1.1.1集合的含义与表示
- 格式:ppt
- 大小:179.00 KB
- 文档页数:1
1、1集合一、教材分析:新课标把集合作为现代数学一种基本语言来学习,课标中明确提出了:给一个数学对象怎么去描述?可以用自然语言,可以用venn图,也可以用集合的语言表述数学对象。
把集合作为一种语言来学习,要注意三件事:1)要把集合的有关概念、表示方法、集合之间关系的符号、集合的运算搞清楚,这是教学中首先要把握好的一个重点;2)语意的转换、方法的选择、了解用集合语言和别的语言,优点是什么,提高学生学习的自觉性;3)用集合语言来表述数学对象、数学关系的任务不能在这一章中全部完成,我们仅仅是为了给学生打一个基础,在今后的学习中,只要有适当的机会就主动地引导学生应用、比较,不断提高学生的表达能力,用集合语言来交流的能力。
二、学情分析:在初中阶段已经学习了自然数集合、有理数集合,对集合有了初步的认识,对用集合语言还不熟悉,难在将集合语言和自然语言进行转换。
§1、1、1 集合的含义与表示教学目标:了解集合的含义,体会元素与集合的从属关系;知道常用数集及其专用记号;了解集合中元素的三大特征;会用集合语言表示有关数学对象,能选择自然语言、集合语言表述不同的具体问题;培养学生抽象概括能力。
教学重点:集合的含义与表示方法教学难点:表示法的适当选择教学情境设计:教师:军训时,我们听到教官口令“高一(9)班同学集合”这里的“集合”作为动词,听到口令后高一(9)班的同学就会从四面八方聚集到一起,不是高一(9)班的同学会走开,这一声“集合”就能把某些指定的对象集在一起,如果把这个集在一起的整体作为研究对象,这个整体即我们数学中所说的集合。
教师:你能举一些集合的例子吗?学生:举例、交流。
教师:引导学生阅读教科书上的8个例子,并思考概括它们的共同特征。
1、集合的含义:一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合,简称集。
完成P2思考题教师:集合中元素可以是数,可以是点,也可以是事物或其它东西,是不是任何事物一定能构成集合?集合中的元素有什么特征?学生:阅读教科书、举例,发表自己看法。
1.1.1集合的含义与表示在我们日常生活和数学学习中,经常会遇到“集合”这个概念。
那什么是集合呢?集合就像是一个“大口袋”,把一些具有特定性质的对象装在一起。
比如说,咱们班所有同学就可以组成一个集合;一个书架上的所有书籍也能构成一个集合;一年中所有的月份也能形成一个集合。
从这些例子可以看出,集合是由一些确定的、互不相同的对象所组成的整体。
集合中的每个对象都被称为这个集合的元素。
元素是构成集合的基本单位。
比如在班级同学这个集合中,每一位同学就是其中的一个元素。
那怎么来表示一个集合呢?常见的方法有列举法、描述法和图示法。
列举法就是把集合中的元素一个一个地列出来。
就像咱们刚刚说的一年中所有的月份这个集合,就可以用列举法表示为{1 月,2 月,3 月,4 月,5 月,6 月,7 月,8 月,9 月,10 月,11 月,12 月}。
再比如小于 5 的自然数组成的集合,用列举法就是{0,1,2,3,4}。
描述法呢,是通过描述元素所具有的共同特征来表示集合。
比如{x | x 是小于 10 的正整数},这个集合就表示了小于 10 的所有正整数。
又比如{x | x 是方程 x² 4 = 0 的解},通过这样的描述,我们就能清楚地知道这个集合里的元素是哪些。
图示法中,我们常用的是韦恩图。
通过画一个封闭的曲线,把集合中的元素放在这个曲线内部。
比如有两个集合 A 和 B,A 是{1,2,3},B 是{2,3,4},我们就可以用韦恩图来直观地表示它们之间的关系。
集合还有一些重要的特性。
确定性是说,对于一个给定的集合,任何一个对象是不是这个集合的元素是确定的。
不能模棱两可,比如说“个子高的同学”就不能构成一个集合,因为“个子高”这个标准不明确。
互异性指的是集合中的元素不能重复。
比如{1,2,2,3}这样的表示就是错误的,应该写成{1,2,3}。
无序性则表示集合中的元素排列顺序是无所谓的。
{1,2,3}和{3,2,1}表示的是同一个集合。
1.1.1集合的含义与表示(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:判断以下元素的全体是否组成集合,并说明理由:x+=的解;(5)(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;(4)方程210某校2007级新生;(6)血压很高的人;(7)著名的数学家;(8)全班成绩好的学生;(9)平面直角坐标系内所有第三象限的点4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)无序性:给定一个集合与集合里面元素的顺序无关。
(4)集合相等:构成两个集合的元素完全一样。
5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A6.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示。
7.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R;(二)例题讲解:例1.用“∈”或“∉”符号填空:(1)8 N;(2)0 N;(3)-3 Z;(4)2Q;(5)设A为所有亚洲国家组成的集合,则中国A,美国A,印度A,英国A。
例2.已知集合P的元素为1,m,m2-3m-1, 若3∈P且-1∉P,求实数m的值。
(一).集合的表示方法(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法。