水动力学基本微分方程
- 格式:ppt
- 大小:16.25 MB
- 文档页数:10
水动力常数是指水在流动过程中,单位时间内水体受到的阻力与惯性力的比值。
它反映了水流在某一特定方向上的流动特性,可以用来描述水流的速度、方向以及水流的稳定性。
水动力常数的计算公式为:K = μ* λ* L^3 / D
其中,μ是黏性系数,是流体黏附于物体表面的能力;λ是水流方向的长度,L是流体的体积,D是流体的黏度。
这些参数都与流体的性质和流动状态有关。
具体来说,当水在管道、湖泊、河流等中流动时,会受到周围环境的影响,包括水流的速度、压力、温度等。
这些因素会影响水流的稳定性,进而影响水动力常数的大小。
水动力常数越大,说明水流受到的阻力越大,惯性力越小,水流越稳定;反之则相反。
在实际应用中,水动力常数可以用来评估水流的稳定性、预测水流的流向和速度、优化水利设施的设计等。
例如,在水利工程中,可以通过调整管道的形状、大小、水流方向等因素来改变水动力常数,从而优化水流的效果。
此外,水动力常数还可以用来评估湖泊、河流等水体的生态稳定性,为环境保护和生态修复提供依据。
总之,水动力常数是描述水流特性的重要参数之一,它与流体的性质、流动状态以及周围环境等因素有关。
通过了解水动力常数的变化规律和应用范围,可以更好地理解和应用水流现象,为水利工程、环境保护等领域提供重要的参考依据。
地下⽔动⼒学地下⽔动⼒学要点总结By Zero渗流:地下⽔在岩⽯空隙中或是多孔介质中的流动有效空隙:地下⽔动⼒学中将互相连通的,不为结合⽔所占据的部分空隙叫做有效空隙储⽔系数:表⽰⾯积为1个单位,厚度为整个承压含⽔层的含⽔层柱体,当⽔头改变⼀个单位时,所储存或是释放的⽔量,⽆量纲。
储⽔率:表⽰⾯积为1个单位的承压含⽔层,当厚度为1个单位的时候,⽔头下降⼀个单位时所能释放的⽔量。
给⽔度:是含⽔层的释⽔能⼒。
表⽰单位⾯积的含⽔层,当潜⽔⾯下降⼀个单位长度时在重⼒作⽤下能释放出⽔量。
地下⽔的总⽔头:即地下⽔的总机械能H=Z+P/r⽔⼒坡度:地下⽔动⼒学中,⼤⼩等于梯度值,⽅向沿等⽔头⾯法线所指向的⽔头下降⽅向的⽮量称⽔⼒坡度。
地下⽔流态:包括[层流]、[紊流],判别流态⽤[雷诺数RE判别]Darcy定律的适⽤范围:[在雷诺数RE<1~10之间的某个数值时,即粘滞⼒占优势的层流运动]渗透系数(K):表⽰岩⼟透⽔性能的数量指标。
亦称⽔⼒传导度。
可由达西定律求得:q=KI影响渗透系数的因素:空隙⼤⼩、岩⽯的⾃⾝的性质、渗透液体的物理性质(容重、黏滞性等)渗透率:是表征⼟或岩⽯本⾝传导液体能⼒的参数导⽔系数:即T=KM,它的物理含义是⽔⼒坡度等于1时,通过整个含⽔层厚度的单宽流量。
导⽔系数的概念只能⽤于⼆维的地下⽔流动不能⽤于三维。
岩层透⽔特征的分类:均质、⾮均质、各向同性、各向异性均质:在渗流场中,所有点都具有相同的渗透系数,则称该岩层是均质的,反之为⾮均质。
各向同性:在渗流场中,某⼀点的渗透系数不取决于⽅向,即不管渗流的⽅向如何都具有相同的渗透系数,则称为各向同性,反之为各向异性。
越流系数:当主含⽔层和供给越流的含⽔层间的⽔头差为1个长度单位时,通过主含⽔层和弱透⽔层间单位⾯积上的⽔流量。
定解条件:稳定流的定解条件:基本微分⽅程+边界条件⾮稳定流的定解条件:基本微分⽅程+初始条件+边界条件边界条件的分类:定⽔头边界、定流量边界、混合边界条件稳定流需要的定解条件:基本微分⽅程+边界条件⾮稳定流定解条件:基本微分条件+边界条件+初始条件渗流和空隙中的真实⽔流的区别;⼟壤孔隙度⼩于1,所以渗流流量1、流速⽅⾯渗流速度和地下⽔实际运动速度⽅向不同,速度之间的关系如:v=nu(v渗流速度、n含⽔层的空隙度、u实际评价流速)2、流速⽅向渗流是假象的⽔流,⽽真实⽔流的运动是杂乱⽆章的3、流量⽅⾯渗流流量⼩于实际流量4、⽔头⽅⾯地下⽔总⽔头H=Z+P/r+u^2/(2g) u为地下⽔的流速5、过⽔断⾯完整井:完全贯穿整个含⽔层的井,且在全部含⽔层厚度上都装有过滤器,能全⾯进⽔的井不完整井:未完全贯穿整个含⽔层,只有井底或是井壁含⽔层部分厚度上能进⽔的井不完整井的三种类型:井底进⽔、井壁进⽔、井底和井壁同时进⽔降落漏⽃:在井抽⽔井,以井为中⼼最⼤,离井越远,降深越⼩,总体上形成漏⽃状的⽔头下降去区称为降落漏⽃Dupuit中井径和流量的关系:1】当降深相同时,井径增加同样的幅度,k(渗透系数)⼤的,抽⽔流量⼤2】当对于同⼀岩层(k同),井径增加同样的幅度,⼤降深抽⽔的流量增加的多3】对于同样的岩层和降深,井径越⼤的,再增加井径,抽⽔的流量增⼤的幅度不明显流量和⽔位降深的经验公式类型:直线型(Q=qSw)、抛物线型(Sw=aQ+bQ^2)、幂函数型(Q=qSw^(1/m))、对数型(Q=a+blgSw)对于直线型经验公式,外推降深最⼤范围不能超过抽⽔试验时最⼤降深的1.5倍对于抛物线型、幂函数型和对数曲线型的⽅程,不能超过1.75~3.0倍运⽤叠加原理(线性定解问题)的条件:1】各个边界条件的作⽤彼此独⽴,即边界条件的存在不影响其他边界条件存在时得到的结果2】各抽⽔井的作⽤是独⽴的。
水动力数值模拟的基本原理水动力数值模拟是一种有效的手段,可以对水动力过程进行分析与预测。
在各种海洋工程设计和建设中,水动力数值模拟都起着至关重要的作用。
本文将从基本原理方面入手,详细讲解水动力数值模拟的原则和过程。
一、数学模型基础水动力数值模拟是一个涉及多个学科的交叉领域,涉及数值计算、流体力学、数学、物理等多个方面的知识。
为了进行水动力数值模拟,必须建立相应的数学模型,以描述水动力过程中的物理现象,其中,流体流动最基本的方程之一就是纳维-斯托克斯方程组,也即不可压缩流体的Navier-Stokes equations。
简单来说,这个方程是一个质量守恒方程和一个动量守恒方程的组合。
其次,建立水动力数值模拟还需要考虑到水体性质,例如密度,粘度和温度等。
在不同的情况下,这些特性会对流体流动和水动力行为产生不同的影响,因此,要考虑这些影响才能建立可行的数学模型。
二、数值方法基础建立了数学模型之后,就需要将其转化为数值计算问题。
因为数学模型的解析解通常难以获得,数值模拟可以通过计算机模拟来实现。
与解析方法不同,数值方法不需要求解解析公式,而是将微分方程或偏微分方程转化为有限元、有限体积或有限差分等数值计算公式,从而用算法实现数值解。
数值模拟最终的结果包括程度、变量分布、特定物理量,如速度分布、压力分布等。
目前,最常用的方法包括Euler方法和Runga-Kutta方法。
Euler方法是最简单的数值方法之一,用于解决一阶常微分方程。
这种方法认为,函数在一个点上近似于其切线上的变化率,因此通过一个相对较简单的迭代公式计算变化。
相比之下,Runga-Kutta方法和Euler方法相对复杂,但可以处理更复杂的非线性问题。
这是因为Runga-Kutta方法中每个计算步骤都需要添加适当的权重,以提高迭代的准确性。
三、计算流体力学计算流体力学(CFD)是一种通过分析自然流动和液体传送的物理学方法。
它通常使用CFD软件来模拟流体中的动态和静态行为。