核医学(放射性核素的医学应用)
- 格式:pdf
- 大小:1.54 MB
- 文档页数:13
我国诊疗一体化核素及放射性药物临床应用与展望应用单一放射性核素既可以进行诊断,也可以进行治疗,核医学诊疗一体化是应用不同诊疗核素探针将显像诊断与内照射治疗相结合,从而达到可视化诊断与精准治疗的目的(图1),即诊断性放射性药物分子影像能够显示病灶,病灶也能够靶向摄取标记的治疗性放射性药物,通过核素内照射治疗已发现的病灶,实现个体化诊断与治疗[1-2]。
图1 诊疗一体化放射性药物示意图核医学诊疗一体化已在分化型甲状腺癌(DTC)、嗜铬细胞瘤、骨转移瘤、神经内分泌肿瘤、前列腺癌等肿瘤性疾病中发挥重要作用[3-4],具体放射性药物及其应用见表1。
表1 常用诊疗一体化放射性药物及临床应用[3-4]随着新型诊疗一体化核素及放射性药物的基础、临床研究和应用转化进展,核医学诊疗一体化将在更多肿瘤领域发挥不可估量的作用。
1我国诊疗一体化核素及放射性药物发展历程1958年,我国临床核医学通过进口131I 进行甲状腺疾病诊断与治疗,开启了我国放射性药物诊疗一体化的进程;1965年,中国原子能科学研究院成功国产化制备并生产131I 等放射性核素;1972年,我国已初步建成适应当时医疗需求的医用放射性同位素131I、99Mo-99m Tc发生器等制品及生产线;1985年,中国核动力研究设计院生产了凝胶型99Mo-99m Tc 发生器,以进一步满足临床应用[5]。
1993年起,我国逐渐以进口医用放射性核素替代国产放射性核素。
2001年,中国原子能科学研究院停止生产裂变型99Mo-99m Tc发生器和131I ;2008年,中国核动力研究设计院亦停止生产凝胶型99Mo-99m Tc发生器和131I 。
直至2015年,我国放射性核素生产几乎全部停止,主要的医用同位素原料基本依赖进口。
2015年,中国工程物理研究院恢复生产131I,其供应量约占全国总用量的20%。
2020年,由中国工程物理研究院研制的第一台国产医用回旋加速器正式投入运行,自此我国正电子核素不再全部依赖进口。
核医学在临床中的应用核医学是一门利用放射性同位素进行诊断、治疗和研究的学科。
它在临床中应用广泛,为患者提供了更加准确、及时、个性化的诊疗方案。
下面就让我们深入了解核医学在临床中的应用。
一、核医学诊断1. 定位诊断核医学在定位诊断方面发挥了重要作用。
例如在癌症诊断中,放射性同位素标记的化合物可以注射进体内,被癌细胞摄取,形成像片,通过分析图像可以定位癌细胞位置。
此外,核医学还可以对其他病变如血管疾病、神经系统疾病等进行定位诊断。
2. 功能诊断核医学可以通过提供器官或组织的功能信息,辅助医生进行诊断。
例如心脏病患者可以接受核医学心肌代谢显像检查来了解其心肌代谢情况,有助于确定病变程度和治疗方案。
其他类似的功能诊断还有肺部、肝脏、肾脏等器官的功能评估。
二、核医学治疗1. 放射性同位素治疗放射性同位素治疗是利用植入或注射放射性同位素治疗患病部位的方法。
该治疗方法广泛应用于肿瘤治疗,如利用注射放射性碘治疗甲状腺癌、利用注射放射性药物治疗骨髓瘤等。
放射性同位素治疗的优势在于可以精确到达患病部位,避免对健康组织的伤害。
2. 核素内照射治疗核素内照射治疗是利用放射性药物从内部治疗肿瘤或其他病变。
通常通过口服或注射将放射性药物置入体内,其放射性在体内产生较小的照射剂量,对周边正常组织影响较小,但足以杀死患病细胞。
核素内照射治疗被广泛应用于甲状腺癌、骨髓瘤等疾病的治疗中。
三、剂量学核医学的剂量学被广泛应用于放射线诊断和治疗的剂量测量。
剂量学可以衡量人体接受的放射线剂量,并在安全范围内确定最佳的剂量方案。
此外,剂量学还可以评估不同剂量对器官和组织的影响。
总之,核医学在临床上的应用给医生和患者提供了更加准确、个性化的诊疗方案。
随着科学技术的不断发展,核医学在未来将持续发挥着重要作用。
核医学第一章1。
放射性核素:是一类原子核能自发的,不受外界影响也不受元素所处状态的影响,只和时间有关而转变成其它原子核的核素。
2放射性活度:单位时间内发生衰变的原子核数。
3元素:指质子数、核外电子数和化学性质都相同的同一类原子.4核素:质子数,中子数,能量状态均相同的原子称为核素。
5同位素:质子数相同,中子数不同的元素互称同位素。
6同质异能素:质子数相同,中子数相同,而处于不同能量状态的元素.7电离:带电粒子通过物质时和物质原子的核外电子发生静电作用,使电子脱离原子轨道而形成自由电子的过程。
8激发:原子的电子所获得的能量不足以使其脱离原子,而只能从内层轨道跳到外层轨道,是原子从稳定状态变成激发状态的作用。
9湮灭辐射:正电子衰变产生的正电子,在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,而转化为两个方向相反、能量各自为0。
511MeV的y光子而自身消失的现象。
10光电效应:y光子和原子中的内层壳层电子相互作用,将全部能量交给电子,使其脱离原子成为自由光子的过程。
11康普顿效应:能量较高的y光子与原子核中的核外电子作用时,只将部分能量传递给核外电子,使其脱离原子核束缚成为高速运行的自由电子,而y光子本身能量降低、运行方向发生改变的现象.12有效半衰期:由于物理衰变与生物代谢共同作用而使体内放射性核素减少一半所需要的时间。
13放射性核素的特点是什么?放射性核素具有核衰变和物理半衰期两个特点。
(1)核衰变是指不稳定的核素自发放出射线转变成另一种核素的过程,包括a,B+,B—,y衰变。
(2)物理半衰期是指放射性核素从No衰变到No的一半所需要的时间.14核衰变的方式?a衰变:不稳定原子核放出a粒子(即一个氦核)转变成另一个核素的过程。
每次衰变母核便失去两个质子和两个中子。
B+衰变:指放射性核素放出B+的衰变。
每次衰变时核中一个质子转化为中子,同时释放出一个正电子及一个中微子。
B—衰变:指放射性核素放出B-的衰变。
核医学概念与分类
核医学概念与分类
核医学是一门医学学科,主要研究利用放射性核素、放射性物质和反应源检测、诊断和治疗疾病的技术。
核医学的主要任务是运用放射性核素来发现、诊断和治疗疾病,为疾病治疗和遗传改良提供有效诊断技术和治疗手段。
核医学应用的范围包括核素检查、X射线定位检查、核素摄影检查、核医学疗法治疗等。
核医学可以分为几大类:
1.放射性核素检查:这类检查利用放射性元素提供肌肉、骨骼和内部器官等图像,以便发现疾病的轻微的变化。
2.X射线定位检查:这类检查利用X射线,根据植入的物体的位置,拍摄到特定部位的图像,以检测隐藏在内部的疾病。
3.核素摄影检查:这类检查利用放射性元素,通过拍摄图像,对肝脏、胰腺、肾脏、膀胱等器官的变化进行检测,以便及时发现疾病。
4.核医学疗法治疗:这类治疗利用放射性元素,把放射性元素植入或者注射到需要治疗的部位,以达到治疗疾病的目的。
核医学是一门医学科,它以放射性物质、放射性核素、反应源为检测和治疗疾病的基础,是当今社会先进的医学技术,在诊断与治疗方面发挥着重要的作用。
- 1 -。
核医学的定义和内容核医学是一门研究核素在人体内的应用的学科,它综合了核物理学、放射医学和生物医学等多个学科的知识。
核医学通过使用放射性同位素,以及利用核反应和核辐射等原理来诊断疾病和治疗疾病。
核医学在现代医学中起着重要的作用,它能够提供非侵入性的诊断手段,并且在某些疾病的治疗中也能发挥重要的作用。
核医学主要包括以下几个方面的内容:1. 核素的生产和标记:核医学使用放射性同位素来进行诊断和治疗,因此核素的生产和标记是核医学的重要内容之一。
核素的生产可以通过核反应、裂变或衰变等方式进行,而核素的标记则是将核素与某种生物活性分子结合,使其能够在人体内发挥特定的作用。
2. 核医学的诊断应用:核医学在诊断疾病方面具有独特的优势。
核医学可以通过核素的放射性特性来观察人体内部的生物过程和器官功能,从而帮助医生进行疾病的诊断。
核医学的常用诊断方法包括单光子发射计算机断层显像(SPECT)和正电子发射计算机断层显像(PET)等。
3. 核医学的治疗应用:除了诊断应用外,核医学还在某些疾病的治疗中发挥着重要的作用。
核医学治疗主要通过放射性同位素的辐射效应来杀死肿瘤细胞或抑制其生长。
核医学治疗广泛应用于癌症治疗领域,如放射性碘治疗甲状腺癌、放射性磷治疗骨癌等。
4. 核医学的安全性和辐射防护:核医学使用放射性物质,因此安全性和辐射防护是核医学的重要内容。
在核医学应用中,医务人员需要正确使用和处理放射性物质,以确保患者和医务人员的安全。
同时,辐射防护也是核医学应用中的重要环节,通过合理的防护措施,可以最大程度地减少辐射对人体的损伤。
5. 核医学的发展趋势:随着科学技术的不断发展,核医学也在不断创新和进步。
新的核素和标记方法的出现,使核医学在诊断和治疗上具有更高的灵敏度和准确度。
此外,核医学还与其他医学领域相结合,如核医学影像与分子生物学、基因治疗等,为医学研究和临床应用带来了新的可能性。
核医学作为一门综合性的学科,通过核素的应用来进行疾病的诊断和治疗。
放射性核素在核医学应用中的辐射剂量估算曹瑛;邱小平;葛双【摘要】采用一种估算方法来研究放射性核素在核医学应用中的辐射剂量水平。
选取临床上常用的几种诊疗用放射性核素,分别采用剂量系数法和点源模型估算内照射与外照射剂量。
并对比其他估算方法,分析受照剂量存在差异的原因。
结果发现,单次核医学诊断所致患者的全身待积有效剂量最高可达1.63 Sv,对 A、B 类医护人员造成的单次有效剂量分别为1.48μSv 和1.15μSv。
本研究估算结果稍大于实测有效剂量,小于其他估算结果。
该估算模型可作为核医学放射性核素辐射剂量水平的一种有效估算方法。
%To study the level of radiation dose on nuclear medicine of radionuclides with estimation method.We chose some diagnostic and therapeutic radionuclide to estimate the dose of internal radiation and external exposure with the estimation model of the dose coefficient method and point source.The results showed that the effective dose that patient suffered in a single diagnostic CNM procedure was up to 1.63 Sv;the single effective dose that A and B medical staffs suffered were 1.48 μSv and 1.15 μSv.The dosage level of some part of Diagnostic radionuclide beyond medical guidance level.The estimation results was slightly larger than the measured effective dose,less than other bined with the actual situation,the estimation model can be used as an effective estimation method of the radiation dose level of nuclear medicine radionuclide.【期刊名称】《同位素》【年(卷),期】2015(000)003【总页数】7页(P171-177)【关键词】放射性核素;诊断;治疗;辐射剂量【作者】曹瑛;邱小平;葛双【作者单位】南华大学核科学技术学院,湖南衡阳 421001;南华大学核科学技术学院,湖南衡阳 421001;南华大学核科学技术学院,湖南衡阳 421001【正文语种】中文【中图分类】TL72利用放射性同位素进行核医学诊断和治疗过程中不仅会产生放射性废物,污染环境;同时滞留在患者体内的放射性同位素,还会给患者、医务人员、家属及公众带来额外的辐射照射,存在一定的辐射危害风险[1]。
总论1、核医学(nuclear medicine):核医学是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。
2、核医学的分类包括实验核医学和临床核医学两部分。
3、分子核医学:是分子生物学技术和现代放射性核素示踪技术相结合而产生的一门心的核医学分支学科。
4、实验核医学是利用和技术探索生命现象的本质和规律,为认识正常生理、生化过程和病理过程提供新理论和新技术,已广泛用于医学基础理论研究;其主要内容包裹核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。
5、临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。
诊断核医学包括以脏器现象和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法;治疗核医学利用放射性核素发射的核射线对病变进行高度集中的照射治疗。
6、实验核医学和临床核医学是同一学科的不同分支,前者的成果不断推动后者的发展,而后者在应用与时间中又不断向前者提出新的研究课题,二者相互促进,密不可分。
7、核医学优势:①安全无创:放射性核素显像为无创性检查,所用的放射性核素物理半衰期短,显像剂化学剂量极微,病人所接受的辐射吸收剂量低,因此发生毒副作用的几率极低;②分子功能显像:核医学功能显像是现代医学影像的重要组成内容之一,它是通过探测接受并记录引入人体内靶组织或器官的放射性示踪物发射的γ射线,以影像的方式显示出来,不仅可以显示脏器或病变的位置、大小、形态等解剖学结构,更重要的是可以提供有关脏器和病变的血流、功能、代谢,甚至是分子水平的化学信息;③超敏感和特异性强:利用放射性核素示踪超敏感技术早起预警和探测病变,同时利用抗原与抗体、受体与配体等特异性结合和反义显像、基因表达显像等为临床诊治疾病提供客观、科学依据;④定量分析:在保证获得高质量的分子探针或示踪剂的前提下,借助生理数学模型和计算机软件技术可以进行半定量或定量分析;⑤同时提供形态解剖和功能代谢信息。