SnO2电催化电极的制备及性能研究.
- 格式:doc
- 大小:129.50 KB
- 文档页数:3
热分解法制备锡锑电极及其性能的研究周涛;姚颖悟;王枫【摘要】SnO2-Sb2 O5 electrode was prepared on Ti substrate by pyrolysis. Effects of coating solution concentration , ratio of tin and antimony, temperature and sintering time on the electrode properties were investigated. Morphology and structure of the electrode were characterized by optical microscope and XRD, the electrocatalytic performances were studied by electrolytic degradation of methyl orange. Results showed that when the rrnratio of tin and antimony was 9:1,temp erature was 550 ℃. and sintering time was 60 min. , the prepared electrode possessed uniform and compact surface, showed stable cell voltage when used for electrolysis of methyl orange, and exhibited good electro-catalytic effect.%在钛基体上采用热分解法制备锡锑氧化物电极,考察了涂液浓度、锡锑比、烧结温度及烧结时间等对电极性能的影响,分别利用金相显微镜和X-射线粉末衍射仪对电极涂层的形貌和结构进行了表征,并通过电解甲基橙溶液考察了锡锑氧化物电极的性能.结果表明,当n(锡)∶n(锑)为9∶1,烧结θ为550℃,t为60 min时制得的电极表面颗粒均匀致密,用其电解甲基橙溶液时槽电压稳定,电催化效果良好.【期刊名称】《电镀与精饰》【年(卷),期】2013(035)001【总页数】3页(P31-33)【关键词】锡锑电极;电催化性能;制备【作者】周涛;姚颖悟;王枫【作者单位】河北工业大学化工学院电化学表面技术研究室,天津300130;河北工业大学化工学院电化学表面技术研究室,天津300130;河北工业大学化工学院电化学表面技术研究室,天津300130【正文语种】中文【中图分类】TQ153.13引言近年来,随着工业的发展,有机废水对环境的污染日益严重,各种处理有机废水的方法也相继应运而生,其中电化学降解法最受关注,而制备电极的不同方法则成为目前电化学方法研究的主要内容。
二氧化锡膜气敏传感器核心研究深入探讨摘要:在论述二氧化锡气敏机理的基础上,介绍了通过掺杂金属、金属离子、金属氧化物等方法制备二氧化锡膜气敏传感器的研究成果以及二氧化锡传感器阵列电鼻子的研究现状,并对其发展趋势进行了展望。
一、引言随着纳米技术的发展,与该项技术相结合的气敏传感器的研究已经成为热门课题。
这类传感器以其较好的灵敏度和选择性、良好的响应和恢复时间以及较长的使用寿命,而被广泛应用于各种有毒有害气体、可燃气体、工业废气、环境污染气体的检测。
1931年,研究人员发现金属氧化物 Cu2O的电导率随H2O蒸汽的吸附而改变,从此拉开了材料气敏特性研究的序幕,并将这种特性与传感器技术相结合而制成气敏传感器。
气敏传感器的敏感材料主要是导电聚合物、金属氧化物和复合氧化物。
导电聚合物包括聚吡咯、聚噻吩、聚吲哚、聚呋喃等;金属氧化物则包括SnO2、ZnO、WO3、Fe2O3、 TiO2、CeO2、Nb2O5、Al2O3、In2O3、LnMO3(Ln=La、Gd ,M=Cr、Mn、Fe、Co)等,其中又以SnO2、 ZnO、Fe2O3 三大体系为主;复合氧化物主要为MxSnO3(M=Cr、Mn、Fe、Co)。
目前普遍采用的方法是以二氧化锡(SnO2)为基材,通过掺杂等方法制备出气敏传感器,用以检测某种气体的成分和浓度。
二、二氧化锡气敏机理的理论模型SnO2 属于N型半导体,含有氧空位或锡间隙离子,气敏效应明显。
关于其气敏机理的理论模型有多种[1],一般认为其气敏机理是表面吸附控制型机制[2],即在洁净的空气(氧化性气氛)中加热到一定的温度时对氧进行表面吸附,在材料的晶界处形成势垒,该势垒能束缚电子在电场作用下的漂移运动,使之不易穿过势垒,从而引起材料电导降低;而在还原性被测气氛中吸附被测气体并与吸附氧交换位置或发生反应,使晶界处的吸附氧脱附,致使表面势垒降低,从而引起材料电导的增加,通过材料电导的变化来检测气体。
Ti/RuO2-IrO2-SnO2-Sb2O5阳极的制备与应用研究的开题报告一、选题背景与意义随着工业化进程的加快,环境问题已成为重大社会问题。
其中,水污染的治理尤为关键,而水污染治理的核心技术之一便是电化学水处理技术。
电化学水处理技术利用电异质反应对水中有害物质进行氧化还原反应,从而达到去污净水的效果。
而阳极作为电化学反应中重要的电极材料,其性能对电化学水处理技术的效果起着至关重要的作用。
Ti/RuO2-IrO2-SnO2-Sb2O5阳极因其具有优良的耐腐蚀性、稳定性以及良好的电催化性能等优点,近年来广泛应用于电化学水处理、废水处理以及海水淡化等领域。
因此,针对该阳极的制备与应用进行深入研究,对于推动电化学水处理技术的发展具有重要意义。
二、研究目的本研究旨在通过对Ti/RuO2-IrO2-SnO2-Sb2O5阳极的制备方法以及性能分析,研究其在电化学水处理、废水处理和海水淡化等领域的应用效果。
具体研究内容如下:1.优化Ti/RuO2-IrO2-SnO2-Sb2O5阳极的制备方法,探究其制备条件对其电催化性能的影响。
2.探究Ti/RuO2-IrO2-SnO2-Sb2O5阳极在电化学水处理、废水处理和海水淡化等领域的应用效果。
3.分析Ti/RuO2-IrO2-SnO2-Sb2O5阳极的电催化反应机理,为进一步改善其性能提供理论基础。
三、研究方法1.制备Ti/RuO2-IrO2-SnO2-Sb2O5阳极:采用化学共沉淀法和溶胶-凝胶法分别制备Ti/RuO2-IrO2-SnO2-Sb2O5阳极。
2.分析Ti/RuO2-IrO2-SnO2-Sb2O5阳极的电化学性能:通过循环伏安法、交流阻抗法等技术分析Ti/RuO2-IrO2-SnO2-Sb2O5阳极的电催化性能。
3.探究Ti/RuO2-IrO2-SnO2-Sb2O5阳极在电化学水处理、废水处理和海水淡化等领域的应用效果:采用Ti/RuO2-IrO2-SnO2-Sb2O5阳极进行电化学水处理、废水处理和海水淡化等实验,考察其应用效果。
材料研究与应用 2024,18(2):207‐214Materials Research and ApplicationEmail :clyjyyy@http ://mra.ijournals.cn Nb 掺杂改性LiNiO 2正极材料的制备及电化学性能研究孟祥聪,刘丽英*(广东工业大学材料与能源学院,广东 广州 510006)摘要: 高镍层状氧化物LiNiO 2具有高理论比容量和相对低廉价格,被认为是下一代锂离子动力电池的正极材料之一。
当LiNiO 2正极材料应用于锂离子电池时,其循环稳定性无法满足要求,需经改性后才能得以应用。
采用固相法合成了Nb 掺杂的层状LiNi 1−x Nb x O 2(x =0.005、0.01、0.015)正极材料,利用X 射线衍射、扫描电子显微镜和X 射线能谱等测试手段,分析了Nb 掺杂量(摩尔百分比)对其晶体结构、微观形貌及元素分布的影响,并通过恒电流间歇滴定和交流阻抗测试研究了其电化学性能。
结果表明,随着Nb 元素掺杂量的提高,LiNi 1−x Nb x O 2材料的晶格晶面间距逐渐扩大,一次颗粒尺寸逐渐减小。
在LiNiO 2材料中引入Nb 5+离子,提高了LiNi 1−x Nb x O 2材料的锂离子扩散系数,并通过稳定晶体结构,抑制了Nb 掺杂材料在充放电过程中的相变,有利于其电化学性能的提升。
当Nb 掺杂量为1%时,LiNi 1−x Nb x O 2材料表现出较好的倍率性能,在10 C 大电流密度下的放电比容量高达134.1 mAh∙g −1;随着Nb 掺杂量的增加,LiNi 1−x Nb x O 2材料循环稳定性同步提升,当Nb 掺杂量为1.5%时,LiNi 1−x Nb x O 2材料经150次循环后的容量保持率为73.3%,远高于未掺杂LiNiO 2样品的36.2%。
表明,Nb 掺杂可改善LiNiO 2正极材料的晶体结构和电化学性能,为其在下一代锂离子动力电池的应用提供了理论依据。
SnO2基气敏传感器的制备与研究一、本文概述本文旨在探讨SnO2基气敏传感器的制备及其性能研究。
SnO2,作为一种重要的n型半导体金属氧化物,因其出色的气敏性能、稳定的化学性质以及相对较低的成本,被广泛应用于气体检测领域。
本文首先将对SnO2基气敏传感器的基本原理进行简要介绍,包括其气敏机理、传感性能的主要影响因素等。
接下来,文章将详细介绍SnO2基气敏传感器的制备方法,包括溶胶-凝胶法、化学气相沉积法、物理气相沉积法等多种常见技术。
通过对制备工艺的深入研究和探讨,本文旨在寻找最佳的制备方案,以优化传感器的性能。
本文还将对SnO2基气敏传感器的性能进行系统的研究。
通过对传感器在不同气体环境下的响应特性、选择性、稳定性、灵敏度等关键性能指标的测试和分析,本文旨在揭示SnO2基气敏传感器的性能特点及其潜在的应用价值。
本文将对SnO2基气敏传感器的研究现状和发展趋势进行展望,以期为相关领域的研究人员提供有益的参考和启示。
通过本文的研究,我们期望能够为SnO2基气敏传感器的进一步优化和应用提供理论和实践支持。
二、SnO2基气敏传感器的基本原理SnO2基气敏传感器是一种利用SnO2材料的特殊电学性质来检测特定气体的装置。
其基本原理主要基于SnO2材料的半导体特性以及气体分子与材料表面之间的相互作用。
SnO2是一种宽带隙的n型半导体,其导电性主要来源于材料中的氧空位和自由电子。
当SnO2基气敏传感器暴露于空气中时,氧气分子会吸附在材料表面并从导带中捕获电子,形成氧负离子(如O2-、O-、O2-等),导致材料表面形成电子耗尽层,电阻增大。
当传感器暴露在待测气体中时,气体分子会与SnO2表面发生反应,这些反应可能包括气体的吸附、解离、电子交换等过程。
这些过程会改变材料表面的电子状态,从而影响电子耗尽层的厚度和电阻值。
例如,对于还原性气体(如HCO等),它们会与吸附的氧负离子发生反应,释放电子回到SnO2的导带中,导致电阻减小。
二硫化锡基复合材料的制备及其锂离子电池和光催化性能研究二硫化锡基复合材料的制备及其锂离子电池和光催化性能研究引言锂离子电池作为一种可充电电池,在移动电子设备、电动车辆等领域具有广泛的应用。
然而,传统的锂离子电池在容量、循环寿命和安全性方面仍然存在一些不足。
因此,研究新型的锂离子电池材料具有重要意义。
与此同时,光催化技术作为一种能够将太阳能或光能转化为化学能的方法,也越来越受到关注。
因此,开发具有优异锂离子电池和光催化性能的功能材料具有重要的应用前景。
二硫化锡是一种重要的锂离子电池材料,具有较高的比容量和循环性能。
然而,单一相的二硫化锡在长时间循环过程中会发生体积变化导致结构破坏,从而限制了其应用。
因此,制备二硫化锡基复合材料成为提高锂离子电池性能的有效途径。
其中,基于碳材料包覆的二硫化锡复合材料以其优异的电化学性能备受关注。
一、二硫化锡基复合材料的制备方法1. 水热法:将适量的硫和亚硒酸盐加入到硫酸溶液中,与锡盐一起反应得到二硫化锡纳米片。
通过调整反应条件,可以控制纳米片的形貌和尺寸。
2. 水热复性法:将适量的硫和亚硒酸盐、锡盐和碳源一起反应,经过水热处理后形成锡和碳复合材料。
然后,通过硫化处理得到二硫化锡基复合材料。
3. 气相沉积法:通过化学气相沉积方法,在基板上生长锡纳米颗粒,然后通过硫化处理得到二硫化锡基复合材料。
二、二硫化锡基复合材料在锂离子电池中的应用1. 二硫化锡作为负极材料:在锂离子电池中,二硫化锡可以作为负极材料,具有较高的比容量和循环寿命。
然而,由于体积变化引起的结构破坏,导致二硫化锡循环稳定性不佳。
通过将二硫化锡和碳材料复合,可以在减小体积变化的同时提高电化学性能。
2. 二硫化锡作为正极材料:近年来,研究人员发现二硫化锡可以作为锂离子电池的正极材料。
与传统的钠离子和锂硫电池相比,二硫化锡正极材料具有更高的比能量和较长的循环寿命。
3. 二硫化锡基复合材料在锂离子电池中的应用:通过将二硫化锡和其他功能材料进行复合,可以进一步改善锂离子电池的性能。
水解法制取SnO2的反应方程式一、概述1. SnO2的用途和重要性2. 水解法制取SnO2的原理及方法二、水解法制取SnO2的步骤1. 原料准备2. 反应过程3. 产物分离和纯化三、水解法制取SnO2的反应方程式1. 反应物和产物2. 反应方程式的展开和分析四、水解法制取SnO2的优缺点1. 优点2. 缺点五、结论概述1. SnO2的用途和重要性二氧化锡(SnO2)是一种重要的无机化合物,具有广泛的应用价值。
它常用作催化剂、涂层材料、光学薄膜、太阳能电池等领域。
由于其优异的电子传输性能和光学特性,SnO2在纳米材料领域也备受关注。
2. 水解法制取SnO2的原理及方法水解法是制备金属氧化物的常用方法之一。
通过将金属离子与水反应生成金属氧化物,再经过适当的分离和纯化步骤得到所需产物。
水解法制备SnO2的方法较为简单,且适用于规模化生产。
水解法制取SnO2的步骤1. 原料准备制备SnO2的水解方法需要准备合适的原料。
通常采用的是氧化锡或氢氧化锡等化合物作为反应的起始物质。
反应还需要足量的水作为反应介质。
2. 反应过程在适宜的温度和压力条件下,将氧化锡或氢氧化锡与水进行反应。
该反应通常需要一定的时间,以完成金属离子水解生成金属氧化物的过程。
3. 产物分离和纯化完成反应后,得到的混合溶液中含有SnO2和其他杂质。
此时需要通过沉淀、过滤、干燥等步骤将SnO2分离出来,并进行进一步的纯化处理,以得到高质量的SnO2产物。
水解法制取SnO2的反应方程式1. 反应物和产物反应物:氧化锡(SnO2)、水(H2O)产物:氢氧化锡(Sn(OH)4)、氧气(O2)2. 反应方程式的展开和分析反应的化学方程式如下所示:SnO2 + 2H2O → Sn(OH)4 + O2从反应方程式中可以看出,氧化锡在水的作用下发生水解反应,生成氢氧化锡和氧气。
整个水解过程伴随着气体的释放,是一个放热反应。
水解法制取SnO2的优缺点1. 优点(1)操作简便:水解法制备SnO2的操作步骤相对简单,不需要使用复杂昂贵的设备和条件。
第1章MoS2材料的制备及催化性能研究3.1 引言本章主要从理论和实验两个方面对MoS2电催化剂进行研究,具体研究内容如下:(1)通过基于密度泛函理论的第一性原理对MoS2模型进行计算,探究MoS2的不同位置对氢原子的结合能力。
(2)通过液相剥离法制备了尺寸不同的MoS2纳米片,详细介绍了其制备工艺,并对其形貌表征及电化学性能进行分析。
(3)通过水热法制备了花状MoS2纳米材料,介绍了这种材料的制备方法,利用TEM、XPS等手段对其结构、成分进行分析。
利用LSV和CV法对其电化学性能进行分析。
3.2 理论模型及计算方法MoS2具有类石墨烯的二维结构,其基本结构层为Mo-S-Mo,层内原子以共价键相互作用,层之间以较弱的范德华力相互作用。
这种特殊结构使MoS2较容易被剥离,形成少层甚至单层的MoS2纳米材料。
这种材料在电化学析氢反应中表现出较好的催化活性,为了研究MoS2催化析氢反应的活性位点。
从而制备具有良好催化性能的催化剂,本课题首先应用了基于密度泛函理论的计算方法,在Material Studio软件中建立单层MoS2结构模型。
3.2.1 Materials Studio仿真软件介绍Materials Studio为美国Accelrys公司开发的一款软件,在该软件中可以搭建分子、晶体及高分子材料结构模型,并对这些材料进行相关性质的计算与预测。
被广泛应用于催化剂、化学反应、固体物理等材料领域。
Materials Studio软件包含多种算法模块,其中Visualizer为建模模块的核心,包含如Castep、DMol3、Discover、Amporphous、COMPASS等多个计算和分析模块。
本文主要利用CASTEP模块来完成计算和分析。
Castep模块中包含LDA 及GGA两种交换关联函数近似方法,在该模块下通过建立单层MoS2分子模型计算其对氢原子的吸附能力,从而确定MoS2的电催化析氢反应活性位点。