和最小由于为BC 定长所以满足△PBC 周长最小. ················································ 10分 设直线B ′C 的解析式为:y =kx +b 则⎪⎩⎪⎨⎧b k b +==--3302 解得⎪⎩⎪⎨⎧2932--==b k ∴直线B ′C 的解析式为:y =-932x -2 ········································· 12分又∵点P 为直线B ′C 与直线EF 的交点∴⎪⎩⎪⎨⎧43 2932+==--x x y y 解得⎪⎪⎩⎪⎪⎨⎧1110 31118--==y x ∴点P 的坐标为(-31118,-1110) ························································· 14分 6.(安徽省合肥一中自主招生)已知:甲、乙两车分别从相距300(km )的M 、N 两地同时出发相向而行,其中甲到达N 地后立即返回,图1、图2分别是它们离各自出发地的距离y (km )与行驶时间x (h )之间的函数图象.(1)试求线段AB 所对应的函数关系式,并写出自变量的取值范围;(2)当它们行驶到与各自出发地的距离相等时,用了29h ,求乙车的速度; (3)在(2)的条件下,求它们在行驶的过程中相遇的时间.6.解:(1)设线段AB 所对应的函数关系式为y =kx +b把(3,300),(427,0)代入得⎩⎪⎨⎪⎧300=3k +b 0=427k +b 解得⎩⎪⎨⎪⎧k =-80b =540yh 图1y h图2∴线段AB 所对应的函数关系式为y 甲=-80x +540 ···························· 5分 自变量x 的取值范围是3<x ≤427(或3≤x ≤427,下同) ··················· 7分 (2)∵x =29在3<x ≤427中,∴把x =29代入y 甲=-80x +540中得y 甲=180 ∴乙车的速度为29180=40(km/h ) ·················································· 12分 (3)由题意知有两次相遇方法一:①当0≤x ≤3时,100x +40x =300,解得:x =715 ····························· 16分 ②当3<x ≤427时,(540-80x )+40x =300,解得:x =6 ···················· 20分 综上所述,当它们行驶了715小时或6小时时,两车相遇 方法二:设经过x 1小时两车首次相遇 则40x 1+100x 1=300,解得:x 1=715··············································· 16分 设经过x 2小时两车第二次相遇则80(x 2-3)=40x 2,解得:x 2=6 ·················································· 20分7.(安徽省合肥一中自主招生)如图1,在△ABC 中,AB =BC ,且BC ≠AC ,在△ABC 上画一条直线,若这条直线..既平分△ABC 的面积,又平分△ABC 的周长,我们称这条线为△ABC 的“等分积周线”. (1)请你在图1中用尺规作图作出一条△ABC 的“等分积周线”;(2)在图1中过点C 能否画出一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由; (3)如图2,若AB =BC =5cm ,AC =6cm ,请你找出△ABC 的所有“等分积周线”,并简要说明确定的方法.7.解:(1)图略,作线段AC 的中垂线BD 即可 ················································· 2分 (2)不能如图1,若直线CD 平分△ABC 的面积 那么S △ADC=S △DBC∴21AD ·CE =21BD ·CE ∴AD =BD ····································· 5分A BC图1DEA B C 图2 A B C 图1∵AC ≠BC ,∴AD +AC ≠BD +BC∴过点C 不能画出一条“等分积周线” ············································ 7分 (3)①若直线经过顶点,则AC 边上的中垂线即为所求线段 ························ 8分②若直线不过顶点,可分以下三种情况: (a )直线与BC 、AC 分别交于E 、F ,如图2所示过点E 作EH ⊥AC 于点H ,过点B 作BG ⊥AC 于点G 易求得BG =4,AG =CG =3 设CF =x ,则CE =8-x 由△CEH ∽△CBG ,可得EH =54(8-x ) 根据面积相等,可得21·x ·54(8-x )=6 ················ 10分 ∴x =3(舍去,即为①)或x =5∴CF =5,CE =3,直线EF 即为所求直线 ······································ 12分 (b )直线与AB 、AC 分别交于M 、N ,如图3所示由(a )可得AM =3,AN =5,直线MN 即为所求直线 (仿照上面给分) ·············································· 15分 (c )直线与AB 、BC 分别交于P 、Q ,如图4所示过点A 作AY ⊥BC 于点Y ,过点P 作PX ⊥BC 于点X由面积法可得AY =524设BP =x ,则BQ =8-x 由相似,可得PX =2524x据面积相等,可得21·2524x ·(8-x )=6 ·················· 17分 ∴x =2148+>5(舍去)或x =2148- 而当BP =2148-时,BQ =2148+>5,舍去∴此种情况不存在 ····································································· 19分 综上所述,符合条件的直线共有三条 ············································· 20分 (注:若直接按与两边相交的情况分类,也相应给分)8.(安徽省合肥一中自主招生)如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,点P 以一定的速度沿AC 边由A 向C 运动,点Q 以1cm/s 的速度沿CB 边由C 向B 运动,设P 、Q 同时运动,且当一点运动到终点时,另一点也随之停止运动,设运动时间为t (s ). (1)若点P 以43cm/s 的速度运动 ①当PQ ∥AB 时,求t 的值;②在①的条件下,试判断以PQ 为直径的圆与直线AB 的位置关系,并说明理由.A BC图2E FG HABC图3 MNAB C图4PQ X Y(2)若点P 以1cm/s 的速度运动,在整个运动过程中,以PQ 为直径的圆能否与直线AB 相切?若能,请求出运动时间t ;若不能,请说明理由.8.解:(1)①如图1,当PQ ∥AB 时,有AC PC=CBCQ ·············· 2分 即3433t=4t ,解得:t =2 ∴当t =2秒时,PQ ∥AB ································ 5分 ②解法1:如图2,当t =2秒时,PQ ∥AB ,此时PQ 为△ACB 的中位线,PQ =25······························· 6分取PQ 的中点M ,则以PQ 为直径的圆的圆心为M , 半径为21PQ ················································ 8分 过点M 、C 向AB 作垂线,垂足分别为N 、H 则CH =512,MN =21CH =56·························· 10分 ∵MN <21PQ ,∴直线AB 与以PQ 为直径的圆相交 ··············································· 12分解法2:如图3,当t =2秒时,PQ ∥AB ,此时PQ 为 △ACB 的中位线,取PQ 的中点M ,分别过点M 、C 向 AB 作垂线,垂足分别为N 、H ,CH 交PQ 于点G ,连接CM∵MN =21CH ,即MN =GH =CG在Rt △CGM 中,GC <MC ,∴MN <MC∴直线AB 与以PQ 为直径的圆相交 ················ 12分 解法3:如图4,当t =2秒时,PQ ∥AB ,此时PQ 为△ACB 的中位线,过点Q 向AB 作垂线,垂足为N , 则Rt △BNQ ∽Rt △BCA ,∴AB BQ =AC NQ ,即52=3NQ , ∴NQ =56AC BPQ 图1AC B PQ 图3M HNACBPQ 图4MNAC BPQ 图2 M HNA CB PAC B 备用图由平行线间的距离处处相等可知,点M 到AB 的距离为56,小于21PQ ∴直线AB 与以PQ 为直径的圆相交 ·············································· 12分 (2)解法1:如图5,取PQ 的中点M ,作MN ⊥AB 、PG ⊥AB 、QH ⊥AB ,垂足分别为N 、G 、H则由Rt △APG ∽Rt △ABC ,得PG =54t ············ 14分 由Rt △BHQ ∽Rt △BCA ,得HQ =53(4-t) ········· 16分 此时MN 是梯形PGHQ 的中位线,∴MN =56+10t ··············································· 20分当PQ 2=4MN 2时,以PQ 为直径的圆与直线AB 相切即(3-t)2+t2=4(56+10t)2···························· 26分解得:t 1=3,t 2=4927 ··································································· 30分 解法2:如图6,取PQ 的中点M ,作MH ⊥AB 、MG ⊥AC 、MN ⊥BC ,垂足分别为H 、G 、N 连接AM 、BM 、CM由S △ABC=S △ACM+S △BCM +S △ABM 可得:21×3×2t +21×4×21(3-t)+21×5×MH =21×3×4 解得:MH =56+10t当PQ 2=4MN 2时,以PQ 为直径的圆与直线AB 相切即(3-t)2+t2=4(56+10t)2···························· 26分解得:t 1=3,t 2=4927 ····································· 30分 解法3:如图7,取PQ 的中点M ,作MH ⊥AB 、MN ⊥BC ,垂足分别为H 、N ,延长NM 交AB 于点G ,则MN =21PC =21(3-t),NQ =21CQ =2t ,∴NB =4-2t 由Rt △BGN ∽Rt △BAC ,得GN =3-83t ,∴GM =3-83t -21(3-t)=23+81t又∵Rt △GMH ∽Rt △ABC ,∴BC MH =AB GM ,即4MH =58123t解得:MH =56+10t当PQ 2=4MN 2时,以PQ 为直径的圆与直线AB 相切即(3-t)2+t2=4(56+10t)2···························· 26分解得:t 1=3,t 2=4927 ····································· 30分B图7图5图69.(安徽省蚌埠二中自主招生)青海玉树发生7.1级强震后,为使人民的生命财产损失降到最低,部队官兵发扬了连续作战的作风。