水动力学基本微分方程
- 格式:ppt
- 大小:16.25 MB
- 文档页数:10
水动力常数是指水在流动过程中,单位时间内水体受到的阻力与惯性力的比值。
它反映了水流在某一特定方向上的流动特性,可以用来描述水流的速度、方向以及水流的稳定性。
水动力常数的计算公式为:K = μ* λ* L^3 / D
其中,μ是黏性系数,是流体黏附于物体表面的能力;λ是水流方向的长度,L是流体的体积,D是流体的黏度。
这些参数都与流体的性质和流动状态有关。
具体来说,当水在管道、湖泊、河流等中流动时,会受到周围环境的影响,包括水流的速度、压力、温度等。
这些因素会影响水流的稳定性,进而影响水动力常数的大小。
水动力常数越大,说明水流受到的阻力越大,惯性力越小,水流越稳定;反之则相反。
在实际应用中,水动力常数可以用来评估水流的稳定性、预测水流的流向和速度、优化水利设施的设计等。
例如,在水利工程中,可以通过调整管道的形状、大小、水流方向等因素来改变水动力常数,从而优化水流的效果。
此外,水动力常数还可以用来评估湖泊、河流等水体的生态稳定性,为环境保护和生态修复提供依据。
总之,水动力常数是描述水流特性的重要参数之一,它与流体的性质、流动状态以及周围环境等因素有关。
通过了解水动力常数的变化规律和应用范围,可以更好地理解和应用水流现象,为水利工程、环境保护等领域提供重要的参考依据。
地下⽔动⼒学地下⽔动⼒学要点总结By Zero渗流:地下⽔在岩⽯空隙中或是多孔介质中的流动有效空隙:地下⽔动⼒学中将互相连通的,不为结合⽔所占据的部分空隙叫做有效空隙储⽔系数:表⽰⾯积为1个单位,厚度为整个承压含⽔层的含⽔层柱体,当⽔头改变⼀个单位时,所储存或是释放的⽔量,⽆量纲。
储⽔率:表⽰⾯积为1个单位的承压含⽔层,当厚度为1个单位的时候,⽔头下降⼀个单位时所能释放的⽔量。
给⽔度:是含⽔层的释⽔能⼒。
表⽰单位⾯积的含⽔层,当潜⽔⾯下降⼀个单位长度时在重⼒作⽤下能释放出⽔量。
地下⽔的总⽔头:即地下⽔的总机械能H=Z+P/r⽔⼒坡度:地下⽔动⼒学中,⼤⼩等于梯度值,⽅向沿等⽔头⾯法线所指向的⽔头下降⽅向的⽮量称⽔⼒坡度。
地下⽔流态:包括[层流]、[紊流],判别流态⽤[雷诺数RE判别]Darcy定律的适⽤范围:[在雷诺数RE<1~10之间的某个数值时,即粘滞⼒占优势的层流运动]渗透系数(K):表⽰岩⼟透⽔性能的数量指标。
亦称⽔⼒传导度。
可由达西定律求得:q=KI影响渗透系数的因素:空隙⼤⼩、岩⽯的⾃⾝的性质、渗透液体的物理性质(容重、黏滞性等)渗透率:是表征⼟或岩⽯本⾝传导液体能⼒的参数导⽔系数:即T=KM,它的物理含义是⽔⼒坡度等于1时,通过整个含⽔层厚度的单宽流量。
导⽔系数的概念只能⽤于⼆维的地下⽔流动不能⽤于三维。
岩层透⽔特征的分类:均质、⾮均质、各向同性、各向异性均质:在渗流场中,所有点都具有相同的渗透系数,则称该岩层是均质的,反之为⾮均质。
各向同性:在渗流场中,某⼀点的渗透系数不取决于⽅向,即不管渗流的⽅向如何都具有相同的渗透系数,则称为各向同性,反之为各向异性。
越流系数:当主含⽔层和供给越流的含⽔层间的⽔头差为1个长度单位时,通过主含⽔层和弱透⽔层间单位⾯积上的⽔流量。
定解条件:稳定流的定解条件:基本微分⽅程+边界条件⾮稳定流的定解条件:基本微分⽅程+初始条件+边界条件边界条件的分类:定⽔头边界、定流量边界、混合边界条件稳定流需要的定解条件:基本微分⽅程+边界条件⾮稳定流定解条件:基本微分条件+边界条件+初始条件渗流和空隙中的真实⽔流的区别;⼟壤孔隙度⼩于1,所以渗流流量1、流速⽅⾯渗流速度和地下⽔实际运动速度⽅向不同,速度之间的关系如:v=nu(v渗流速度、n含⽔层的空隙度、u实际评价流速)2、流速⽅向渗流是假象的⽔流,⽽真实⽔流的运动是杂乱⽆章的3、流量⽅⾯渗流流量⼩于实际流量4、⽔头⽅⾯地下⽔总⽔头H=Z+P/r+u^2/(2g) u为地下⽔的流速5、过⽔断⾯完整井:完全贯穿整个含⽔层的井,且在全部含⽔层厚度上都装有过滤器,能全⾯进⽔的井不完整井:未完全贯穿整个含⽔层,只有井底或是井壁含⽔层部分厚度上能进⽔的井不完整井的三种类型:井底进⽔、井壁进⽔、井底和井壁同时进⽔降落漏⽃:在井抽⽔井,以井为中⼼最⼤,离井越远,降深越⼩,总体上形成漏⽃状的⽔头下降去区称为降落漏⽃Dupuit中井径和流量的关系:1】当降深相同时,井径增加同样的幅度,k(渗透系数)⼤的,抽⽔流量⼤2】当对于同⼀岩层(k同),井径增加同样的幅度,⼤降深抽⽔的流量增加的多3】对于同样的岩层和降深,井径越⼤的,再增加井径,抽⽔的流量增⼤的幅度不明显流量和⽔位降深的经验公式类型:直线型(Q=qSw)、抛物线型(Sw=aQ+bQ^2)、幂函数型(Q=qSw^(1/m))、对数型(Q=a+blgSw)对于直线型经验公式,外推降深最⼤范围不能超过抽⽔试验时最⼤降深的1.5倍对于抛物线型、幂函数型和对数曲线型的⽅程,不能超过1.75~3.0倍运⽤叠加原理(线性定解问题)的条件:1】各个边界条件的作⽤彼此独⽴,即边界条件的存在不影响其他边界条件存在时得到的结果2】各抽⽔井的作⽤是独⽴的。
水动力数值模拟的基本原理水动力数值模拟是一种有效的手段,可以对水动力过程进行分析与预测。
在各种海洋工程设计和建设中,水动力数值模拟都起着至关重要的作用。
本文将从基本原理方面入手,详细讲解水动力数值模拟的原则和过程。
一、数学模型基础水动力数值模拟是一个涉及多个学科的交叉领域,涉及数值计算、流体力学、数学、物理等多个方面的知识。
为了进行水动力数值模拟,必须建立相应的数学模型,以描述水动力过程中的物理现象,其中,流体流动最基本的方程之一就是纳维-斯托克斯方程组,也即不可压缩流体的Navier-Stokes equations。
简单来说,这个方程是一个质量守恒方程和一个动量守恒方程的组合。
其次,建立水动力数值模拟还需要考虑到水体性质,例如密度,粘度和温度等。
在不同的情况下,这些特性会对流体流动和水动力行为产生不同的影响,因此,要考虑这些影响才能建立可行的数学模型。
二、数值方法基础建立了数学模型之后,就需要将其转化为数值计算问题。
因为数学模型的解析解通常难以获得,数值模拟可以通过计算机模拟来实现。
与解析方法不同,数值方法不需要求解解析公式,而是将微分方程或偏微分方程转化为有限元、有限体积或有限差分等数值计算公式,从而用算法实现数值解。
数值模拟最终的结果包括程度、变量分布、特定物理量,如速度分布、压力分布等。
目前,最常用的方法包括Euler方法和Runga-Kutta方法。
Euler方法是最简单的数值方法之一,用于解决一阶常微分方程。
这种方法认为,函数在一个点上近似于其切线上的变化率,因此通过一个相对较简单的迭代公式计算变化。
相比之下,Runga-Kutta方法和Euler方法相对复杂,但可以处理更复杂的非线性问题。
这是因为Runga-Kutta方法中每个计算步骤都需要添加适当的权重,以提高迭代的准确性。
三、计算流体力学计算流体力学(CFD)是一种通过分析自然流动和液体传送的物理学方法。
它通常使用CFD软件来模拟流体中的动态和静态行为。
吉布斯杜亥姆方程霍金斯-吉布斯杜亥姆方程,也称为悬空流体方程,是一种以物理原理推导出来的流体动力学系统和潜流相关方程组。
它描述的是悬空流体的运动状态,是流体动力学(fluid dynamics)的一个重要框架和基础。
本文将以霍金斯-吉布斯杜亥姆方程的比较有代表性的理论模型,也是气象学,流体动力学和海洋学中重要的数学模型,来讲述它的定义、基本思想、推导式以及实际的应用。
一、定义霍金斯-吉布斯杜亥姆(HGDM)方程是一种描述流体动力学系统状态的微分方程组,由霍金斯和吉布斯杜亥姆于1957年提出。
它是描述悬空流体运动状态的更加精确的方程,尤其是气象学中描述大尺度天气和气象系统及海洋学中描述海洋潮汐高度和大规模海流变化等领域时保持着特别重要的地位。
HGDM方程是涵盖膨胀、对流和流动耗散的一个完整数学模型,可以模拟出基本气象数据,例如温度、压力、水汽和湿度的变化,以及它们之间的相互作用。
二、基本思想HGDM方程求解的基本思想,即对流体的动力学状态进行描述,以推导出瞬变的动力学演算方程。
HGDM方程把流体动力学学科中的许多原理综合了起来,其中包括位移、速度、压力、温度以及动能和运动量守恒。
它提出,悬空流体依据流体动力学理论,在位移、速度、压强变化等方面受到内外操作作用,并产生风、流体温度及压强不断变化的复杂系统状态的运动变化规律。
三、推导公式HGDM方程是一个综合了大小尺度瞬变流动和对流物理原理的复杂及非线性的微分方程组,它分别由偏微分/量子动力学和理想流体动力学两个基本方程来描述悬空流体的物理状态,并且用各自相应的边界条件对其进行计算。
HGDM方程由以下两个基本方程组构成:(1)偏微分/量子动力学方程:\frac{\partial \mathbf v }{\partial t} +(\mathbf v \cdot\nabla)\mathbf v = -\frac 1{\rho} \nabla p + \nu \nabla^2 \mathbf v +\mathbf g(2)理想流体动力学方程:\nabla \cdot \mathbf v = 0其中,{v}是流体的速度,{p}为流体的压强,{ρ}为流体的密度,{ν}为流体的粘性系数,{g}为重力加速度。
D Dy Sx ePgh2gh1h2h1b Ly CC DDy xPhc第一章 绪论单位质量力:mF f B m =密度值:3mkg1000=水ρ,3mkg13600=水银ρ,3m kg29.1=空气ρ牛顿内摩擦定律:剪切力:dy du μτ=, 内摩擦力:dy du A T μ= 动力粘度:ρυμ= 完全气体状态方程:RTP =ρ压缩系数:dpd 1dp dV 1ρρκ=-=V (Nm 2) 膨胀系数:TT V V Vd d 1d d 1ρρα-==(1/C ︒或1/K)第二章 流体静力学+流体平衡微分方程:01;01;01=∂∂-=∂∂-=∂∂-zpz y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ液体静力学基本方程:C =++=gpz gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱m m 73610/9800012===m m N at2/1013251m N atm =注:hgPP →→ρ ; P N at →→2m /98000乘以 2/98000m N P a =平面上的静水总压力:(1)图算法Sb P = 作用点e h y D+=αsin 1)()2(32121h h h h L e ++=ρ若01=h ,则压强为三角形分布,32Le y D==ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图,α 且用相对压强绘制。
(2)解析法A gh A p P c c ρ== 作用点Ay I y yC xc C D+=矩形123bL I xc= 圆形644d I xc π=曲面上的静水总压力:x c x c x A gh A p P ρ==;gVP z ρ= 总压力zx P P P += 与水平面的夹角xz P P arctan=θ 潜体和浮体的总压力:0=x P 排浮gV F P z ρ==第三章 流体动力学基础质点加速度的表达式⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a zz z y z x z z y z y y y x y y x z x y x x x xAQV Q Q Q Q Q G A====⎰断面平均流速重量流量质量流量体积流量g udAm ρρ流体的运动微分方程:tzt y t x d du z p z d du y p Y d du x p X =∂∂-=∂∂-=∂∂-ρρρ1;1;1不可压缩流体的连续性微分方程 :0zu y u x u z y x =∂∂+∂∂+∂∂恒定元流的连续性方程:dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν无粘性流体元流伯努利方程:g2ug p z g 2u g p z 22222111++=++ρρ 粘性流体元流伯努利方程:w 22222111'h g2ug p z g 2u g p z +++=++ρρ恒定总流的伯努利方程:w2222221111h g2g p z g 2g p z +++=++ναρναρ气流伯努利方程:w 22212211P 2)()(2++=--++ρνρρρνP z z g P a 有能量输入或输出的伯努力方程w 2222221111h g2g p z g 2g p z +++=±++ναρναρm H 总流的动量方程:()∑-=1122Q F νβνβρ 投影式⎪⎩⎪⎨⎧-=-=-=∑∑∑)()()(112211221122z z zy y y x x x v v Q F v V Q F v v Q F ββρββρββρ动能修正系数α:11.105.1A v dAu 33=-==⎰ααα,一般,较均匀流动A动量修正系数β:105.102.1Av dAu 22=-==⎰βββ,一般,较均匀流动A水力坡度dldh dl dH J w=-= 测压管水头线坡度dldh dl dH J wp =-=第四章 流动阻力和水头损失圆管沿程水头损失:gv d l hf22λ=⎪⎭⎫ ⎝⎛==2g 8Re 64C λλ;紊流层流 局部水头损失:gv h j 22ξ=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧==-=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-==-==0.15.015.0v v g 2v v h 1g 2v h 1g 2v h 12221j 2122222j 2211211j出入;管道出口注:管道入口)(用细管流速(突缩管—其余管用断面平均流速—弯管)()(,)(,突然扩大管ζζζζζζζA A A A A A 雷诺数:⎪⎪⎩⎪⎪⎨⎧======575R e e 2300d e d e c cR R c c υνυνυνυνR R R R R ,非圆管,圆管 流态判别⎪⎩⎪⎨⎧=><,流动为临界流为紊流,为层流,cc c Re Re 流动Re e 流动Re e R R谢才公式:RJC V = 谢才系数:λgC 8=; 曼宁公式:611R nC =均匀流动方程式:lh gRgRJ f 0ρρτ== 圆管过流断面上剪应力分布:00ττr r =圆管层流:(1)流速分布式)r (r 4g u220-=μρJ (2)最大流速20max r 4g u μρJ =(3)断面平均流速:2u v max = (4)Re 64=λ紊流剪应力包括:粘性剪应力和附加剪应力,即21τττ+=,dyu d x1μτ=,yx 2u u ''-=ρτ 紊流流速分布一般表达式:C +=Iny k1u*ν非圆管当量直径:)4Re ;2(42υυλR v vd g v d l h R d e e f e ==== 绕流阻力: A U C D D 220ρ=第五章 孔口、管嘴出流和有压管流薄壁小孔口恒定出流:2gH v ϕ=2gH A Q μ=97.0=ϕ 62.0==ϕεμ AA c=ε-0H 作用水头,自由出流gv H H 2200α+=,若00≈v ,HH =0;淹没出流gv gv H H H 22222211210αα-+-=,若021≈≈v v ,HH H H =-=210孔口变水头出流:)(2221H H gA Ft -=μ,若02=H ,放空时间max1222Q V gA H Ft ==μ圆柱形外管嘴恒定出流:2gH v n ϕ=;2gH A Q n μ=;82.0==n n μϕ;μμ32.1=n ;075.0H gP v =ρ简单管道:5228,d g a a alQ h H f πλ=-==比阻,(62/m s )串联管道:ii ni i i ni i i i ni fi l a S Q S Q l a h H i ====∑∑∑===阻抗,12121并联管道:233322222111321,Q l a Q l a Q l a h h h f f f ==== 注:串联、并联管道有时需结合节点流量方程求解。
潜水器在水中运动的微分方程式潜水器在水中运动的微分方程式是描述潜水器在水中运动过程中所遵循的物理规律的数学表达式。
潜水器在水中运动涉及到多个因素,包括水的密度、潜水器的质量、水流对潜水器的作用力等,这些因素的相互作用决定了潜水器在水中的运动状态。
潜水器在水中的运动可以分为两个方向:水平方向和垂直方向。
在水平方向上,潜水器受到水流对其的阻力作用,以及潜水器自身的推进力。
在垂直方向上,潜水器受到浮力和重力的作用。
对于水平方向上的运动,我们可以使用牛顿第二定律来描述。
牛顿第二定律表达了质体的加速度与作用在其上的力之间的关系。
在水平方向上,潜水器所受到的合力等于推进力减去阻力。
根据牛顿第二定律,我们可以得到如下微分方程式:F推 - F阻 = m * a其中,F推表示潜水器的推进力,F阻表示潜水器所受到的阻力,m 表示潜水器的质量,a表示潜水器的加速度。
这个微分方程式可以用来描述潜水器在水平方向上的运动状态。
在垂直方向上,潜水器受到浮力和重力的作用。
根据阿基米德原理,浸入在流体中的物体所受到的浮力等于其排开的流体的重量。
潜水器的浮力等于其排开的水的质量乘以重力加速度。
重力等于潜水器的质量乘以重力加速度。
因此,在垂直方向上,潜水器所受到的合力等于浮力减去重力。
根据牛顿第二定律,我们可以得到如下微分方程式:F浮 - F重 = m * g其中,F浮表示潜水器的浮力,F重表示潜水器的重力,m表示潜水器的质量,g表示重力加速度。
这个微分方程式可以用来描述潜水器在垂直方向上的运动状态。
综合考虑水平方向和垂直方向上的运动,我们可以得到潜水器在水中运动的微分方程式组:F推 - F阻 = m * aF浮 - F重 = m * g这个微分方程式组可以用来描述潜水器在水中运动的状态。
通过求解这个微分方程式组,我们可以得到潜水器在水中的运动轨迹、速度和加速度等信息。
潜水器在水中运动的微分方程式是物理学和工程学领域的重要内容。
通过对潜水器在水中运动的微分方程式进行研究和分析,可以帮助我们理解和预测潜水器的运动行为,为潜水器的设计和控制提供理论依据。