比率制动变压器差动保护整定分析
- 格式:pdf
- 大小:150.91 KB
- 文档页数:3
变压器差动保护比率制动测试方法以Yn ,Yn ,d11型自耦变为例,总结了几类变压器保护算法的特点,给出了相应的试验接线方法和一般性试验步骤。
1 几个基本概念1.1 比率制动系数采用比率差动能显著提高变压器保护的灵敏度,国产微机型变压器差动保护常采用具有两段折线形的动作特性曲线,如图1所示。
I opII resI res.min图1 比率制动特性曲线图比率制动曲线有两大决定因素,即动作电流和制动电流,按照预定的算法计算得到动作电流和制动电流,满足比率制动曲线即可动作。
1.2 变压器的Y ,d11接线组[1]变压器组常采用Y ,d11接线组。
需要指出的是,只要是Y ,d 型接线组,就有奇数次接线组别出现,按照我国电工技术规范,规定Y ,d11接线组为变压器标准接线组。
如果出现Y ,d11接线组,在进行差流运算时就必须进行相位校正,这在下文的算法分析中将做详细讨论。
1.3 TA 极性端按照惯例,保护TA 极性端位于母线侧。
对于变压器差动保护,只要确立变压器各侧母线位置,就不难确定各侧TA 的极性端。
而电工学上常采用减极性标注方法对TA 极性端进行标注,照此原则就能对流入保护装置电流的方向进行准确判断。
这一点对于确定进行比率差动试验时所加电流的相位很有帮助。
1.4 平衡系数对于正常运行变压器,不计励磁电流,各侧磁势平衡。
这一平衡关系反映到微机保护中,各侧的二次电流应在微机保护的算法体系下平衡。
将各侧不同的电流值折算成作用相同的电流,相当于将某一侧或两侧的电流乘以修正系数,该系数叫做平衡系数。
以Yn ,Yn ,d11型自耦变为例,差动保护TA 二次侧采用星形接线,各侧额定电压及TA 变比分别为h h m m l l U n U n U n 、、、、、,若以高压侧为基准,则各侧流入差动保护某相的电流分别为m l h I I I === (1)式中N S 为变压器额定容量。
设以高压侧电流为基准,将其他两侧的电流折算到高压侧的平衡系数分别为bm bl K K 和。
变压器差动保护的比率制动特性曲线及现场测试方法摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。
为此,介绍变压器差动保护的制动特性曲线及现场测试方法。
关键词:变压器;差动保护;制动特性;测试方法1前言变压器是现代电力系统中的主要电气设备之一。
由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。
变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。
同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。
2差动保护中引入比率制动特性曲线变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。
当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。
因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。
当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。
由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。
比率制动式差动保护变压器差动保护:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,11'流过变压器高压侧的一次电流;I ” :流过变压器低压侧的一次电流;12'流过变压器高压侧所装设电流互感器即CT1的二次电流;I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:动作电流lop 4dIopo下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;P:比率制动斜线上的任一点;e: p点的纵坐标;b: p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。
变压器故障分量比率制动式差动保护
变压器故障分量比率制动式差动保护是电力系统中常用的保护手段之一。
本文将针对该保护手段的原理、应用及维护进行详细介绍。
一、原理
变压器故障分量比率制动式差动保护的原理是根据差动电流反映出变压器绕组短路故障的情况。
如果两端绕组的电流相差较大,则判断为故障发生。
该保护的启动条件主要是满足两端绕组电流的不平衡性,即有一定的差动电流,从而实现对变压器的保护。
二、应用
变压器故障分量比率制动式差动保护主要适用于高压变压器和大型变电站中。
其主要优势是灵敏度高、可靠性好、操作简单等特点,使得它成为了电力系统中不可缺少的保护手段。
在实际应用中,该保护还有以下优势:
1、提高系统的可靠性和稳定性;
2、减少电压的不稳定性和电压剧烈跳动;
3、缩短了故障处理时间,降低了故障对电网的影响。
三、维护
变压器故障分量比率制动式差动保护在安装和使用过程中需要进
行一定的维护。
以下是保护维护的几点注意事项:
1、定期对保护器、终端设备和整个保护系统进行检查和维护;
2、必要时更换故障分量比率电流互感器、CT等零部件;
3、要确保差动电流的准确测量,保护器的精度要达到要求;
4、变压器故障分量比率制动式差动保护与其他保护和自动装置间
的配合一定要协调。
总之,变压器故障分量比率制动式差动保护是电力系统中不可缺
少的一种保护手段。
在实际应用中,需要注意差动电流的准确测量和
保护器的精度,确保保护系统正常运行,提高系统的可靠性和稳定性。
1 比率制动差动保护特性随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。
所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。
使制动电流在不平衡电流较大的外部故障时有制动作用。
而在内部故障时,制动作用最小。
图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。
根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的ibp最小。
曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流ibpma x来整定的。
曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。
曲线4为具有制动特性的差动继电器的差动保护特性。
在无制动时,曲线3与曲线2相交于b点,这时保护的不动作区为ob′,即保护区内短路时的短路电流必须大于ob′所代表的电流值时,保护才能动作。
在有制动时,曲线3与曲线4相交于a点,短路电流只要大于oa′所代表的电流值,保护即能动作。
oa′<OB′,这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。
在实际的变压器差动保护装置中,其比率制动特性如下图2所示:图2中平行于横坐标的ab段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。
我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。
即: izd=ie/nlh图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动izdo增大,当动作电流idzo大于启动电流时,制动电流和动作电流的交点d必落在制动区内。
当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。
变压器差动保护一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动);二:差动保护的定义由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA,I1’:流过变压器高压侧的一次电流;I”:流过变压器低压侧的一次电流;I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流;I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流;nh:高压侧电流互感器CT1变比;nl:低压侧电流互感器CT2变比;nB:变压器的变比;各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB2、区内:CT1到CT2的范围之内;3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)单相接地故障以及匝间、层间短路故障;四:差动的特性1、比率制动:如图二所示,为差动保护比率特性的曲线图:下面我们就以上图讲一下差动保护的比率特性:o:图二的坐标原点;f:差动保护的最小制动电流;d:差动保护的最小动作电流;p:比率制动斜线上的任一点;e:p点的纵坐标;b:p点的横坐标;动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时,由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影部分,即差动保护的动作区;制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。
T60变压器保护装置差动保护原理分析及整定田野(天津电力建设公司调试所,天津300000)摘要:叙述了T60变压器保护装置的差动保护动作原理,分析动作曲线,并对T60保护中的差动保护主要定值进行了整定。
关键词:变压器;差动保护;整定计算;比例差动T60变压器管理继电器是美国GE公司最新型的UR系列保护装置,用于大、中、小型两绕组和三绕组变压器的继电器保护装置。
作为主保护的比率差动和差动速段和一整到后备保护电流元件为变压器提供了可靠的保护功能。
1 变压器比率差动保护原理T60变压器管理继电器最基本的保护由谐波制动的双斜率三拐点比例差动保护和差动速断保护组成。
保护原理与国内主流差动保护装置除在特性曲线上存在差别外,还有一些自己的特点:根据各侧TA的容量裕度自动选择基本侧,差动电流取两侧电流的向量和,制动电流取两侧电流的最大值;还采用新的涌流的制动方法;为了防止过激磁时保护误动,设置了五次谐波制动。
1.1 比率差动保护的特性曲线。
最新电流,保护装置容易误动;同时流出电流对变压器小匝数匝间短路时的保护灵敏度也有影响。
采用比率制动的差动保护,既能在外部短路时有可靠的制动作用,又能在内部短路时有较高的灵敏度,但是它对内部短路时流出电流的适应能力较差,对励磁涌流和过激磁也需采取其他特殊措施。
T60保护装置中采用了双斜率三拐点比例差动元件保护,其动作曲线如图l 所示。
差动电流为两侧电流的向量和,制动电流取两侧电流的最大值。
在差动电流Id对制动电流Ires的坐标图上动作特性为曲线ABCDE。
采用这种曲线可以很好地防止外部故障时产生的不平衡电流引起的保护误动。
第l段AB与Ires轴平行,其纵坐标lop为保护的最小动作电流,表示无制动状态下的动作电流;第2段BC为斜线,其延长线经过坐标原点0,这样它的斜率就是制动系数,可以保证在区内故障时有较高的灵敏度;第3段DE为斜线,其延长线也经过坐标原点O,可以防止严重穿越性故障产生大差动电流使TA饱和时装置误动;在第2拐点和第3拐点之间的CD段为变换区域,是不定次方函数曲线,继电器自动计算,使曲线在两拐点之间平滑变换,使保护装置的动作特性更接近TA的饱和特性曲线。
比率制动式差动保护原理比率制动式差动保护是电力系统中常用的一种保护方式,其原理是根据电力系统中不同位置的电流差值来判断系统中是否存在故障。
本文将从差动保护的基本原理、比率制动式差动保护的工作原理、实际应用中的优点和缺点以及未来的发展方向等方面对比率制动式差动保护原理进行详细阐述。
一、差动保护的基本原理差动保护是一种根据系统不同位置的电流值之差来判断系统中是否存在故障的保护方式。
其基本原理是通过比较系统两个端点的电流值来判断系统中是否存在故障,当电流值之差超过一定的阈值时触发保护动作,以保护系统正常运行。
在电力系统中,通常使用差动保护来保护变压器、发电机和输电线路等重要设备。
差动保护的工作原理是通过测量不同位置的电流值,然后将这些电流值进行比较,当存在差值超出一定范围时,即判断系统中存在故障,并触发相应的保护动作,以确保系统的安全运行。
二、比率制动式差动保护的工作原理比率制动式差动保护是一种常用的差动保护方式,其工作原理是通过测量系统中不同位置的电流值,并根据设定的比率进行差值比较,当电流差值超出设定的范围时,触发保护动作。
比率制动式差动保护可以根据系统的特点和要求进行定制,以满足不同系统的保护需求。
比率制动式差动保护的工作原理主要包括以下几个方面:1.电流测量:比率制动式差动保护通过电流互感器或电流变压器等设备对系统中不同位置的电流进行测量,然后将这些电流值输入到保护装置中进行比较。
2.比率设定:根据系统的特点和要求,设定差动保护的比率范围,当系统中的电流差值超出这一范围时触发保护动作。
3.差动比较:比率制动式差动保护将系统中的电流值进行比较,当存在差值超出设定范围时,即判断系统中存在故障,触发保护动作。
4.动作信号输出:当差动保护判断系统中存在故障时,输出相应的动作信号,触发保护设备进行相应的动作,以保护系统正常运行。
通过以上几个方面的工作原理,比率制动式差动保护可以对系统中的故障进行及时有效的保护,确保电力系统的安全稳定运行。
1引言随着生产生活进一步发展,社会各界对电能需求量进一步增加,电力企业为满足当前用电需求,不断优化电网,各种各样高压输电线路、变压设备等逐渐投入到电网建设之中。
变压器属于电网重要仪器之一,保证变压器质量可以有效提升电网整体可靠性。
而研究变压器比率差动保护原理及校验,对于提升变压器自身可靠性有很大意义。
2变压器比率差动保护原理差动保护属于变压器保护形式的一种,是指比较变压器不同侧相位与电流不同,进而构成一种保护。
尽管变压器各侧电路互不相通,电流不等,但可以根据变压器短路(外部)时流出与流入变压器的功率与正常情况下变压器工作时流出与流入变压器的功率进行比对,利用各侧电流安匝之和近似为零等,进而建立相应的差动保护平衡方程[1]。
一旦变压器内部发生故障后,可以通过建立相应差动保护平衡方程对相应差动电流流过的差动回路进行控制,促使差动继电器发挥作用,进而对变压器进行保护。
2.1不平衡电流产生的原因一旦变压器外部电路出现短路等故障后,差流回路(差动保护)会产生较大非平衡电流。
一般导致不平衡电流出现的原因包括以下几个:各侧电流(变压器)的互感器变比和型号不一致;高低压侧(变压器)绕组接线的形式不相同;暂态非平衡电流产生原因与变压故障、空载电流有很大关系,变压器外部故障消除后,或者有空载电流进入电源后,电压恢复励磁涌流导致暂态非平衡电流出现;变压器带负荷调分接头引起变比变化。
2.2不平衡电流处理措施常规变压器非平衡电流处理方式包括如下几种:确保各侧电流互感器必须一致。
相关技术人员选择相同电流互感器,安装在变压器各侧要尽可能选择变比、型号相同的仪器,确保各侧对变压器影响相同,避免非平衡电流产生。
技术人员也可以适当增加保护动作电流,以有效避免外部短路造成非平衡电流产生,动作电流具体数额要在对差动保护的整定计算中,进一步考虑[2];相关技术人员可以利用相位补偿法有效解决因高低压侧绕组方式不同导致的非平衡电路;相关技术人员可以采用波形对称原理、二次谐波制动原理、励磁涌流波形和内部短路电流差别等方式来躲避励磁涌流,避免非平衡电流产生;可以利用对变压器差动保护的整定计算的进一步优化,消除由于带负荷调分接头导致的非平衡电流问题。
变压器比率差动保护原理及校验方法分析摘要:电力系统的发展突飞猛进,大型发电机变压器投入运行,发变组差动保护在发变组保护中的地位越来越重要,运行中的发电机变压器发生故障,做为主保护的发变组比率差动保护应在第一时间动作,将故障的发电机或者变压器从系统中切除,保证电力系统的稳定运行。
近年在电网系统中,国电南自,国电南瑞,许继发变组保护在现场中得到了大量的应用,不同的厂家,针对保护的原理会有所不同,算法也各不相同,这对继电保护人员在保护校验中提出了更高的要求,本文针对变压器比率差动保护,以主变比率差动保护校验方法为例,研究国电南自,国电南瑞,许继主变比率差动保护的不同,校验方法的不同。
关键词:国电南自;国电南瑞;许继;变压器比率差动保护;检验1 保护配置某发电厂300MW机组,采用发电机-变压器-线路组形式接入220KV地区电网,主变采用Y/Δ-11点钟接线,主变比率差动保护TA取自发电机机端侧TA变比15000/5,高厂变高压侧TA变比1500/5,主变高压侧TA变比1200/5,变压器各侧电流互感器二次接线均采用星型接线,二次电流直接接入装置,变压器各侧TA二次电流相位由软件自调整,装置采用Y/Δ变化调整差流平衡。
(图一)2国电南瑞主变比率差动保护校验方法现场班组一般配置ONLLY A460系列继电保护校验仪,以(图一)为例,主变比率差动保护检验需要分别检验:发电机机端侧和主变高压侧比率差动,高厂变高压侧和主变高压侧比率差动,发电机机端侧和高厂变高压侧比率差动。
下面都以发电机机端侧和主变高压侧比率差动为例,研究单相法主变比率差动校验方法。
(1)从南瑞RCS-985发电机综合保护装置中读取主变差动定值:差动启动定值和差动速断定值是标幺值(2)南瑞RCS-985发电机综合保护装置,主变比率差动保护计算公式I d>Kbl×Ir+Icdqd(Ir<nIe)Kbl=Kbl1+Kblr×(Ir/Ie)Id>Kbl2×(Ir-nIe)+b+Icdqd (Ir≥nIe)Kblr=(Kbl2-Kbl1)/(2×n)b=(Kbl1+Kblr×n) ×nIe(公式一)Id----差动电流;Ir----制动电流;Kbl1----比率差动起始斜率Kbl2----比率差动最大斜率n----最大斜率时的制动电流倍数取6差动电流取各侧相量和的绝对值制动电流取各侧数值绝对值相加除以2(3)从计算定值中读取各侧额定电流:I主变高压侧=3.43A I发电机侧=4.33A(4)软件校正差动各侧电流相位差与平衡系数,校正方法:对于Y侧电路:ⅰ’A=(ⅰA-ⅰB)/√3ⅰ’B=(ⅰB-ⅰC)/√3ⅰ’C=(ⅰC-ⅰA)/√3ⅰA、ⅰB、ⅰC——为Y侧TA二次电流ⅰ’A、ⅰ’B、ⅰ’C——为Y侧校正后各相电流(公式二)(5)保护动作特性:图二比率差动保护动作特性(6)打开校验仪,按照下表在保护装置上输入数值,设置步长:(表一)在校验仪上设置好数值之后,从保护装置上观测两侧电流平衡,差流位零,制动电流为两侧电流绝对值之和除以2,缓慢的调节步长(增加或减少都可),制动电流不变,差流逐渐增大,直至发电机保护动作,记录校验仪所加动作值,从微机保护装置上读取动作电流和制动电流。