电流互感器基本知识
- 格式:ppt
- 大小:249.00 KB
- 文档页数:10
电流互感器一.基本概念和基本原理1.基本概念互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。
电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。
电流互感器主要分为两大类:测量级互感器和保护级互感器。
电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A,这样可以减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是:a. 传递信息供给测量仪表、仪器或继电保护、控制装置;b. 使测量、保护和控制装置与高电压相隔离;c.有利于测量仪器、仪表和保护、控制装置的小型化、标准化。
测量级互感器:专门用于测量电流和电能的电流互感器。
如:3、1、、、、、、、、、、1M、2M保护级互感器:专门用于继电保护和自动控制的电流互感器。
如:5P、10P、C类互感器(如C800)、5PR、10PR、PX、X、PS、PL 、TPX、TPY、TPS铁心开气隙的目的:控制剩磁铁心需开气隙的电流互感器:5PR、10PR、TPY执行标准:国标:GB 1208-2006 电流互感器GB 16847-1997 保护用电流互感器暂态特性技术要求国际标准:IEC 60044-1、IEC 60044-6其它国家标准:IEEE/、CAN3-C13、AS 、BS等600/1A的CT二次匝数为600÷1=6003.套管型电流互感器的基本参数及基本常识额定电流比:例1:300-400-600/5A,即表示此互感器有三个变比,其额定一次电流分别为300、400及600A,额定二次电流为5A,二次匝数应分别为60、80及120匝。
S1-S2:300/5、60匝S1-S3:400/5、80匝S1-S4:600/5、120匝例2:600/5MR、C800 (美国标准IEEE Std )MR:多变比C类互感器:相当于10P20800:二次端电压(V)C800:相当于10P20、200V A出线标记――X2-X3 50/5 10匝X1-X2 100/5 20匝X1-X3 150/5 30匝X4-X5 200/5 40匝X3-X4 250/5 50匝X2-X4 300/5 60匝X1-X4 400/5 80匝X3-X5 450/5 90匝X2-X5 500/5 100匝X1-X5 600/5 120匝20匝10匝50匝40匝X1X2X3X4X5准确级要求保护级互感器:标准准确限值系数ALF:5、10、15、20、30、40等。
电流互感器的基本原理1.1 电流互感器的基本等值电路如图1所示.图1 电流互感器基本等值电路图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流,,Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。
即:IpN1=IsN2Is=Ip×N1/N2=Ip/Kn1.2. 电流互感器极性标注电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。
当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。
由于电流方向相反,且铁心中合成磁通为零。
因此得下式:N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。
推出:Is=N1/N2*Ip可见,一二次电流的方向是一致的,是同相位的,因此我们可以用二次电流来表示一次电流(考虑变比折算)。
这正是减极性标注的优点。
1.3. 电流互感器的误差在理想条件下,电流互感器二次电流Is=Ip/Kn,不存在误差。
但实际上不论在幅值上(考虑变比折算)和角度上,一二次电流都存在差异。
这一点我们可以在图1中看到。
实际流入互感器二次负载的电流Is=Ip/Kn-Ie,其中Ie为励磁电流,即建立磁场所需的工作电流。
电流互感器一.基本概念和基本原理1.基本概念互感器:一种变压器,供测量仪器、仪表、继电器和其它类似电器用。
电流互感器:一种互感器,在正常使用条件下其二次电流与一次电流实质上成正比,而其相位差在联结方法正确时接近于零的互感器。
电流互感器主要分为两大类:测量级互感器和保护级互感器。
电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电流变换成较小的标准电流值,一般是5A或1A,这样可以减小仪表和继电器的尺寸,简化其规格,有利于这些设备的小型化、标准化,所以说电流互感器的主要作用是:a. 传递信息供给测量仪表、仪器或继电保护、控制装置;b. 使测量、保护和控制装置与高电压相隔离;c.有利于测量仪器、仪表和保护、控制装置的小型化、标准化。
测量级互感器:专门用于测量电流和电能的电流互感器。
如:3、1、0.5、0.2、0.1、0.5S、0.2S、0.1S、0.3、0.6、1.2、1M、2M保护级互感器:专门用于继电保护和自动控制的电流互感器。
如:5P、10P、C类互感器(如C800)、5PR、10PR、PX、X、PS、PL 、TPX、TPY、TPS铁心开气隙的目的:控制剩磁铁心需开气隙的电流互感器:5PR、10PR、TPY执行标准:国标:GB 1208-2006 电流互感器GB 16847-1997 保护用电流互感器暂态特性技术要求国际标准:IEC 60044-1、IEC 60044-6其它国家标准:IEEE/C57.13、CAN3-C13、AS 60044.1、BS等600/1A的CT二次匝数为600÷1=6003.套管型电流互感器的基本参数及基本常识3.1 额定电流比:例1:300-400-600/5A,即表示此互感器有三个变比,其额定一次电流分别为300、400及600A,额定二次电流为5A,二次匝数应分别为60、80及120匝。
S1-S2:300/5、60匝S1-S3:400/5、80匝S1-S4:600/5、120匝例2:600/5MR、C800 (美国标准IEEE Std C57.13-1993)MR:多变比C类互感器:相当于10P20800:二次端电压(V)C800:相当于10P20、200V A出线标记――X2-X3 50/5 10匝X1-X2 100/5 20匝X1-X3 150/5 30匝X4-X5 200/5 40匝X3-X4 250/5 50匝X2-X4 300/5 60匝X1-X4 400/5 80匝X3-X5 450/5 90匝X2-X5 500/5 100匝X1-X5 600/5 120匝20匝10匝50匝40匝X1X2X3X4X53.2 准确级要求3.2.1保护级互感器:3.2.1.1标准准确限值系数ALF:5、10、15、20、30、40等。
电流互感器并联变比和串联变比1. 电流互感器的基础知识电流互感器(CT),听起来有点高深,对吧?实际上,它在电力系统中扮演着非常重要的角色。
简单来说,电流互感器就像是电力系统中的一个小助手,负责测量大电流并将其转化为更容易处理的小电流。
说白了,就是把“巨无霸”变成“小可爱”,方便我们进行监控和保护。
那电流互感器的变比,哎呀,这就像是一个魔法公式,能够帮我们准确测量电流,避免大电流直接冲击到测量仪器上。
接下来,我们就来探讨一下电流互感器在并联和串联的情况下,它们的变比究竟有什么不同吧!1.1 电流互感器并联变比当我们把电流互感器并联起来时,变比的计算就像是调配鸡尾酒,不能乱来。
并联变比,简单来说,就是电流互感器在并联状态下,它们的变比是如何影响整体电流的。
这时候,我们需要把每个互感器的变比视为一个“成分”,然后计算它们的总效果。
比如,如果你有两个互感器,一个变比是100:1,另一个是200:1,那么它们并联的总变比就不是简单的平均数哦。
这就像是调酒师调配鸡尾酒时,每种酒的比例都会影响到最后的口感,我们要做的是找到最合适的比例,让整体电流的测量准确无误。
并联的好处是可以分担电流负担,像一支足球队,大家分工合作,整体效率更高。
1.2 电流互感器串联变比再说说电流互感器串联的情况,这就有点像把两根电缆连起来传电流。
串联变比的计算其实也没那么复杂,只不过需要注意的是,当电流互感器串联时,它们的变比会相乘。
举个例子,如果一个互感器的变比是50:1,另一个是20:1,串联后,整体变比就是50×20:1,这样就能把电流的测量范围扩大,适应更大的电流。
如果说并联是团队合作,串联就像是给自己加倍努力,结果就会是原来的变比乘以倍数。
这种方式可以让我们应对更大的电流,但要确保所有的互感器都能安全承受,别让它们“炸了锅”。
2. 实际应用中的变比选择选择并联还是串联的变比,其实就像是选鞋子一样,不同的场合需要不同的“鞋子”。
电流互感器漏抗,励磁电流,感应电动势计算摘要:1.电流互感器的基本原理2.漏抗的概念和影响3.励磁电流的计算方法4.感应电动势的计算方法5.提高电流互感器性能的措施正文:电流互感器是电力系统中常用的一种传感器,主要用于将高电流转换为低电流,以便于测量、保护和控制。
在电流互感器的设计和应用中,漏抗、励磁电流和感应电动势是三个关键参数。
一、电流互感器的基本原理电流互感器的工作原理基于电磁感应定律。
当一次侧通过电流时,会在铁芯中产生磁场。
磁场的变化进而在二次侧产生感应电动势,从而得到二次侧的电流。
二、漏抗的概念和影响漏抗是指电流互感器在工作过程中,由于磁路不完美,导致磁场部分泄漏到铁芯外部而产生的阻抗。
漏抗的存在会降低电流互感器的精度,并可能导致二次侧电压过高,影响设备和人员的安全。
三、励磁电流的计算方法励磁电流是指电流互感器在工作过程中,用于产生磁场的电流。
励磁电流的大小与电流互感器的额定电流、变比和漏抗有关。
励磁电流的计算公式为:Ie = I1 * (1 - k) / (1 + k)其中,I1为一次侧电流,k为电流互感器的变比,Ie为励磁电流。
四、感应电动势的计算方法感应电动势是指电流互感器二次侧由于磁场变化而产生的电动势。
感应电动势的大小与一次侧电流、电流互感器的变比和漏抗有关。
感应电动势的计算公式为:E = I1 * k * ΔI其中,E为感应电动势,I1为一次侧电流,k为电流互感器的变比,ΔI为一次侧电流的变化。
五、提高电流互感器性能的措施1.优化磁路设计,降低漏抗。
2.选用高品质的铁芯材料,提高磁导率。
3.增加绝缘强度,防止二次侧短路。
4.合理选择变比,降低励磁电流。
通过了解电流互感器的基本原理、漏抗的影响以及励磁电流和感应电动势的计算方法,我们可以更好地设计和应用电流互感器,提高电力系统的安全性和稳定性。
电流互感器知识整理电流互感器知识简介为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的高电压和大电流按比例变换成低电压和小电流,供给测量仪表和保护装置使用.执行这些变换任务的设备,最常见的就是我们通常所说的互感器.进行电压转换的是电压互感器(voltagetransformer),而进行电流转换的互感器为电流互感器(currenttransformer),简称为CT.本文将讨论电流互感器的相关基本知识.1.电流互感器的基本原理1.1电流互感器的基本等值电路如图1所示.图1电流互感器基本等值电路图中,Es—二次感应电势,Us—二次负荷电压,Ip—一次电流,Ip/Kn—二次全电流,Is—二次电流, Ie—励磁电流,N1—一次绕组匝数,N2—二次绕组匝数,Kn—匝数比,Kn=N2/N 1,Xct—二次绕组电抗(低漏磁互感器可忽略),Rct—二次绕组电阻,Zb—二次负荷阻抗(包括二次设备及连接导线),Ze—励磁阻抗.电流互感器的一次绕组和二次绕组绕在同一个磁路闭合的铁心上.如果一次绕组中有电流流过,将在二次绕组中感应出相应的电动势.在二次绕组为通路时,则在二次绕组中产生电流.此电流在铁心中产生的磁通趋于抵消一次绕组中电流产生的磁通.在理想条件下,电流互感器两侧的励磁安匝相等,二次电流与一次电流之比等于一次绕组与二次绕组匝数比。
即:IpN1=IsN2Is=Ip×N1/N2=Ip/Kn1.2.电流互感器极性标注电流互感器采用减极性标注的方法,即同时从一二次绕组的同极性段通入相同方向的电流时,它们在铁芯中产生的磁通方向相同。
当从一次绕组的极性端通入电流时,二次绕组中感应出的电流从极性端流出,以极性端为参考,一二次电流方向相反,因此称为减极性标准。
由于电流方向相反,且铁心中合成磁通为零。
因此得下式:N1Ip-N2Is=0(本来励磁安匝的和为零,但考虑到两个电流的流动方向相对于极性端不同,因此两者为减的关系)。
极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L2和K2分别为同极性端。
反之,就是加极性。
低压电流互感器实用技术问答1.电流互感器铭牌上额定电流比的含义是什么?答:额定电流比系指一次额定电流与二次额定电流之比。
通常用不约分的分数表示。
所谓额定电流就是在这个电流下互感器可以长期运行而不会同发热损坏。
2.何为电流互感器的准确等级?答:电流互感器变换电流存在着一定的误差,根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。
0.l级以上电流互感器主要用于试验,进行精密测量或者作为标准用来校验低等级的互感器,也可以与标准仪表配合用来校验仪表,常被称为标准电流互感器;0.2级和0.5级常川来连接电气计量仪表;3级及以下等级电流互感器主要连接某些继电保护装置和控制设备。
3.电流互感器的极性标志是怎样规定的?答:极性标志有加极性和减极性,常用的电流互感器一般都是减极性,即当使一次电流自L1端流向L2。
时,二次电流自K1端流出经外部回路到K2。
L1和K1,L 2和K2分别为同极性端。
4.电流互感器额定容量的含义是什么?答:电流互感器的额定容量就是额定二次电流I2e 通过额定负载Z2e时所消耗的视在功率,即S2e=。
一般I2e =5A,因此S2e=25Z2e。
在电流互感器的使用中,二次连接及仪表电流线圈的总阻抗不超过铭牌上规定的额定容量(伏安数或欧姆数)时,才能保证它的准确性。
5.什么是电流互感器误差?答:由于电流互感器铁芯的结构以及材料性能等原因的影响,电流互感器存在着激磁电流Í,使其产生误差。
从电流互感器一次电流Í1和折算后的二次电流Í2’的向量图来看(如图 2所示),折算后的二次电流旋转180˚后一Í2’,与一次电流Í1相比较,不但大小不等而且两者相位不重合,即存在着两种误差,称为比差(比值误差)和角差(相角误差)。
1 互感器定义1.1互感器互感器是一种特殊的变压器,用于给测量仪器、仪表、继电器和其它类似电器提供信息的变压器。
根据提供的信息不同,主要分为电流互感器和电压互感器。
1.2 电流互感器(Current Transformer简称CT)电流互感器是一种在短路状态下运行的变压器,用于给测量仪器、仪表、继电器和其它类似电器提供电流信息,在正常使用条件下其二次电流与一次电流成正比,相位差在联结方法正确时接近于零。
电流互感器接在线路上,主要用来改变线路的电流,所以电流互感器在一些地方也叫变流器。
国标代号为GB 1208-1997 eqv IEC 185:1987。
新的国际标准为IEC 60044-1:20001.3 电压互感器(voltage transformer简称PT)电压互感器是一种在空载状态下运行的变压器,用于给测量仪器、仪表、继电器和其它类似电器提供电压信息的变压器,在正常使用条件下其二次电压与一次电压成正比,而其相位差在联结方法正确时接近于零。
国标代号为GB 1207-1997 eqv IEC 186:1987。
新的国际标准为IEC 60044-2:20002 电流互感器构成eqv IEC 186:1987电流互感器由闭合铁心以及绕在该铁心上的一次线圈、二次线圈和一些安装部件组成,一、二次线圈之间,线圈与铁心之间均有绝缘隔离。
3 电流互感器工作原理电流互感器的一次绕组串联在电力线路中,线路电流就是互感器的一次电流I1,二次绕组外部接有负荷,形闭合回路。
当电流I1 流过互感器的一次绕组时,建立一次磁动势,I1与一次绕组匝数N1的乘积就是一次磁动势,也称一次安匝。
一次磁动势分为两部分,其中一小部分用来励磁,使铁心中产生磁通;另外一大部分用来平衡二次磁动势。
二次磁动势也称二次安匝,是二次电流I2与二次绕组匝数N2的乘积。
用于励磁的叫做励磁磁动势也叫励磁安匝,是励磁电流I0与一次绕组匝数N1的乘积。
用于平衡二次磁动势的这一部分一次磁动势,其大小与二次磁动势相等,但方向相反。
电流互感器的基本知识之前讲到电压互感器,那这次讲它的孪生兄弟------电流互感器。
毋庸置疑,它们的原理是相同的。
我们知道电压互感器的作用是把大电压变成小电压,而电流互感器也一样,它是把大电流变成小电流,这样在测量时就可以降低成本,采用对应二次侧量程的电流表即可,而不用直接采用大量程电流表。
1.不同点①他们主要不同点就在于匝数比不同。
根据电磁感应原理,绕组的电压比等于匝数比,电流比则是与匝数比相反。
由此我们就可以得出,电流互感器的一次侧线圈匝数是很少的。
②电压互感器直接接于一次侧导体上,而电流互感器则是通过线圈感应间接测量,起到电气隔离作用。
2.主要技术参数如图1。
图1①Primary,即一次侧额定电流,如图为一次额定电流为800A。
②Secondary,即二次侧额定电流,如图为5A。
从上面这里,我们就可以看出该电流互感为变比为800/5,即160倍。
③额定容量,如图为10VA。
(几乎所有设备所标的额定容量都是视在功率。
)④Conductor Through,一次侧的匝数,该互感器为海润#8箱变低压馈线用,采用的是穿心式,如图一次侧为1匝。
⑤Class,精确度,无论电压互感器还是电流互感器,都有精确度,这个精确度也直接影响电表负荷的计算。
该值越低,代表其误差越小,精确度越高。
⑥频率,50HZ/60HZ代表该互感器可在50HZ和60HZ的频率下正常工作。
⑦660V即额定电压,长期能承受的最大电压。
有时候在电流互感器上缠绕几圈,是为了提高一次电流比,比如,电流互感器同一根线穿一次后的电流比是100∶5。
那么穿两次后的电流比是50∶5.那么穿三次后的电流比是33∶5。
那么穿四次后的电流比是25∶5。
以此类推...这种方法一般在二次接线柜经常出现。
3.电流互感器的接线如图2,电流互感器的接线较简单,一次电缆从电流互感器的P1侧进,P2侧穿出,二次侧电流从S1流出,且二次侧必须接地这种为常见的减极性互感器。