第十章 第3节 热力学第一定律 能量守恒定律
- 格式:ppt
- 大小:2.22 MB
- 文档页数:23
能量守恒定律热力学第一定律
能量守恒定律是热力学中的基本定律之一,也称为热力学第一定律。
它表明,在任何系统中,能量既不能被创造,也不能被毁灭,只能在不同形式之间转化。
换句话说,系统中的能量总量保持不变,即能量守恒。
这个定律适用于所有物理系统,包括热力学系统。
在热力学系统中,能量可以以多种形式存在,如热能、动能、势能、化学能等。
热力学第一定律表明,系统中的能量总量等于输入和输出的能量之和,即能量守恒。
因此,热力学第一定律可以用来描述热能的转移和转化。
例如,在一个封闭的容器中,当热源向其中输入热量时,其内部的能量总量增加,而当它向外界释放热量时,其内部的能量总量减少。
这个过程中,能量的总量始终保持不变。
总之,能量守恒定律是热力学中最基本的定律之一,它揭示了能量在物理系统中的本质和特性,具有重要的理论和实际意义。
- 1 -。
第3讲热力学定律与能量守恒定律知识点热力学第一定律Ⅰ1.改变物体内能的两种方式(1)01做功;(2)热传递。
2.热力学第一定律(1)内容一个热力学系统的内能增量等于外界向它传递的02热量与外界对它所做的功的和。
(2)表达式:ΔU=03Q+W。
(3)ΔU=Q+W中物理量正、负号的意义W Q ΔU+外界对系统做功系统04吸收热量内能05增加-系统对外界做功系统06放出热量内能07减少①若过程是绝热的,则Q=0,W=ΔU08内能的增加。
②若外界对系统做功为0,即W=0,则Q=ΔU,系统吸收的热量等于系统09内能的增加。
此处的W包含机械功、电流功等一切功。
对于不涉及其他力做功的气体的等容过程,W=0,Q=ΔU。
③对于理想气体,若过程是等温的,即ΔU=0,则W+Q=0或W=-Q,10外界对气体做的功等于气体放出的热量。
知识点热力学第二定律Ⅰ1.热力学第二定律的三种表述(1)克劳修斯表述热量不能01自发地从低温物体传到高温物体。
(2)开尔文表述不可能从单一热库吸收热量,使之完全变成功,而02不产生其他影响。
或表述为“03第二类永动机是不可能制成的。
”(3)用熵的概念表示热力学第二定律在任何自然过程中,一个孤立系统的总熵不会04减小。
(熵增加原理)2.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的05无序性增大的方向进行。
知识点能量守恒定律Ⅰ1.能量守恒定律的内容:能量既不会凭空产生,也不会凭空消失,它只能从01转化为另一种形式,02转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
2.条件性:能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。
例如,机械能守恒定律具有适用条件,而能量守恒定律是无条件的,是一切自然现象都遵守的基本规律。
3.两类永动机(1)第一类永动机:不需要任何动力或燃料,却能不断地对外做功的机器。
03能量守恒定律,因此不可能实现。
(2)第二类永动机:从单一热库吸收热量并把它全部用来对外做功,而不产生其他影响的机器。
热力学第一定律与能量守恒热力学第一定律和能量守恒是研究能量转换与守恒的基本原理和定律。
在能量的转化和传递过程中,热力学第一定律和能量守恒定律起到了至关重要的作用。
本文将介绍这两个定律的概念、基本原理以及在实际应用中的重要性。
一、热力学第一定律热力学第一定律,也称为能量守恒定律,是热力学的基本定律之一。
它可以用来描述热量和力学能量之间的转换关系。
简单来说,热力学第一定律可以表达为:在一个系统中,能量的增加等于热量和做功两部分之和。
即ΔE = Q - W,其中ΔE表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外界做的功。
热力学第一定律反映了能量在一个封闭系统中的守恒原理。
根据该定律,能量既不会消失,也不会从无中产生,只能在不同形式之间相互转换。
例如,当我们使用电器加热水时,电能被转化为热能,使水温升高。
这是能量形式的转换,但总能量保持不变。
二、能量守恒能量守恒,是自然界的一条基本定律,也是物理学中最基本的规律之一。
能量守恒原理指出:在一个孤立系统内,能量总量保持不变。
能量不会因为转移、转换或者消失,只能在不同的形式之间进行转化。
能量的形式有很多,例如机械能、热能、电能等等。
无论是当一个物体从一处高处下落,将其势能转化为动能,还是当物体进行摩擦运动时,将机械能转化为热能,或者是当我们点燃一根蜡烛,将化学能转化为热能和光能,能量的总量是不变的。
能量守恒原理在我们的日常生活中无处不在。
当我们吃东西时,食物的能量被转化为人体的生物能,使我们保持活力。
当我们使用电器时,电能被转化为光能、热能等其他形式的能量。
了解能量守恒原理对于我们合理利用能源、保护环境具有重要意义。
三、热力学第一定律与能量守恒的关系热力学第一定律实质上是能量守恒原理在热力学中的具体应用。
热力学第一定律表明了能量在热力学系统中的转化与守恒关系,为能量守恒原理提供了具体的表达形式。
根据热力学第一定律,系统内能量的变化等于热量和做功的总和。
高中物理| 10.3热力学第一定律能量守恒定律详解热力学第一定律能量守恒定律热力学是研究物质世界中有关热现象的宏观理论,它不涉及物质的微观结构,而是将一物质系统中大量粒子看作一个整体,研究系统所表现的各种宏观性质和规律。
热力学第一定律是热力学的基本定律,是一个包括热现象在内的能量守恒与转化的定律。
热力学第一定律首先涉及到内能功热量的基本概念内能功热量内能广义上的内能,是指某物体系统由其内部状态所决定的能量。
某给定理想气体系统的内能,是组成该气体系统的全部分子的动能之和,其值为,由状态参量T决定,内能E=E(T),是状态参量T的单值函数。
真实气体的内能除了其全体分子的动能外还包括分子之间的引力势能。
实验证明人,真实气体的内能,是状态参量T 和V (或ρ)的函数,即E=E(T,V)或E=E(T,P)。
总之,某给定气体系统的内能。
只由该系统的状态所决定,在热力学中内能是一个重要的状态量。
功气体系统体积变化过程所做的功(体积功)元功气体膨胀dV>0 系统对外做正功dA>0气体被压缩 dV<0 系统对外做负功dA<0体积从 Va变到Vb系统所做的功沿a c d过程的功不等于沿a d b过程的功系统通过体积变化实现作功。
热力学中的功是与系统始末状态和过程都有关的一种过程量。
热量热量是系统与外界仅由于温度不同而传递的能量。
若改用摩尔热容C,即1mol的物质温度升高1K时所吸收的热量则系统由温度T1 变到温度T2的过程中所吸收的热量系统吸收的热量为正Q>0。
若计算结果Q<0则表示系统放热。
热量必须与过程相联系,只有发生过程才有吸收或放出热量可言。
系统从某一状态变到另一状态,若其过程不同,则吸或放的热量也会不同。
故热量也是过程量内能功热量的国际标准单位都是焦耳(J )热力学第一定律在任何一个热力学过程中,系统所吸收的热量等于系统内能的增量E2-E1与系统对外作功 A 之和。
Q=E2-E1+A热力学第一定律是包括热现象在内的能量守恒与转化定律的一种表达形式。
第3节热力学第一定律__能量守恒定律1.热力学第一定律:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
2.热力学第一定律的表达式ΔU=Q+W,要熟悉其符号法则。
3.能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
4.第一类永动机不可能制成,因为它违背了能量守恒定律。
一、热力学第一定律1.改变内能的两种方式做功和热传递。
2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
(2)表达式:ΔU=Q+W。
二、能量守恒定律和永动机1.能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
(2)意义:①各种形式的能可以相互转化。
②各种物理现象可以用能量守恒定律联系在一起。
2.永动机不可能制成(1)第一类永动机:不需要任何动力或燃料,却能不断地对外做功的机器。
(2)不可制成的原因:违背了能量守恒定律。
1.自主思考——判一判(1)做功和热传递在改变物体内能上是不等效的。
(×)(2)运动的物体在阻力作用下会停下来,说明机械能凭空消失了。
(×)(3)功和能可以相互转化。
(×)(4)第一类永动机不能制成,是因为它违背了能的转化和守恒定律。
(√)(5)某个物体的能量减少,必然有其他物体的能量增加。
(√)(6)自由摆动的秋千摆动幅度越来越小,减少的机械能转化为内能,但总能量守恒。
(√)2.合作探究——议一议(1)快速推动活塞对汽缸内气体做功10 J,气体内能改变了多少?若保持气体体积不变,外界对汽缸传递10 J的热量,气体内能改变了多少?能否说明10 J的功等于10 J的热量?图10-3-1提示:无论外界对气体做功10 J,还是外界给气体传递10 J的热量,气体内能都增加了10 J,说明做功和热传递在改变物体内能上是等效的,但不能说10 J的功等于10 J的热量,因为功与热量具有本质区别。
第3节热力学第一定律能量守恒定律通过前面的学习我们知道:做功和热传递都可以改变物体的内能,如果既对物体做功又有热量的交换,物体的内能会如何变化呢?根据:∆U=W∆U=Q可得:∆U=W+Q这就是热力学第一定律的表达式,热力学第一定律是:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。
在这个式子中,ΔU大于零表示内能增加,小于零表示内能减少;W大于零表示外界对系统做功,小于零表示系统对外界做功;Q大于零表示外界向系统传递热量,小于零表示系统向外界传递热量。
必修课本中我们学习了机械能守恒定律,现在有了热力学第一定律,那么,是不是所有的能量都是守恒的呢?俄国的盖斯发现,任何一个化学反应,不论是一步完成,还是分几步完成,放出的总热量相同,这表明,相同的化合物所含的热量相同。
德国医生迈尔通过对船员的血液发现,热带船员的血液比在其它地方更红,是因为热带温度较高,人体需要消化食物得到的热量较少,血液中的氧气消耗也少,所以血液含氧量更高,又通过船员了解到,热带风暴中的海水温度更高,这是海水的动能变成了内能。
1845年,英国的焦耳通过热功当量等实验验证了能量的转化和转移,并且测量了热功当量,找到了焦耳与卡路里的换算系数。
德国的亥姆霍兹也对动能和势能的转化提出了看法,还得电磁学中的能量转化找到了规律,在众多科学家的努力下,一个重要定律出现了,这就是能量守恒定律,可以表述为:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。
这个定律说明,自然界的能量是守恒的,只能转化和转移,我们平时用燃料产生热,是化学能转化成了内能,吸热的化学反应,是内能转化为化学能。
发电机是机械能转化为电能,电动机则相反,灯泡发光是电能转化为光能,光合作用是光能转化为化学能,核电站是核能转化为电能,水电站是水的机械能转化为电能。
当时机械工业比较发达,有很多人想制造一种机器,不用消耗任何能源,就能自己工作,对外做功,这种机器称为“永动机”。
热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。
但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。
人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。
热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。
热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。
在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。
他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。
在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。
1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。
他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。
1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。
他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。
” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。
把热看成是一种状态量。
由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。
经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。
能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。
热力学第一定律能量守恒的原理热力学是物理学的一个重要分支,研究的是能量的转化和传递规律。
而热力学第一定律,即能量守恒定律,是热力学的基本原理之一。
本文将详细阐述热力学第一定律的内容和原理,并强调其在能量转化过程中的重要性。
热力学第一定律被定义为能量守恒的基本原理,它说明了能量在物理系统内的转化和传递时所遵循的规律。
根据这个定律,能量不会自发地出现或消失,只会从一种形式转化为另一种形式。
简单来说,能量增加或减少的过程中,总能量的变化量等于系统所做的功和系统所吸收的热的总和。
能量守恒定律的数学表达形式为:ΔU = Q - W其中,ΔU表示系统内能量的变化,Q表示系统所吸收或放出的热能,W表示系统对外界所做的功。
根据能量守恒定律,系统的内能变化量等于吸收的热能和对外界做的功的代数和。
在这个等式中,正负号的区分非常重要。
当ΔU为正值时,表示系统的内能增加,而ΔU为负值时,表示系统的内能减少。
热量Q为正值时,表示系统吸收热能,为负值时,表示系统放出热能。
功W为正值时,表示系统对外界做正功,为负值时,表示系统受到外界做的功。
热力学第一定律的能量守恒原理可以通过以下几个例子来说明。
1. 热机的工作原理:热机是一种将热能转化为机械能的设备,如汽车发动机。
根据热力学第一定律,热机从燃料中释放能量(热能),并将其转化为机械能,从而驱动汽车行驶。
这个过程中,系统所做的功为汽车的动力,而系统吸收的热能则来自燃料的燃烧过程。
2. 能量守恒的供暖原理:在冬天里,我们使用暖气设备将电能或燃料的化学能转化为热能,将房间加热。
这个过程中,暖气设备通过吸收电能或燃料的化学能,将其转化为热能放出到房间中,使室内温度升高。
这符合热力学第一定律的能量守恒原理。
3. 饮料冷却的过程:当我们将热的饮料放置在室温环境中,饮料的温度会逐渐降低。
这是因为饮料内部的热能会通过传导、辐射和对流等方式,向外界传递。
根据热力学第一定律,系统内能的减少等于系统所放出的热能,也就是饮料的热能会转移到周围环境中,使得饮料的温度下降。
3.23.3热力学第一定律能量守恒定律知识点一、热力学第一定律1.改变内能的两种方式:做功与传热.两者对改变系统的内能是等价的.2.热力学第一定律:一个热力学系统的内能变化量等于外界向它传递的热量与外界对它所做的功的和.1.对公式ΔU=Q+W符号的规定2.(1)绝热过程:Q=0,则ΔU=W,系统内能的增加(或减少)量等于外界对系统(或物体对外界)做的功.(2)等容过程:W=0,则ΔU=Q,物体内能的增加量(或减少量)等于系统从外界吸收(或系统向外界放出)的热量.(3)等温过程:始末状态一定质量理想气体的内能不变,即ΔU=0,则W=-Q(或Q=-W),外界对系统做的功等于系统放出的热量(或系统吸收的热量等于系统对外界做的功).3.判断气体是否做功的方法一般情况下看气体的体积是否变化.①若气体体积增大,表明气体对外界做功,W<0.②若气体体积减小,表明外界对气体做功,W>0.4.应用热力学第一定律解题的一般步骤(1)根据符号法则写出各已知量(W、Q、ΔU)的正负;(2)根据方程ΔU=W+Q求出未知量;(3)再根据未知量结果的正负来确定吸放热情况、做功情况或内能变化情况.知识点二、气体实验定律和热力学第一定律的综合应用热力学第一定律与理想气体状态方程结合问题的分析思路:(1)利用体积的变化分析做功情况.气体体积增大,气体对外界做功;气体体积减小,外界对气体做功.(2)利用温度的变化分析理想气体内能的变化.一定质量的理想气体的内能仅与温度有关,温度升高,内能增加;温度降低,内能减小.(3)利用热力学第一定律判断是吸热还是放热.由热力学第一定律ΔU =W +Q ,则Q =ΔU -W ,若已知气体的做功情况和内能的变化情况,即可判断气体状态变化是吸热过程还是放热过程知识点三、能量守恒定律1.能量的存在形式及相互转化(1)各种运动形式都有对应的能:机械运动有机械能,分子的热运动有内能,还有电磁能、化学能、核能等.(2)各种形式的能,通过某种力做功可以相互转化.例如:利用电炉取暖或烧水,电能转化为内能;煤燃烧,化学能转化为内能;列车刹车后,轮子温度升高,机械能转化为内能.2.能量守恒的两种表达(1)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.3.第一类永动机不可能制成的原因分析如果没有外界供给热量而对外做功,由ΔU =W +Q 知,系统内能将减小.若想源源不断地做功,在无外界能量供给的情况下是不可能的.[例题1] (多选)(2023秋•密山市期末)某同学用喝完的饮料罐,制作一个简易气温计。