高中物理模块六动量与动量守恒定律考点2.2.4类碰撞模型之“滑块光滑弧面(斜面)”试题
- 格式:doc
- 大小:161.51 KB
- 文档页数:4
考点2.2.2 类碰撞模型之“滑块+木板”1.把滑块、木板看作一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,把机械能转化为内能,系统机械能不守恒.应由能量守恒求解问题.3.注意:滑块不滑离木板时最后二者有共同速度.【例题】如图所示,在光滑的水平面上有一质量为M 的长木板,以速度v 0向右做匀速直线运动,将质量为m 的小铁块轻轻放在木板上的A 点,这时小铁块相对地面速度为零,小铁块相对木板向左滑动.由于小铁块和木板间有摩擦,最后它们之间相对静止,已知它们之间的动摩擦因数为μ,问:(1)小铁块跟木板相对静止时,它们的共同速度多大?(2)它们相对静止时,小铁块与A 点距离多远?(3)在全过程中有多少机械能转化为内能?【解析】(1)木板与小铁块组成的系统动量守恒.以v 0的方向为正方向,由动量守恒定律得,Mv 0=(M +m )v ′,则v ′=Mv 0M +m. (2)由功能关系可得,摩擦力在相对位移上所做的功等于系统动能的减少量,μmgx 相=12Mv 20-12(M +m )v ′2. 解得x 相=Mv 202μg (M +m )(3)由能量守恒定律可得,Q =12Mv 20-12(M +m )v ′2 =Mmv 202(M +m )【答案】(1)Mv 0M +m (2)Mv 202μg (M +m ) (3)Mmv 202(M +m )1.(多选)质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图10所示.现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( BD )A.12mv2 B.12mMm+Mv2C.12NμmgL D.NμmgL2.将一长木板静止放在光滑的水平面上,如图甲所示,一个小铅块(可视为质点)以水平初速度v0由木板左端向右滑动,到达右端时恰能与木板保持相对静止。
专题强化3弹簧—小球模型滑块—光滑斜(曲)面模型[学习目标]1.进一步掌握用动量守恒定律、能量守恒定律解决碰撞问题的技巧(重点)。
2.掌握两类碰撞问题的解题方法(重难点)。
一、弹簧—小球模型如图所示,光滑水平面上静止着一质量为m 2的刚性小球B ,左端与水平轻质弹簧相连,另有一质量为m 1的刚性小球A 以速度v 0向右运动,并与弹簧发生相互作用,两球半径相同,问:(1)弹簧的弹性势能什么情况下最大?最大为多少?(2)两球共速后,两球的速度如何变化?弹簧长度如何变化?(3)小球B 的速度什么情况下最大?最大为多少?答案(1)当两个小球速度相同时,弹簧最短,弹簧的弹性势能最大。
由动量守恒定律得m 1v 0=(m 1+m 2)v 由能量守恒定律得12m 1v 02=12(m 1+m 2)v 2+E pmax 解得E pmax =m 1m 2v 022(m 1+m 2)(2)如图所示,两球共速后,A 减速,B 加速,A 、B 间的距离增大,故弹簧的压缩量减小,弹簧的长度增加。
(3)当弹簧恢复原长时,小球B 的速度最大,由动量守恒定律得m 1v 0=m 1v 1+m 2v 2由能量守恒定律得12m 1v 02=12m 1v 12+12m 2v 22解得v 2=2m 1v 0m 1+m 2。
拓展延伸(1)系统动能何时最小?求系统的动能的最小值。
(2)从小球与弹簧相互作用至弹簧恢复原状的过程,系统动能何时最大?求系统的动能的最大值。
答案(1)弹簧和小球组成的系统机械能守恒,两球共速时,弹簧的弹性势能最大,系统的动能最小。
E kmin =12(m 1+m 2)v 2=m 122(m 1+m 2)v 02(2)弹簧和小球组成系统机械能守恒,当弹簧恢复原长时,弹簧的弹性势能最小,系统的动能最大,E kmax =12m 1v 02。
对两个(或两个以上)物体与弹簧组成的系统,在相互作用的过程中,若系统合外力为零,则系统动量守恒。
高中物理动量碰撞模型动量守恒定律有四个应用:碰撞、爆炸、反冲和人船模型。
今天我们讨论的是斜面模型。
如果要分类的话,完全可以归为碰撞模型。
动量守恒定律的斜面体模型一共只考下面的三种情况:•从光滑水平面滑到最高点•从光滑水平面滑到最高点然后再滑回水平面•从斜面体上面静止往下滑我们先来看第一种情况:从光滑水平面滑到最高点动量守恒定律的斜面模型有一个前提条件:斜面不能固定,必须在光滑的水平面上。
如果斜面固定在水平面上,当滑块在斜面上移动时,斜面不会移动。
如果斜面不是固定在光滑的水平面上,当滑块在斜面上移动时,斜面也会移动。
所以遇到斜面,首先要分析斜面是否固定。
①如果斜面体固定在水平面上,那么滑块滑到最高点的速度为0。
此时只能用动能定理:-mgh=0-\frac{1}{2}mv_{0}^{2}②如果斜面体不固定,那么滑块一旦滑上斜面体,那么斜面体会向右运动,此时不能用动能定理(因为斜面体对滑块做了功),而只能用动量守恒定律和能量守恒定律。
当滑块滑到最高点的时候,滑块与斜面体共速,方向水平向右,则:mv_{0}=\left( m+M \right)v_{共}\frac{1}{2}mv_{0}^{2}=\frac{1}{2}\left( m+M\right)v_{共}^{2}+mgh这种情况类似于完全非弹性碰撞模型当然,如果问题是问你斜面体对滑块做了多少功的话,那么就只能对滑块用动能定理了,式子如下:-mgh+W_{N}=\frac{1}{2}mv_{共}^{2}-\frac{1}{2}mv_{0}^{2}( W_{N} 为滑块从水平面滑到最高点的过程中,斜面体对滑块做的功)第二种情况:滑到最高点后又滑回来①如果斜面体固定在水平面上,则滑块在滑到最高点又滑回水平面的过程中,斜面体对滑块不做功。
那么滑块滑回水平面时的速度大小不变,方向反向,仍为 v_{0} 。
相当于斜面体只起到了一个改变滑块速度方向的作用。
②如果斜面体不固定,那么在滑块滑到最高点又滑回水平面的过程中,只用用动量守恒定律和能量守恒定律:m_{1}v_{0}=m_{1}v_{1}+Mv_{2}\frac{1}{2}m_{1}v_{0}^{2}=\frac{1}{2}m_{1}v_{1}^{2}+\f rac{1}{2}Mv_{2}^{2}这种情况类似于弹性碰撞模型。
碰撞和动量守恒知识点总结(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章碰撞和动量守恒知识点总结知识点1 物体的碰撞1.生活中的各种碰撞现象碰撞的种类有正碰和斜碰两种.(1)正碰:像台球的碰撞中若两个小球碰撞时的速度沿着连心线方向,则称为正碰.(2)斜碰:像台球的碰撞中若两个小球碰撞前的相对速度不在连心线上,则称为斜碰.2.弹性碰撞和非弹性碰撞(1)碰撞分为弹性碰撞和非弹性碰撞两种.①弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变能完全恢复,则没有动能损失,碰撞前后两个物体构成的系统动能相等.②非弹性碰撞:若两个物体的碰撞发生在水平面上,碰撞后形变不能完全恢复或完全不能恢复(黏合),则有动能损失(或损失最大),损失的动能转变为热能,碰撞前后两个物体构成的系统动能不再相等,碰撞后的总动能小于碰撞前的总动能.(2)两种碰撞的区别:弹性碰撞没有能量损失,非弹性碰撞有能量损失.当两个小球的碰撞发生在水平面上时,两小球碰撞前后的重力势能不变,变化的是动能,根据动能是否守恒,把小球的碰撞分为弹性碰撞和非弹性碰撞,如下所示:(3)注意.①非弹性碰撞一定有机械能损失,损失的机械能一般转化为内能.碰撞后的总机械能不可能增加,这一点尤为重要.②系统发生爆炸时,内力对系统内的每一个物体都做正功,故爆炸时,系统的机械能是增加的,这一增加的机械能来源于炸药贮存的化学能.知识点2 动量、冲量和动量定理一、动量1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。
是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。
单位是kg·m/s;2、动量和动能的区别和联系①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。
高中物理动量守恒定律知识点总结高中物理动量守恒定律是高中物理的重点和难点,那么有哪些知识点是必须掌握的呢?以下是店铺为您整理关于高中物理动量守恒定律知识点相关资料,希望对您有所帮助。
高中物理动量守恒定律知识点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)高中物理动量守恒定律知识点(二)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}高中物理学习方法要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
考点2.2.4 类碰撞模型之“滑块+光滑弧面(斜面)”
1.两质量均为2m的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲
面,曲面下端与水平面相切,如图12所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h.物块从静止滑下,然后又滑上劈B,重力加速度为g,求:
(1)物块第一次离开劈A时,劈A的速度;
(2)物块在劈B上能够达到的最大高度.
【答案】(1)1
3
gh(2)
4
9
h
2.如图所示,小车的上面是中突的两个对称的曲面组成,整个小车的质量为m,原来静止在
光滑的水平面上。
今有一个可以看作质点的小球,质量也为m,以水平速度v从左端滑上小车,恰好到达小车的最高点后,又从另一个曲面滑下。
关于这个过程,下列说法正确的( BCD )
A.小球滑离小车时,小车又回到了原来的位置
B.小球在滑上曲面的过程中,对小车压力的冲量大小是
2
mv
C.小球和小车作用前后,小车和小球的速度可能没有变化
D.车上曲面的竖直高度不会大于
2 4 v g
3.如图所示,两质量分别为M1=M2=1.0kg的木板和足够高的光滑凹槽静止放置在光滑水平面
上,木板和光滑凹槽接触但不粘连,凹槽左端与木板等高。
现有一质量m=2.0kg的物块以初速度v o=5.0m/s从木板左端滑上,物块离开木板时木板的速度大小为1.0m/s,物块以某一速度滑上凹槽。
已知物块和木板间的动摩擦因数μ=0.5,重力加速度g取10m/s2。
求:
(1)木板的长度;
(2)物块滑上凹槽的最大高度。
【答案】(1)0.8m (2)0.15m
4.2016·全国卷Ⅱ,35(2)]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧
一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。
某时刻小孩将冰块以相对冰面 3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度)。
已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动。
取重力加速度的大小g=10 m/s2。
(1)求斜面体的质量;
(2)通过计算判断,冰块与斜面体分离后能否追上小孩?
【答案】(1)20kg (2)不能
5.如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面右侧是一段长L=1.0m
的水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O/点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=
1.0kg的小物块紧靠弹簧,小物块与水平轨道间的动摩擦因数μ=0.5。
整个装置处于静
止状态,现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A,g取10m/s2.求:
(1)解除锁定前弹簧的弹性势能;
(2)小物块第二次经过O/点时的速度大小;
(3)最终小物块与车相对静止时距O/点的距离.
【答案】(1)7.5J (2)2.0m/s (3)0.5m。