腐蚀电化学研究方法常用技术讲义
- 格式:ppt
- 大小:386.50 KB
- 文档页数:27
金属土壤腐蚀电化学研究方法概述赵 平 银耀德 (沈阳工业学院专科学校化工系) (中国科学院金属腐蚀与防护研究所)1 引 言土壤腐蚀研究是一项十分困难的工作,虽然早在本世纪初发达国家就已开始,然而时至今日,仍不能形成一个比较完整的理论。
其主要原因是因为作为腐蚀介质的土壤与一般腐蚀介质相比,具有多相性[1]、不流动性[1]、不均匀性[1,2]、时间季节性或地域性[3]等等诸多特点,并且由于土壤中微生物和有机质等的存在并参与反应,就更加剧了土壤腐蚀研究的复杂性[4]。
但总的说来,绝大多数土壤腐蚀都属于电化学腐蚀的范畴[1,2],即使是由于细菌等微生物引起的腐蚀,它们也是通过改变土壤/金属界面间的电化学过程而起作用的。
因而,传统的埋样失重法,虽然能在一定时期得到一定区域内土壤腐蚀性较客观真实的数据,但由于其试验周期长,不能反映土壤腐蚀过程的细节,不能得到土壤腐蚀动力学方面的信息,因而无法适应对土壤腐蚀深入研究的需要。
而由于土壤腐蚀的电化学性,这就使得一些经典的电化学测试方法在其研究中得到了较多的应用。
2 土壤腐蚀电化学研究方法在土壤腐蚀研究中,用得较活跃的电化学方法不外乎有以下几种:①极化电阻(Rp)测量法,②极化曲线法,③电化学交流阻抗法(EIS)。
下面就其优缺点分别加以论述:(1)Rp法土壤腐蚀研究中常采用极化电阻技术[5],其测量的理论依据为Stern-G eary 公式[6]:Rp=βaβc213(βa+βc)I corr=△E△I=BI corr(1—1)式中:βaβc分别为腐蚀电极的阳极和阴极塔菲尔斜率;I corr为腐蚀电流密度;△E:外加极化电位;△I:极化电位下的电流密度;式(1—1)是在极化曲线自腐蚀电位(Ecorr)附近作线性近似而得来的,而线性近似常会带入一定的理论误差,加之(1—1)式中的βc只能指某一阴极过程的Tafel 常数,而土壤腐蚀体系中,阴极过程可能不只一个,有时还受到活化———浓差的混合控制,因此限制了式(1—1)在土壤腐蚀研究中的运用。
高考化学—-电化学腐蚀—-讲义(1)对同一电解质溶液来说,腐蚀速率的快慢:电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀。
(2)对同一金属来说,在不同溶液中腐蚀速率的快慢:强电解质溶液中>弱电解质溶液中>非电解质溶液中。
(3)活动性不同的两种金属,活动性差别越大,腐蚀速率越快。
(4)对同一种电解质溶液来说,电解质浓度越大,金属腐蚀越快。
两种保护方法的比较外加电流的阴极保护法保护效果大于牺牲阳极的阴极保护法。
例题解析1、如图所示,各烧杯中盛有海水,铁在其中被腐蚀的速度由快到慢的顺序为A。
②①③④⑤⑥B。
⑤④③①②⑥C、⑤④②①③⑥D。
⑤③②④①⑥2、利用如图装置探究铁在海水中的电化学防护,下列说法不正确的是A、若X为锌棒,开关K置于M处,可减缓铁的腐蚀B、若X为锌棒,开关K置于M处,铁电极的反应:Fe−2e−Fe2+C、若X为碳棒,开关K置于N处,可减缓铁的腐蚀D。
若X为碳棒,开关K置于N处,铁电极的反应:2H++2e−H2↑3、利用如图装置进行实验,开始时,左右两管液面相平,密封好,放置一段时间、下列说法正确的是A、左管中O2得到电子,右管中H+得到电子B。
一段时间后,左管液面低于右管液面C、a、b两处具有相同的电极反应式:Fe−3e−Fe3+D、a处溶液的pH增大,b处溶液的pH减小4、铜板上铁铆钉长期暴露在潮湿的空气中,形成一层酸性水膜后铁铆钉会被腐蚀,示意图如图所示。
下列说法不正确的是A、因铁的金属性比铜强,因此铁铆钉被氧化而腐蚀B、若水膜中溶解了SO2,则铁铆钉腐蚀的速率变小C、铜极上的反应是2H++2e−H2↑、O2+4e−+4H+2H2OD、在金属表面涂一层油脂,能防止铁铆钉被腐蚀巩固练习1、[2019江苏][双选]下列说法正确的是A、反应N2(g)+3H2(g)2NH3(g)的ΔH< 0,ΔS >0B、地下钢铁管道用导线连接锌块能够减缓管道的腐蚀C。
§ 2-5 极化与去极化以上几节我们讲述的是有关金属发生电化学腐蚀的倾向问题,并没有涉及到腐蚀速度和影响腐蚀速度的因素等一些实际中人们普遍关注的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要的因素,认清极化和去极化规律对研究金属的电化学腐蚀与防护有着重要的现实意义。
一、 极化现象电化学腐蚀通常是按腐蚀原电池的历程进行的,腐蚀着的金属作为腐蚀电池的阳极发生氧化(溶解)反应,因此电化学腐蚀速度可用阳极电流密度表示。
下面我们来考察铜-铁浸入电解质溶液中构成的组成的宏观腐蚀电池(图2-16),当电池回路未接通时,阳极(铁)的开路电极电位为0A V ,阴极(铜)的开路电极电位为0k V ,腐蚀体系的电阻为R (包括外线路电阻及溶液的内阻)。
电池的回路接通以后,根据欧姆定律,这时腐蚀体系的电流应为:R V V I A K 000-=图2-16 极化现象观测图图2-17 极化引起的电流变化《化工机械材料腐蚀与防护》P15 图1-7、8 实验发现,仅仅在电池回路刚接通的瞬间,电流表上指示出相当大的0I 值,之后的电流迅速下降,逐渐稳定到I 值,I <<I 0,如图2-17所示。
腐蚀电池工作后,电路中的欧姆电阻在短时间内不会发生变化,电流的减小只能是电池的电动势降低所致。
这可能是阴极的电极电位降低了,也可能是阳极的电极电位升高了,或者是两者都发生了变化。
实验证明,在有电流流动时,0A V 和0k V 都改变了,如图2-18所示。
图2-18 腐蚀控制程度示意图 教材P33图2-10我们把腐蚀电池工作过程中由于电流流动而引起电极电位发生变化的现象称为极化现象,简称极化。
阳极通过电流以后电极电位向正的方向变化叫做阳极极化。
阴极通过电流以后电极电位向负的方向变化叫做阴极极化。
极化现象的存在将使腐蚀电池的工作强度大为降低,因此了解极化作用的原因及其影响因素有着重要的意义。
二、极化曲线表示极化电位与电流或极化电流密度之间关系的曲线,称为极化曲线。
第2讲金属的电化学腐蚀的基本知识电化学腐蚀—电化学腐蚀是指金属与电解质溶液(大多数为水溶液)发生电化学反应,反应过程中有电流产生。
必要条件:金属必须与导电介质(电解液)接触。
腐蚀环境:酸,碱,盐,海水,河水,雨水,潮湿空气。
2.1. 金属电化学腐蚀热力学2.1.1 电化学腐蚀现象及电池工作过程例1:锌板在KCl溶液中的腐蚀:Ⅰ区—阴极区:无腐蚀,富氧区。
阴极反应:O+H2O+2e=2OH-。
阴极反应产物:KOH。
Ⅱ区—是Ⅰ区和Ⅲ区的交界处,即在阳极过程产物Zn2+和阴极过程产物OH-在此处相遇,导致腐蚀次生过程的发生。
最终形成难溶的产物:Zn2+ + 2OH- → Zn(OH)2。
Ⅲ区—阳极区:贫氧区,锌被溶解。
阳极反应: Zn → Zn2+ + 2e阳极反应产物ZnCl2。
例2:析锌和锌合金在H2SO4溶液中。
氢总反应:Zn+H2SO4=ZnSO4+H2↑(析氢反应) 量阳极反应Zn = Zn2+ + 2e阴极反应2H+ + 2e = H2↑从上图动力学曲线表明:纯Zn腐蚀速度较恒定,但有杂质的Zn 腐蚀速度随时间↑而加速。
因为随着腐蚀进行,杂质逐渐积累,杂质会成为阴极。
在这里,由于杂质会积累,也就是阴极面积越来越大,促进阳极溶解加速。
电荷迁移量也增加,所以腐蚀速度是上升的。
在这个过程中,显然发生电荷迁移,这应是一个电化学腐蚀过程。
腐蚀的阴、阳极在不同的地方。
同时腐蚀速度还与阴、阳极面积有关。
电化学腐蚀的代表—水溶液腐蚀。
2.1.2 腐蚀原电池通过以上我们介绍的腐蚀现象,可把电化学腐蚀反应归纳成以下四个特点:1. 被腐蚀的金属必须与导电介质接触,并且表面被充电。
2. 在介质的作用下,金属成为阳极被氧化成离子状态进入溶液。
3. 介质中某种成分作为去极化剂,这种去极化剂会发生阴极还原反应而吸收多余的电子。
阴极去极化剂主要作用是吸收电子。
在酸性溶液中最常见2H+ + 2e →H2(1) 金属必须与导电介质接触。