禁忌搜索
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
目录一、摘要 (2)二、禁忌搜索简介 (2)三、禁忌搜索的应用 (2)1、现实情况 (2)2、车辆路径问题的描述 (3)3、算法思路 (3)4、具体步骤 (3)5、程序设计简介 (3)6、算例分析 (4)四、禁忌搜索算法的评述和展望 (4)五、参考文献 (5)禁忌搜索及应用一、摘要工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。
禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。
本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
二、禁忌搜索简介禁忌搜索(Tabu Search或Taboo Search,简称TS)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
TS算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。
相对于模拟退火和遗传算法,TS是又一种搜索特点不同的meta-heuristic算法。
迄今为止,TS算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。
禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。
禁忌搜索涉及到邻域(neighborhood)、禁忌表(tabu list)、禁忌长度(tabu length)、候选解(candidate)、藐视准则(aspiration criterion)等概念。
一、实验背景禁忌搜索算法(Tabu Search,TS)是一种基于局部搜索的优化算法,最早由Glover和Holland于1989年提出。
该算法通过引入禁忌机制,避免陷入局部最优解,从而提高全局搜索能力。
近年来,禁忌搜索算法在蛋白质结构预测、调度问题、神经网络训练等领域得到了广泛应用。
本次实验旨在验证禁忌搜索算法在求解组合优化问题中的性能,通过改进禁忌搜索算法,提高求解效率,并与其他优化算法进行对比。
二、实验目的1. 研究禁忌搜索算法的基本原理及其在组合优化问题中的应用;2. 改进禁忌搜索算法,提高求解效率;3. 将改进后的禁忌搜索算法与其他优化算法进行对比,验证其性能。
三、实验方法1. 算法实现本次实验采用Python编程语言实现禁忌搜索算法。
首先,初始化禁忌表,存储当前最优解;然后,生成新的候选解,判断是否满足禁忌条件;若满足,则更新禁忌表;否则,保留当前解;最后,重复上述步骤,直到满足终止条件。
2. 实验数据本次实验采用TSP(旅行商问题)和VRP(车辆路径问题)两个组合优化问题作为实验数据。
TSP问题要求在给定的城市集合中找到一条最短的路径,使得每个城市恰好访问一次,并返回起点。
VRP问题要求在满足一定条件下,设计合理的配送路径,以最小化配送成本。
3. 对比算法本次实验将改进后的禁忌搜索算法与遗传算法、蚁群算法进行对比。
四、实验结果与分析1. TSP问题实验结果(1)改进禁忌搜索算法(ITS)实验结果表明,改进后的禁忌搜索算法在TSP问题上取得了较好的效果。
在实验中,设置禁忌长度为20,迭代次数为1000。
改进禁忌搜索算法的求解结果如下:- 最短路径长度:335- 迭代次数:1000- 算法运行时间:0.0015秒(2)遗传算法(GA)实验结果表明,遗传算法在TSP问题上的求解效果一般。
在实验中,设置种群规模为100,交叉概率为0.8,变异概率为0.1。
遗传算法的求解结果如下:- 最短路径长度:345- 迭代次数:1000- 算法运行时间:0.003秒(3)蚁群算法(ACO)实验结果表明,蚁群算法在TSP问题上的求解效果较好。
禁忌搜索算法原理及应用随着计算机技术的不断发展,各种算法也应运而生,其中禁忌搜索算法便是一种比较常用的优化算法。
禁忌搜索算法的一大特点就是能够避免搜索过程中出现循环现象,能够有效地提高搜索效率,因此在许多领域都有广泛的应用。
一、禁忌搜索算法的原理禁忌搜索算法是一种基于局部搜索的优化算法。
其基本思想就是在搜索过程中引入禁忌表,通过记录禁忌元素,避免进入不良搜索状态,从而获得更好的解。
禁忌表的作用是记录已经经过的解的信息,防止搜索陷入局部最优解,增加了搜索的广度和深度。
禁忌搜索算法的核心是寻找最优化解。
具体过程包括:初始化,构造邻域解,选择最优解,更新禁忌表,结束搜索。
当搜索过程中发现某个解是当前状态下的最优解时,将这个最优解加入到禁忌表中,以后在搜索过程中就不再去重复对该最优解的操作。
在禁忌搜索算法中,选择邻域解是非常重要的一环。
邻域解是指与当前解相邻的解,也就是在当前解的基础上进行一定的操作得到的解。
邻域解的选择通常根据问题的不同而定,可以是交换位置、插入、反转等。
而选择最优解的原则则是要在禁忌状态下优先选择不在禁忌表中的最优解,如果所有的最优解都处于禁忌状态,那么就选择设定的禁忌期最短的解。
二、禁忌搜索算法在实际应用中的应用禁忌搜索算法作为一种优化算法,在实际应用中有着广泛的应用。
下面我们就通过几个实际案例来了解禁忌搜索算法的应用。
1. 生产排程问题禁忌搜索算法在制造业的排程问题中有着广泛的应用。
在生产排程问题中,需要考虑的因素非常多,如时间、人员、设备、物料等。
禁忌搜索算法通过构建邻域空间,利用禁忌表避免了进入不良解的状态,从而在生产排程问题中,可以为厂家避免很多因时间不足而导致的决策错误。
2. 组合最优化问题禁忌搜索算法在组合最优化问题中有着很好的应用。
比如在公路路径设计中,需要从成千上万的路径中选择最优解。
禁忌搜索算法不仅可以找到全局最优解,还可以避免局部最优解的产生,使得结果更加准确。
无时限单向配送车辆优化调度问题的禁忌搜索算法无时限单向配送车辆优化调度问题,是指在制定配送路线时不考虑客户对货物送到(或取走)时间要求的纯送货(或纯取货)车辆调度问题。
无时限单向配送车辆优化调度问题可以描述为:从某配送中心用多台配送车辆向多个客户送货,每个客户的位置和需求量一定,每台配送车辆的载重量一定,其一次配送的最大行驶距离一定,要求合理安排车辆配送路线,使目标函数得到优化,并满足一下条件:(1)每条配送路径上各客户的需求量之和不超过配送车辆的载重量;(2)每条配送路径的长度不超过配送车辆一次配送的最大行驶距离;(3)每个客户的需求必须满足,且只能由一台配送车辆送货。
一、禁忌搜索算法的原理禁忌搜索算法是解决组合优化问题的一种优化方法。
该算法是局部搜索算法的推广,其特点是采用禁忌技术,即用一个禁忌表记录下已经到达过的局部最优点,在下一次搜索中,利用禁忌表中的信息不再或有选择地搜索这些点,以此来挑出局部最优点。
在禁忌搜索算法中,首先按照随机方法产生一个初始解作为当前解,然后在当前解的领域中搜索若干个解,取其中的最优解作为新的当前解。
为了避免陷入局部最优解,这种优化方法允许一定的下山操作(使解的质量变差)。
另外,为了避免对已搜索过的局部最优解的重复,禁忌搜索算法使用禁忌表记录已搜索的局部最优解的历史信息,这可在一定程度上使搜索过程避开局部极值点,从而开辟新的搜索区域。
二、算法要素的设计1.禁忌对象的确定禁忌对象是指禁忌表中被禁的那些变化元素。
由于解状态的变化可以分为解的简单变化、解向量分量的变化和目标值变化三种情况,则在确定禁忌对象时也有相对应的三种禁忌情况。
一般来说,对解的简单变化进行禁忌比另两种的受禁范围要小,因此可能早能造成计算时间的增加,但其优点是提供了较大的搜索范围。
根据配送车辆优化调度问题的特点,可采用对解的简单变化进行禁忌的方法。
举例进行说明:当解从x变化到y时,y可能是局部最优解,为了避开局部最优解,禁忌y这一解再度出现,可采用如下禁忌规则:当y的领域中有比它更优的解时,选择更优的解;当y为其领域的局部最优解时,不再选y,而选比y稍差的解。
禁忌搜索算法评述摘要:工程应用中存在大量的优化问题,对优化算法的研究是目前研究的热点之一。
禁忌搜索算法作为一种新兴的智能搜索算法具有模拟人类智能的记忆机制,已被广泛应用于各类优化领域并取得了理想的效果。
本文介绍了禁忌搜索算法的特点、应用领域、研究进展,概述了它的算法基本流程,评述了算法设计过程中的关键要点,最后探讨了禁忌搜索算法的研究方向和发展趋势。
关键词:禁忌搜索算法;优化;禁忌表;启发式;智能算法1 引言工程领域内存在大量的优化问题,对于优化算法的研究一直是计算机领域内的一个热点问题。
优化算法主要分为启发式算法和智能随机算法。
启发式算法依赖对问题性质的认识,属于局部优化算法。
智能随机算法不依赖问题的性质,按一定规则搜索解空间,直到搜索到近似优解或最优解,属于全局优化算法,其代表有遗传算法、模拟退火算法、粒子群算法、禁忌搜索算法等。
禁忌搜索算法(tabu search, ts)最早是由lover在1986年提出,它的实质是对局部邻域搜索的一种拓展。
ts算法通过模拟人类智能的记忆机制,采用禁忌策略限制搜索过程陷入局部最优来避免迂回搜索。
同时引入特赦(破禁)准则来释放一些被禁忌的优良状态,以保证搜索过程的有效性和多样性。
ts算法是一种具有不同于遗传和模拟退火等算法特点的智能随机算法,可以克服搜索过程易于早熟收敛的缺陷而达到全局优化[1]。
迄今为止,ts算法已经广泛应用于组合优化、机器学习、生产调度、函数优化、电路设计、路由优化、投资分析和神经网络等领域,并显示出极好的研究前景[2~9,11~15]。
目前关于ts的研究主要分为对ts算法过程和关键步骤的改进,用ts 改进已有优化算法和应用ts相关算法求解工程优化问题三个方面。
禁忌搜索提出了一种基于智能记忆的框架,在实际实现过程中可以根据问题的性质做有针对性的设计,本文在给出禁忌搜索基本流程的基础上,对如何设计算法中的关键步骤进行了有益的总结和分析。
2 禁忌搜索算法的基本流程ts算法一般流程描述[1]:(1)设定算法参数,产生初始解x,置空禁忌表。
基于禁忌搜索算法的路径规划优化研究近年来,随着机器人和自动驾驶汽车等技术的飞速发展,路径规划问题逐渐成为一个备受关注的前沿研究领域。
而基于禁忌搜索算法的路径规划优化研究,也是近年来热点研究方向之一。
一、路径规划问题简介路径规划就是在给定的地图上,寻找一条从起点到终点的最优路径。
在真实世界中,路径规划问题有着广泛的应用。
例如,自动驾驶汽车需要识别周围环境,并规划一条安全高效的行驶路径;机器人需要规划行动路线,避开障碍物、优化运动轨迹等。
因此,路径规划问题的优化问题一直受到学术界和工业界的关注。
二、禁忌搜索算法的原理在路径规划问题中,寻找最优路径是一个NP-hard 问题,也就是说,它的规模越大,计算复杂度呈指数级增长,难以直接用传统的穷举搜索方法来解决。
而禁忌搜索算法正是为了对于这类问题提出的一种通用优化算法。
禁忌搜索算法的基本思想是在候选解空间中搜索最优解。
它类似于爬山算法,每次迭代时,算法会从当前解附近的候选解中选择最优解作为当前解,直到找到满足要求的最优解。
与爬山算法不同的是,禁忌搜索算法在搜索过程中还会维护一个禁忌表,记录已搜索过但不应该再被搜索的解。
这种做法有时会牺牲局部最优解,但可以在更广的解空间中搜索到更优解。
三、禁忌搜索算法在路径规划优化中的应用在路径规划问题中,禁忌搜索算法通常与启发式方法组合使用。
启发式方法是一种基于经验的、高效的搜索算法,能够有效地搜索到候选解中的更优解。
在具体的规划过程中,禁忌搜索算法与启发式方法可以互相补充、协同工作,从而在变化复杂、需要快速响应的环境下找到路径规划问题的较好解。
禁忌搜索算法在路径规划优化中的应用,也得到了众多学者的支持和认可。
一些研究表明,禁忌搜索算法可以有效地较少计算时间,提高路径规划的精度和效率,从而为完成复杂交通任务提供了可靠的帮助。
四、结论基于禁忌搜索算法的路径规划优化研究,是一个前沿、迅速发展的领域。
禁忌搜索算法可以解决大规模、复杂路径规划问题,并将路径规划问题的计算复杂度降至可承受的范围,从而为相关领域的进一步发展绘就基础。
禁忌搜索算法又名“tabu搜索算法”为了找到“全局最优解”,就不应该执着于某一个特定的区域。
局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。
禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。
兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。
就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。
当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。
这就是禁忌搜索中“禁忌表(tabu list)”的含义。
那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。
这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。
伪码表达:procedure tabu search;begininitialize a string vc at random,clear up the tabu list;cur:=vc;repeatselect a new string vn in the neighborhood of vc;if va>best_to_far then {va is a string in the tabu list}begincur:=va;let va take place of the oldest string in the tabu list;best_to_far:=va;end elsebegincur:=vn;let vn take place of the oldest string in the tabu list;end;until (termination-condition);end;以上程序中有关键的几点:(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。
(2)为了降低计算量,禁忌长度和禁忌表的集合不宜太大,但是禁忌长度太小容易循环搜索,禁忌表太小容易陷入“局部极优解”。
(3)上述程序段中对best_to_far的操作是直接赋值为最优的“解禁候选解”,但是有时候会出现没有大于best_to_far的,候选解也全部被禁的“死锁”状态,这个时候,就应该对候选解中最佳的进行解禁,以能够继续下去。
(4)终止准则:和模拟退火,遗传算法差不多,常用的有:给定一个迭代步数;设定与估计的最优解的距离小于某个范围时,就终止搜索;当与最优解的距离连续若干步保持不变时,终止搜索;禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的.遗传算法是基于生物进化的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。
其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。
蚂蚁算法是群体智能可用于解决其他组合优化问题,比如有n个城市,需要对所有n个城市进行访问且只访问一次的最短距离。
2禁忌搜索(Tabu Searc h或Taboo Searc h,简称T S)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。
T S算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。
相对于模拟退火和遗传算法,T S是又一种搜索特点不同的 meta-heuris tic算法。
迄今为止,T S算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。
本章将主要介绍禁忌搜索的优化流程、原理、算法收敛理论与实现技术等内容。
1. 引言局部领域搜索是基于贪婪思想持续地在当前解的领域中进行搜索,虽然算法通用易实现,且容易理解,但其搜索性能完全依赖于领域结构和初解,尤其窥陷入局部极小而无法保证全局优化性。
针对局部领域搜索,为了实现全局优化,可尝试的途径有:以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;扩大领域搜索结构,如T SP的2opt扩展到k-opt;多点并行搜索,如进化计算;变结构领域搜索( M ladenovic et al,1997);另外,就是采用T S的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。
禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。
禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。
禁忌搜索涉及到领域(neighborhood)、禁忌表(tabu lis t)、禁忌长度(tabu 1ength)、候选解(c andidate)、藐视准则(c andidate)等概念,我们首先用一个示例来理解禁忌搜索及其各重要概念,而后给出算法的一般流程。
2.禁忌搜索示例组合优化是T S算法应用最多的领域。
置换问题,如T SP、调度问题等,是一大批组合优化问题的典型代表,在此用它来解释简单的禁忌搜索算法的思想和操作。
对于n元素的置换问题,其所有排列状态数为n!,当n较大时搜索空间的大小将是天文数字,而禁忌搜索则希望仅通过探索少数解来得到满意的优化解。
首先,我们对置换问题定义一种邻域搜索结构,如互换操作(SWAP),即随机交换两个点的位置,则每个状态的邻域解有C n2 =n(n一1)/2个。
称从一个状态转移到其邻域中的另一个状态为一次移动(move),显然每次移动将导致适配值(反比于目标函数值)的变化。
其次,我们采用一个存储结构来区分移动的属性,即是否为禁忌“对象”在以下示例中:考虑7元素的置换问题,并用每一状态的相应21个邻域解中最优的5次移动(对应最佳的5个适配值)作为候选解;为一定程度上防止迂回搜索,每个被采纳的移动在禁忌表中将滞留3步(即禁忌长度),即将移动在以下连续3步搜索中将被视为禁忌对象;需要指出的是,由于当前的禁忌对象对应状态的适配值可能很好,因此在算法中设置判断,若禁忌对象对应的适配值优于“ bes t s o far”状态,则无视其禁忌属性而仍采纳其为当前选择,也就是通常所说的藐视准则(或称特赦准则)。
可见,简单的禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中领域结构、候选解、禁忌长度、禁忌对象、藐视准则、终止准则等是影响禁忌搜索算法性能的关键。
需要指出的是:(1)首先,由于TS是局部领域搜索的一种扩充,因此领域结构的设计很关键,它决定了当前解的领域解的产生形式和数目,以及各个解之间的关系。
(2)其次,出于改善算法的优化时间性能的考虑,若领域结构决定了大量的领域解(尤其对大规模问题,如T SP的SWAP操作将产生C n2个领域解),则可以仅尝试部分互换的结果,而候选解也仅取其中的少量最佳状态。
(3)禁忌长度是一个很重要的关键参数,它决定禁忌对象的任期,其大小直接进而影响整个算法的搜索进程和行为。
同时,以上示例中,禁忌表中禁忌对象的替换是采用FIFO方式(不考虑藐视准则的作用),当然也可以采用其他方式,甚至是动态自适应的方式。
(4)藐视准则的设置是算法避免遗失优良状态,激励对优良状态的局部搜索,进而实现全局优化的关键步骤。
(5)对于非禁忌候选状态,算法无视它与当前状态的适配值的优劣关系,仅考虑它们中间的最佳状态为下一步决策,如此可实现对局部极小的突跳(是一种确定性策略)。
(6)为了使算法具有优良的优化性能或时间性能,必须设置一个合理的终止准则来结束整个搜索过程。
此外,在许多场合禁忌对象的被禁次数(frequency)也被用于指导搜索,以取得更大的搜索空间。
禁忌次数越高,通常可认为出现循环搜索的概率越大。
3.禁忌搜索算法流程通过上述示例的介绍,基本上了解了禁忌搜索的机制和步骤。
简单T S算法的基本思想是:给定一个当前解(初始解)和一种邻域,然后在当前解的邻域中确定若干候选解;若最佳候选解对应的目标值优于“bes t s o far”状态,则忽视其禁忌特性,用其替代当前解和“bes t s o far”状态,并将相应的对象加入禁忌表,同时修改禁忌表中各对象的任期;若不存在上述候选解,则选择在候选解中选择非禁忌的最佳状态为新的当前解,而无视它与当前解的优劣,同时将相应的对象加入禁忌表,并修改禁忌表中各对象的任期;如此重复上述迭代搜索过程,直至满足停止准则。
条理化些,则简单禁忌搜索的算法步骤可描述如下:(1)给定算法参数,随机产生初始解x,置禁忌表为空。
(2)判断算法终止条件是否满足?若是,则结束算法并输出优化结果;否则,继续以下步骤。
(3)利用当前解工的邻域函数产生其所有(或若干)邻域解,并从中确定若干候选解。
(4)对候选解判断藐视准则是否满足?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,即x=y,并用与y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换“bes t so far”状态,然后转步骤6;否则,继续以下步骤。
(5)判断候选解对应的各对象的禁忌属性,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象元素。
(6)转步骤(2)。
同时,上述算法可用如下流程框图更直观地描述,如图4.1.1。
我们可以明显地看到,邻域函数、禁忌对象、禁忌表和藐视准则,构成了禁忌搜索算法的关键。
其中,邻域函数沿用局部邻域搜索的思想,用于实现邻域搜索;禁忌表和禁忌对象的设置,体现了算法避免迂回搜索的特点;藐视准则,则是对优良状态的奖励,它是对禁忌策略的一种放松。
需要指出的是,上述算法仅是一种简单的禁忌搜索框架,对各关键环节复杂和多样化的设计则可构造出各种禁忌搜索算法。
同时,算法流程中的禁忌对象,可以是搜索状态,也可以是特定搜索操作,甚至是搜索目标值等。