太阳能电池板及其工作原理
- 格式:doc
- 大小:185.50 KB
- 文档页数:17
太阳能电池基本工作原理
太阳能电池,又称太阳能光电池或光伏电池,是利用光电效应将太阳光转化为电能的装置。
其基本工作原理如下:
1. 光电效应:光电效应是指当光照射到物质表面时,光子能量被吸收,电子从物质中跃迁到导体能带中,产生电流的现象。
2. 半导体材料:太阳能电池一般采用半导体材料,如硅(Si)
或化合物半导体(如硒化铟镓,硒化铜铟锌等)。
半导体材料具有特殊的能带结构,当光照射到半导体上时,光子能量被吸收,激发半导体中的电子跃迁到导带中,产生电流。
3. P-N结构:太阳能电池一般采用P-N结构,即具有正(P型)和负(N型)电荷载体的区域。
在P-N结构中,阳极(P型)
富余电子,阴极(N型)富余空穴,形成电场。
光照射后,电子从P区跃迁到N区,被电场分离并产生电流。
4. 背电场:太阳能电池还有一个重要的设计是背电场结构。
在背电场结构中,阳极和阴极之间的电场将电子从阳极推向阴极,避免电子再次回到阳极,提高电池的效率。
5. 转化效率:太阳能电池的转化效率指光能转化为电能的比例。
转化效率受到多种因素的影响,如光照强度、光谱分布、温度等。
不同类型的太阳能电池具有不同的转化效率。
通过以上基本工作原理,太阳能电池将太阳能转化为直流电能,可以应用在太阳能发电系统、太阳能充电器等领域。
太阳能电池板原理太阳能电池板是一种能够将太阳能转化为电能的装置,它是太阳能发电系统中的核心部件。
太阳能电池板的原理是基于光伏效应,通过将光能转化为电能来实现太阳能的利用。
下面将详细介绍太阳能电池板的原理及其工作过程。
太阳能电池板的原理主要是基于光伏效应。
光伏效应是指当光线照射到半导体材料上时,会产生电子和正电子的对偶,从而产生电流。
太阳能电池板通常采用的半导体材料是硅,硅材料在受到光照后会产生电子-空穴对,而这些电子-空穴对在电场的作用下会产生电流,从而实现太阳能的转化。
在太阳能电池板中,硅材料被分成两层,一层富含电子,称为N型半导体,另一层富含正电子,称为P型半导体。
当光线照射到太阳能电池板上时,光子会激发硅材料中的电子,使其跃迁到导带中,形成电子-空穴对。
而这些电子-空穴对会在N型和P型半导体之间产生电势差,从而形成电场,使电子和正电子被分离并产生电流。
太阳能电池板在工作过程中,会将光能转化为直流电能,并输出到电路中供电使用。
一般情况下,太阳能电池板会通过并联或串联的方式组成太阳能电池阵列,以提高输出电压和电流,从而满足实际应用的需求。
总的来说,太阳能电池板的原理是基于光伏效应,通过光能转化为电能来实现太阳能的利用。
在太阳能电池板中,硅材料的光伏效应使得光子激发电子-空穴对,产生电势差和电场,最终形成电流输出。
太阳能电池板在实际应用中,可以通过并联或串联的方式组成太阳能电池阵列,以提高输出电压和电流,从而满足不同场合的需求。
通过对太阳能电池板原理的了解,我们可以更好地理解太阳能发电系统的工作原理,从而更好地应用和推广太阳能技术,实现可持续能源的利用和保护环境的目标。
太阳能电池板作为太阳能发电系统的核心部件,其原理的深入理解对于太阳能技术的发展具有重要意义。
太阳能电池板发电原理太阳能电池板是一种利用太阳能进行发电的装置,它的发电原理主要是光伏效应。
光伏效应是指当一种材料暴露在光照下时,光子的能量会激发材料中的电子,从而产生电流。
太阳能电池板通常由大量的太阳能电池组成,这些太阳能电池是由半导体材料制成的。
常见的太阳能电池板材料包括单晶硅、多晶硅和非晶硅等,这些材料具有良好的光电转换性能。
当太阳光照射到太阳能电池板上时,光子的能量会激发半导体材料中的自由电子,使其跃迁到导带能级,形成电子-空穴对。
电子在导带中自由移动,而空穴在价带中自由移动,形成电流。
这种产生电流的过程就是光伏效应。
太阳能电池板中的太阳能电池会将光电转换的电能输出到外部电路中,供电器件使用。
为了增强太阳能电池板的发电效率,常常采用多个太阳能电池组成太阳能电池组。
太阳能电池组的连线方式有串联和并联两种,串联方式可以增加电压,而并联方式可以增加电流。
太阳能电池板的输出功率主要受到光照强度和光照角度的影响。
光照强度越大,太阳能电池板的发电效率越高。
而光照角度的改变也会影响太阳能电池板的发电效率,一般来说,光照垂直于太阳能电池板表面时,发电效率最高。
因此,太阳能电池板通常会安装在能够获得最大光照强度的位置,以提高发电效率。
此外,太阳能电池板还需要进行反射、散射和吸收等光学过程。
在太阳能电池板的表面上会覆盖一层防反射膜,用于减少反射损失,增加光的吸收量。
同时,太阳能电池板表面还会采用纹理结构,以增加光的散射,提高光电转换效率。
总之,太阳能电池板的发电原理主要是利用光伏效应,通过光子的能量激发半导体材料中的电子,产生电流。
太阳能电池板的发电效率受到光照强度和光照角度的影响,通过合理的安装和设计,可以提高太阳能电池板的发电效率,实现可持续的太阳能利用。
太阳能电池板及其工作原理性能及特点:太阳能电池分为单晶硅太阳电池〔坚固耐用,使用寿命一般可达20年。
光电转换效率为15%。
〕多晶硅太阳电池〔其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。
〕非晶硅太阳能电池〔其光电转换率为10%,成本低,重量轻,应用方便。
〕太阳能发电原理:太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。
直接传输适用于较短距离。
基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,到达用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用外表镀有高反射涂层的光导管,通过反射可以将阳光导入室内。
间接传输适用于各种不同距离。
将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。
太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。
当太阳光照射到半导体上时,其中一部分被外表反射掉,其余部分被半导体吸收或透过。
被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。
这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。
光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p 区之间的薄层产生所谓光生伏打电动势。
假设分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。
太阳能电池板工作方式太阳能电池板是一种利用光的能量来产生电能的装置,它是目前可再生能源领域中最为普及和应用广泛的一种技术。
太阳能电池板的工作方式正是基于光的电化学效应和光伏效应。
本文将详细介绍太阳能电池板的工作原理和工作过程。
一、太阳能电池板的工作原理太阳能电池板的工作原理是利用光伏效应将太阳能转化为电能。
光伏效应是指在半导体材料中,当光照射到材料表面时,光子与物质发生相互作用,导致电子从价带跃迁到导带,形成电子空穴对,并产生电流。
太阳能电池板是由具有光伏效应特性的半导体材料制成的。
光线通过太阳能电池板时,被散射或吸收,然后产生电流。
二、太阳能电池板的工作过程太阳能电池板的工作过程可以分为光的吸收、电子释放、电流产生和电能输出四个步骤。
1. 光的吸收:太阳能电池板表面的光伏材料能够吸收光线,特别是可见光和近红外光。
光线穿过太阳能电池板的保护玻璃层并被光敏材料吸收,并转化为光能。
2. 电子释放:光能被吸收后,光子与光敏材料中的原子发生相互作用,形成电子空穴对。
在此过程中,光能将电子从价带中激发到导带中,形成一个载流子。
3. 电流产生:通过半导体材料的特性,电子和空穴会因电场的存在而在材料中分离出来。
在太阳能电池板的结构中,一端被N型半导体材料覆盖,而另一端被P型半导体材料覆盖,形成PN结。
由于PN结两侧的载流子密度不同,会在结的附近形成电场。
这个电场将从PN结两侧分离的电子和空穴聚集起来,形成电流。
4. 电能输出:分离出的载流子通过电路连接输出,形成直流电流。
直流电流可用于直接驱动电器设备,也可以通过逆变器转换为交流电流用于日常用电。
三、太阳能电池板的应用太阳能电池板是一种清洁、可再生的能源装置,广泛应用于各个领域。
1. 太阳能发电:太阳能电池板可以将阳光转化为电能,用于发电系统。
在偏远地区或没有电力供应的地方,太阳能电池板可以提供可靠的电源。
2. 太阳能热水器:太阳能电池板也可以用于太阳能热水器,通过吸收阳光的热能来加热水。
(一)太阳能电池是如何工作的?晶体硅n/p型太阳电池的工作原理:当p型半导体与n型半导体紧密结合连成一块时,在两者的交界面处就形成p-n结。
当光电池被太阳光照射时,在p-n结两侧形成了正、负电荷的积累,产生了光生电压,形成了内建电场,这就是“光生伏打效应”。
从理论上讲,此时,若在内建电场的两侧面引出电极并接上适当负载,就会形成电流,负载上就会得到功率。
太阳能电池组件就是利用半导体材料的电子学特性实现P-V转换的固体装置。
(二)太阳能系统基本组成如上图所示,太阳能发电系统由太阳能电池组件、太阳能控制器、蓄电池(组)组成。
如输出电源为交流220V或110V,还需要配置逆变器。
(三)各部分的作用为:太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。
其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。
太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。
在温差较大的地方,合格的控制器还应具备温度补偿的功能。
其他附加功能如光控开关、时控开关都应当是控制器的可选项。
蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。
其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。
逆变器:太阳能的直接输出一般都是12VDC、24VDC、48VDC。
为能向220VAC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC 逆变器。
效率是选购逆变器时的重要标准之一。
效率越高,意味着在将光电组件产生的直流电转换成交流电的过程中产生的电量损耗就越少。
可以这样说,逆变器的质量决定了发电系统的效益,它是太阳能发电系统的核心。
(四)太阳能发电系统的设计需要考虑的主要因素:太阳能发电系统在哪里使用?该地日光辐射情况如何?系统的负载功率多大?系统的输出电压和频率是多少,直流还是交流?系统每天需要工作多少小时?如遇到没有日光照射的阴雨天气,系统需连续供电多少天?负载的情况,电阻性、电容性还是电感性,启动电流多大?<strong>答案补充</strong>把风能转变为电能是风能利用中最基本的一种方式。
太阳能电池板结构和工作原理
太阳能电池板是一种转换太阳光能为电能的设备,它主要由多个
晶体硅片组成,每个硅片都是一个光电二极管,能将光能转化成电能。
下面,我们详细介绍太阳能电池板的结构和工作原理。
太阳能电池板的结构
太阳能电池板一般由多个晶体硅片组成,每个硅片周围都有一条
电子流通通道,这些通道连接在一起就形成了一个电池。
为了防止晶
体硅片的表面被污染,太阳能电池板会在表面上涂覆一层光电池面板
玻璃,同时还有一个防反射的镀膜。
太阳能电池板的工作原理
太阳能电池板的工作原理实际上是基于光电效应。
当光照到太阳
能电池板上时,光子会激发晶体硅中的电子进入导电状态,从而产生
电流。
晶体硅片上的电子会在电池表面形成正负极,通过连接器将电
流输出。
这个过程就是太阳能电池板转换太阳光能为电能的机制。
太阳能电池板的应用
由于太阳能电池板可以将太阳能转化为电能,因此它被广泛应用
于太阳能光伏发电系统和太阳能热水器系统。
其中,太阳能光伏发电
系统是将太阳能光线转化为电能,通过逆变器转换成为家庭用电。
而
太阳能热水器系统则是利用太阳能板的热传导特性将太阳辐射转化为
热能,从而加热水的系统。
此外,在一些农村地区,太阳能电池板还
被用来照明、充电等方面,转换成为电能,为人们的生活提供了便利。
总之,太阳能电池板作为一种绿色环保的新型能源技术,其结构
和工作原理也非常简单明了。
随着技术的不断进步,太阳能电池板在
人们生产生活中的应用前景将会越来越广阔。
太阳能电池板工作原理及转换效率影响因素解析随着环保意识的不断增强和可再生能源的重要性日益凸显,太阳能作为清洁、无污染的能源来源,逐渐成为人们关注的焦点之一。
而太阳能电池板作为太阳能的主要收集器,其工作原理和转换效率的影响因素成为人们关注的重点之一。
一、太阳能电池板的工作原理1. 光伏效应当光线照射到太阳能电池板上时,光子会转化成电子,从而产生电流。
这种现象被称为光伏效应。
太阳能电池板内部的P-N结构能够将光子转化成电子-空穴对,从而产生电流。
2. 光生电荷分离在太阳能电池板的P-N结构中,当光子进入P-N结后,会激发电子跃迁至导带,同时留下空穴。
由于P-N结的内建电场作用,导致电子和空穴分别向P区和N区移动,从而产生电压。
3. 电荷收集经过光生电荷分离后,电子和空穴被迫向两端移动,形成电流,从而产生输出功率。
二、太阳能电池板转换效率影响因素1. 光照强度光照强度是影响太阳能电池板转换效率的关键因素之一。
光照强度越大,太阳能电池板吸收的光子就越多,从而产生更多的电子-空穴对,提高转换效率。
2. 温度温度的变化也会影响太阳能电池板的转换效率。
一般情况下,太阳能电池板的工作温度越低,其转换效率就会越高。
在实际应用中,需要考虑太阳能电池板的散热和降温措施。
3. 表面反射太阳能电池板的表面反射也会影响其转换效率。
在太阳能电池板的生产和安装过程中,需要考虑表面反射的控制,以提高光的吸收率,从而提高转换效率。
4. 材料特性太阳能电池板的材料特性也会影响其转换效率。
目前主要的太阳能电池板材料包括单晶硅、多晶硅、非晶硅等,不同材料的吸收光谱、光伏效率等特性不同,因此也会影响太阳能电池板的转换效率。
5. 光伏电池布局在太阳能电池板的布局中,需要考虑电池板的倾斜角、朝向等因素,以最大限度地吸收光能,提高转换效率。
结语太阳能电池板的工作原理是基于光伏效应、光生电荷分离和电荷收集等原理,并受到光照强度、温度、表面反射、材料特性和光伏电池布局等因素的影响。
太阳能光伏板工作原理太阳能光伏发电是根据光生伏特效应原理,利用太阳电池将太阳光能直接转化为电能。
不论是独立使用还是并网发电,光伏发电系统主要由太阳电池板(组件)、控制器和逆变器三大部分组成,它们主要由电子元器件构成,但不涉及机械部件。
一、太阳能光伏发电工作原理太阳能光伏发电是依靠太阳能电池组件,利用半导体材料的电子学特性,当太阳光照射在半导体PN结上,由于P-N结势垒区产生了较强的内建静电场,因而产生在势垒区中的非平衡电子和空穴或产生在势垒区外但扩散进势垒区的非平衡电子和空穴,在内建静电场的作用下,各自向相反方向运动,离开势垒区,结果使P区电势升高,N区电势降低,从而在外电路中产生电压和电流,将光能转化成电能。
二、太阳能光伏发电系统组成1.太阳能电池组件一个太阳能电池只能产生大约0.5V的电压,远低于实际使用所需电压。
为了满足实际应用的需要,要把太阳能电池连接成组件。
太阳能电池组件包含一定数量的太阳能电池,这些太阳能电池通过导线连接。
如一个组件上,太阳能电池的数量是36片,这意味着一个太阳能组件大约能产生17V的电压。
通过导线连接的太阳能电池密封成的物理单元称为太阳能电池组件,具有一定的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。
当应用领域需要较高的电压和电流而单个组件不能满足要求时,可把多个组件组成太阳能电池方阵,以获得所需要的电压和电流。
2.直流/交流逆变器将直流电变换成交流电的设备。
由于太阳能电池发出的是直流电,而一般的负载是交流负载,所以逆变器是不可缺少的。
逆变器按运行方式,可分为独立运行逆变器和并网逆变器。
独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。
并网逆变器用于并网运行的太阳能电池发电系统将发出的电能馈入电网。
逆变器按输出波形又可分为方波逆变器和正弦波逆变器。
3.配电室设计由于并网发电系统没有蓄电池及太阳能充放电控制器及交直流配电系统,因此,如果条件允许的话可以将并网发电系统逆变器放在并网点的低压配电室内,否则只要单独建一座4~6平方米的低压配电室就可以了。
太阳能光伏板发电原理
太阳能光伏板是一种能够将太阳能转化为电能的装置,其发电原理基于光电效应。
具体过程如下:
1. 光线照射:当太阳光照射到光伏板上时,光子的能量会被光伏板吸收。
2. 产生电子-空穴对:光子的能量激发光伏板材料中的原子,使得原子中的电子从价带跃迁到导带,形成电子-空穴对(一对正负电荷)。
3. 电荷分离:电子跃迁到导带后,导带成为众多自由电子的“通道”,电子可以在导带中自由运动。
而空穴则留在原子中。
4. 电荷流动:由于光伏板两边分别存在正负极,因此,在光伏板内部的电流会沿着电子流的方向流动,从而形成电流。
5. 集电:光伏板上设置了金属电极,用于收集电流,将电流输出到外部负载上,如电池、电灯或电力系统中。
总之,太阳能光伏板发电的核心是利用光电效应将太阳光转化为电能。
通过太阳光的照射,光子激发材料中的原子,产生电子-空穴对,再通过正负极的差异,将电流输出,达到发电的目的。
解读太阳能电池板的工作原理与性能参数太阳能电池板是一种利用太阳能转化为电能的装置,它的工作原理和性能参数对于我们了解太阳能利用的效率和可行性具有重要意义。
本文将从工作原理和性能参数两个方面进行解读。
一、工作原理太阳能电池板的工作原理基于光电效应。
光电效应是指当光照射到某些物质表面时,光子的能量被物质中的电子吸收,使其获得足够的能量跳跃到导体中。
太阳能电池板的主要组成部分是半导体材料,如硅、镓等。
这些材料具有特殊的电子能级结构,当光子的能量与半导体材料的带隙能量相匹配时,光子被吸收,电子从价带跃迁到导带,形成电子-空穴对。
电子-空穴对的分离形成了电压差,从而产生电流。
太阳能电池板的工作原理可以简单概括为光生电流与扩散电流的平衡。
光生电流是指光子被吸收后形成的电流,而扩散电流是指电子-空穴对在半导体中的扩散运动产生的电流。
在太阳能电池板中,通过合理设计材料的能带结构和电场分布,可以使光生电流和扩散电流达到平衡,从而实现高效的光电转换效果。
二、性能参数太阳能电池板的性能参数是评价其性能优劣的重要指标。
以下是几个常见的性能参数:1. 开路电压(Open Circuit Voltage,简称OCV):当太阳能电池板未连接任何负载时,其输出电压即为开路电压。
开路电压是太阳能电池板的最大输出电压,通常用来描述电池板的电压特性。
2. 短路电流(Short Circuit Current,简称ISC):当太阳能电池板短路时,其输出电流即为短路电流。
短路电流是太阳能电池板的最大输出电流,通常用来描述电池板的电流特性。
3. 最大功率点(Maximum Power Point,简称MPP):太阳能电池板在特定光照和负载条件下,能够输出最大功率的工作点。
最大功率点是太阳能电池板的关键性能参数,它决定了电池板的光电转换效率和输出功率。
4. 填充因子(Fill Factor,简称FF):填充因子是太阳能电池板的一个综合性能指标,它反映了电池板输出特性的优劣。
太阳能电池的工作原理与应用太阳能电池是一种利用太阳能转化为电能的设备,广泛应用于可再生能源领域。
本文将介绍太阳能电池的工作原理以及它在实际应用中的重要性。
一、太阳能电池的工作原理太阳能电池是通过太阳能的光线转化为电能的装置。
它主要由多个组件构成,包括硅片、P-N结、场效应晶体管等。
首先,硅片是太阳能电池的核心部件,通常采用单晶硅、多晶硅或非晶硅制成。
硅片的表面被分为P型和N型两部分,形成一个P-N结。
当光线照射在P-N结上时,光子的能量会激发硅片中的电子,使其跃迁到导带中,从而产生电流。
其次,场效应晶体管起到调节和放大电流的作用。
当光子激发了硅片中的电子后,电流会通过场效应晶体管进行调节并放大,最终输出为可用的电能。
总结起来,太阳能电池的工作原理可以概括为:太阳能的光线通过硅片的P-N结激发电子,产生电流;电流通过场效应晶体管调节和放大,最终输出为可用的电能。
二、太阳能电池的应用太阳能电池具有许多重要的应用,下面将介绍其中几个具有代表性的领域。
1. 太阳能发电太阳能电池广泛应用于太阳能发电系统中。
当太阳光照射到太阳能电池上时,光子会激发电子从而产生电流,这些电流可以被存储和使用。
太阳能发电是一种清洁、环保且可再生的能源,可以为家庭、企业甚至整个城市提供电力。
2. 太阳能热水器太阳能电池也可以用于太阳能热水器中。
太阳能热水器通过将太阳能电池转化的电能用来加热水,从而提供热水供应。
这种方式不仅节约了能源,还减少了对传统能源的依赖。
3. 太阳能照明太阳能电池还可以用于太阳能照明系统中。
太阳能光伏板可以将太阳能转化为电能,供给LED灯进行照明。
这种太阳能照明系统不需要电网供电,具有绿色环保、节能高效的特点。
4. 太阳能移动设备充电如今,越来越多的移动设备使用太阳能电池作为充电方式,例如太阳能手机充电板。
这些充电板可以将太阳能转化为电能,为手机、平板电脑等设备充电。
这种方式非常适合户外活动或缺乏电源的地方。
太阳能光伏发电系统的工作原理太阳能光伏发电系统是利用太阳能将光能转化为电能的一种可再生能源发电方式。
光伏发电系统由多个组件组成,包括太阳能电池板、逆变器、电网接入、电池储能系统等。
以下是太阳能光伏发电系统的工作原理的详细解释:1. 太阳能电池板的光吸收和电能转换:太阳能电池板是整个系统的核心组件,它由多个光电池片组成。
当太阳光照射到光电池片上时,光子的能量将激发光电池片中的电子。
这些激发的电子通过固定的电子流动路径形成电流,产生直流电能。
2. 直流电转换为交流电:由于太阳能电池板输出的电能是直流电,而生活中大部分电器设备使用的是交流电,因此需要通过逆变器将直流电转换为交流电。
逆变器能够将直流电的电流和电压进行调整,使其符合电网的交流电标准。
3. 电网接入和电能供应:经过逆变器转换后的交流电能可直接接入电网供电。
当太阳能电池板所产生的电能超过使用需求时,多余的电能可以流入电网,并向其他用户供电。
而当太阳能电池板所产生的电能不足以满足使用需求时,电网将自动补充电能。
4. 电池储能系统:光伏发电系统中还可以加装电池储能系统,用于存储多余的电能。
当太阳光不足或夜间时,电池可以释放储存的电能,供电给用户使用。
这种方式可以解决夜间或光照不足时的电能需求问题。
5. 监测和控制系统:光伏发电系统通常还配备有监测和控制系统,用于实时监测系统的运行状态和各个组件的工作情况。
通过监测和控制系统,可以及时发现并解决系统中可能出现的故障,并保持系统的稳定运行。
总结起来,太阳能光伏发电系统的工作原理如下:1. 太阳能电池板吸收光能并将其转换为直流电;2. 逆变器将直流电转换为交流电,使其符合电网标准;3. 交流电可直接接入电网供电,满足用户的使用需求;4. 电池储能系统可存储多余的电能,并在需要时供电;5. 监测和控制系统用于实时监测和维护系统运行。
太阳能光伏发电系统在可再生能源中具有重要的地位,其工作原理清晰明确。
通过提高太阳能电池板的光电转换效率、加强逆变器的稳定性和控制系统的可靠性,光伏发电系统的发展前景将更加广阔。
太阳能电池板工作原理及常见故障及检修方法1. 太阳能电池板工作原理太阳能电池板是一种将太阳光转换成电能的装置。
它基于光伏效应原理,通过应用半导体材料的特性,将太阳光的能量转化为电能。
太阳能电池板的主要组成部分是光伏电池,它由多个具有光电效应的材料层叠而成。
当太阳光照射到光伏电池上时,光子与材料中的原子相互作用,使得电子脱离原子而形成电子空穴对。
这些电子和空穴的运动导致产生电流,从而实现能量转换。
2. 常见故障及检修方法2.1 光伏电池损坏常见原因:光伏电池表面受到物理冲击或化学损伤,导致电池片碎裂或损坏。
检修方法:如发现光伏电池损坏,应及时更换受损电池片。
在更换电池片前,确保断开电路连接并遵循相关安全操作规程。
2.2 连接线断开或接触不良常见原因:太阳能电池板连接线受到外部因素的损坏,如物理拉扯、氧化等。
检修方法:检查电池板连接线是否完整,如发现断开或接触不良,应重新焊接或更换连接线。
注意在检修过程中遵循相关安全操作规程。
2.3 反向电流常见原因:反向电流可能是由电池板连接电路接线错误或逆变器故障导致。
检修方法:检查电池板连接电路是否正确连接,确保电路正常。
如确认逆变器故障,应调查原因并修复或更换逆变器。
2.4 清洁不当常见原因:太阳能电池板表面积聚灰尘、污垢等杂质,降低了光伏效能。
检修方法:定期对太阳能电池板进行清洁,可使用清水和软刷轻柔擦拭表面。
避免使用有机溶剂或硬物刮擦,以免损坏电池板表面。
2.5 阴影覆盖常见原因:太阳能电池板被建筑物、树木或其他遮挡物覆盖,导致光照不足,影响能量转换效率。
检修方法:确保太阳能电池板不受遮挡,避免阴影覆盖。
如遮挡无法避免,考虑调整太阳能电池板位置或移除遮挡物。
以上是太阳能电池板工作原理及常见故障及检修方法的简要介绍。
对于故障检修,建议遵循相关操作规程,确保安全可靠地进行维修工作。
如遇到复杂故障,请咨询专业人士协助解决。
太阳能电池板的工作原理
太阳能电池板,也称为光伏电池板,是将太阳光转换为电能的装置。
其工作原理基于光伏效应,即当光照射到半导体材料上时,产生电子和空穴,形成电流。
以下是太阳能电池板的详细工作原理:
1. 光伏效应
光伏效应是太阳能电池板工作的基础。
当光子(太阳光)照射到太阳能电池板表面的半导体材料上时,能量被转移到半导体的原子中。
这能量足够强大,能够使得某些电子获得足够的能量,从而跃升到导带中,形成自由电子,同时在原子中留下一个空穴。
2. 形成电势差
由于光伏效应,太阳能电池板的半导体中形成了电子和空穴,这导致在材料中产生一个电势差。
这电势差将使自由电子流动形成电流,从而形成了一个可用于产生电能的电压。
3. 导电和集电
太阳能电池板的结构包括P型半导体和N型半导体,它们之间形成P-N结。
当太阳光照射时,电子被释放到N型半导体中,而空穴则被推到P型半导体中。
这种电子和空穴的移动导致了电流的流动。
导线将电流从太阳能电池板引导出来,供电器或电池进行储存和使用。
4. 直流电产生
由于太阳能电池板产生的电流是由光伏效应直接生成的,因此是直流电流(DC)。
这种直流电流可以直接用于一些特定的应用,或者通过逆变器转换为交流电流(AC)以供家庭和商业用途。
5. 影响因素
太阳能电池板的效能受多种因素影响,包括光照强度、太阳入射角、表面污染和温度。
优化这些因素有助于提高太阳能电池板的性能和效率。
太阳能电池板以其清洁、可再生的特性,成为可持续能源的一个重要组成部分。
通过深入理解其工作原理,我们能更好地利用太阳能资源,推动清洁能源的发展。
太阳能电池板能量转换原理
太阳能电池板,就是通过太阳能将光能转化为电能的一种装置。
它主要由电池组件、控制器、逆变器和支架四部分组成。
电池组件的主要作用是将太阳光中的可见光能转换成电能,它由一些硅材料构成。
太阳中的光能是有波长的,在不同波长的光对应着不同的能量,所以太阳能电池板把波长较长的太阳光通过特定的方式转换成电能,通过逆变器把电压降低后供给负载使用。
太阳能电池板内部结构由太阳能电池片、接线盒和逆变器等组成。
太阳能电池片是太阳光能的直接转换元件,它将太阳辐射能直接转换成电能。
接线盒是把太阳能电池片连接在一起的一个设备,它把电池组中输入和输出连接起来。
逆变器是把直流电转换成交流电的设备,它把从蓄电池传来的直流电进行处理后变成适合负载使用的交流电。
支架主要由铝合金构成,主要用于支撑太阳能电池板,使其受光面积最大化。
光伏发电系统中,光伏电池板是最核心部分,它将太阳辐射能直接转换为电能。
它由多个太阳能电池组件串联成一个整体,并由接线盒连接起来。
—— 1 —1 —。
太阳能电池板原理及工作原理太阳能电池板,又称为光伏电池板,是一种利用光能直接转化为电能的装置。
它是太阳能发电系统的核心组件之一,具有环保、可再生、无噪音等优点,因此被广泛应用于太阳能发电领域。
太阳能电池板的原理是基于光电效应。
光电效应是指当光照射到物质表面时,光子会与物质的原子或分子相互作用,使得物质中的电子获得能量并跃迁到导电能带中,从而产生电流。
太阳能电池板利用这一原理,将光能转化为电能。
太阳能电池板的工作原理可以简单概括为光生电流与光生电动势的产生。
当太阳光照射到太阳能电池板上时,光子与太阳能电池板中的半导体材料相互作用,使得半导体中的电子被激发。
这些被激发的电子会在半导体中形成电流,即光生电流。
同时,光子的能量也会使得半导体材料中的原子或分子发生电离,产生正电荷。
由于电子和正电荷的分离,形成了电势差,即光生电动势。
这个电势差使得光生电流在电路中流动,从而产生了电能。
太阳能电池板的结构是由多个太阳能电池组成的。
每个太阳能电池都是由两层半导体材料构成的。
其中一层是P型半导体,另一层是N型半导体。
P型半导体中的杂质掺入物是三价元素,如硼,造成了电子的缺失,形成了空穴。
N型半导体中的杂质掺入物是五价元素,如磷,造成了电子的过剩。
当两种半导体材料接触时,形成了PN结。
PN结具有特殊的电学性质,即形成了内建电场,使得电子和空穴发生漂移,并在PN结附近形成耗尽层。
当太阳光照射到太阳能电池板上时,光子的能量会激发P型半导体中的电子跃迁到N型半导体中。
这些电子在PN结附近被内建电场分离,从而形成了电势差。
电子沿着外部电路流动,从N型半导体回到P型半导体,形成了光生电流。
而空穴则从P型半导体流向N 型半导体,形成了反向电流。
这样,太阳能电池板就产生了电能。
需要注意的是,太阳能电池板的工作效率受到多种因素的影响。
首先,光照强度是影响太阳能电池板输出功率的重要因素。
光照强度越大,太阳能电池板产生的电能就越多。
其次,太阳能电池板的温度也会影响其工作效率。
太阳能板工作原理
太阳能板,也被称为太阳能电池板,是一种利用太阳能转换为电能的设备。
它
是由许多太阳能电池组成的,这些电池可以将太阳光直接转化为电能。
太阳能板的工作原理主要是基于光电效应和半导体材料的特性。
首先,让我们来了解一下光电效应。
光电效应是指当光线照射到某些物质表面时,会使得物质中的电子受到激发,从而跃迁到导带中,产生电流。
这是由于光子的能量被吸收后,使得电子获得足够的能量跃迁到导带中,从而产生电流。
太阳能电池板的工作原理正是基于光电效应。
太阳能电池板中的太阳能电池是
由半导体材料制成的,当太阳光照射到太阳能电池板上时,光子被吸收,激发出电子,使得电子跃迁到导带中,从而产生电流。
这就是太阳能电池板将太阳能转化为电能的基本原理。
在太阳能电池板中,常用的半导体材料包括硅、硒化镉、硒化铟等。
这些材料
具有良好的光电转换性能,能够高效地将太阳能转化为电能。
此外,太阳能电池板的表面还覆盖有反射层和防反射层,以提高光的吸收率和光电转换效率。
除了光电效应和半导体材料的特性外,太阳能电池板的工作原理还与光照强度、光照角度等因素有关。
光照强度越大,太阳能电池板的发电效率就越高;而光照角度的变化也会影响太阳能电池板的发电效率,一般来说,垂直光照时效率最高。
总的来说,太阳能电池板的工作原理是基于光电效应和半导体材料的特性,通
过光子被吸收后激发电子跃迁到导带中产生电流,最终将太阳能转化为电能。
随着科技的不断进步,太阳能电池板的效率和性能将会不断提高,成为未来清洁能源的重要组成部分。
太阳能电池板的工作原理太阳能电池板是一种能够将太阳光转化为电能的装置。
它是太阳能发电系统中最重要的组成部分之一。
太阳能电池板的工作原理是基于光电效应的原理。
光电效应是指当光照射到某些物质表面时,光子的能量被物质中的电子吸收,使得电子从原子的价带跃迁到导带,从而产生电流。
太阳能电池板利用光电效应将太阳光转化为电能。
太阳能电池板的主要组成部分是半导体材料。
常见的半导体材料有硅、硒化铟、硒化镉等。
其中,硅是最常用的材料。
太阳能电池板通常由多个薄片组成,每个薄片都是由两层不同类型的半导体材料构成。
太阳能电池板的结构通常分为P型和N型两个区域。
P型区域富含正电荷,N型区域富含负电荷。
两个区域之间形成的界面称为PN结。
PN结的形成是通过掺杂的方式实现的,即在半导体材料中加入少量的杂质。
当太阳光照射到太阳能电池板上时,光子的能量被半导体材料吸收。
如果光子的能量大于半导体材料的带隙能量,光子的能量就足以将电子从价带跃迁到导带,形成自由电子和空穴。
自由电子和空穴在PN结中会发生扩散运动。
自由电子会向N型区域移动,空穴会向P型区域移动。
这样,在PN结两侧形成了电势差,即产生了电场。
当外部电路连接到太阳能电池板上时,电子和空穴会沿着电路流动,形成电流。
这就是太阳能电池板产生电能的过程。
为了提高太阳能电池板的效率,通常会在表面涂覆一层反射膜,以增加光的吸收率。
此外,太阳能电池板还可以通过串联和并联的方式组成太阳能电池阵列,以提高输出功率。
总结一下,太阳能电池板的工作原理是基于光电效应。
当太阳光照射到太阳能电池板上时,光子的能量被半导体材料吸收,形成自由电子和空穴。
自由电子和空穴在PN结中发生扩散运动,形成电场。
当外部电路连接到太阳能电池板上时,电子和空穴沿着电路流动,产生电流,从而将太阳光转化为电能。
太阳能电池板的工作原理为可再生能源的利用提供了重要的技术支持,具有广阔的应用前景。
太阳能电板的工作原理
太阳能电板的工作原理是利用太阳光中的光子来转换成电能的一
种可再生能源系统。
太阳能电池由三层构成:一层是具有正电极和负
电极的外部装置,这层是太阳电池片外壳;第二层是晶体硅,它是太
阳能电池形成电力的主要结构,可以把能量储存在里面;最后一层是
把晶体硅的光子转换成电流的一层。
这层是把光子转换成电能的重要
部分。
太阳能电池在接受能量的时候,太阳光是由一些可以被太阳电池
吸收的紫外线和可见光组成的,紫外线和可见光穿过太阳电池外壳后
会到达晶体硅,将太阳光中的光子释放出来,进而发生电子耦合现象。
晶体硅内部有电子激子层,当电子释放出来后,就会驱使电子运动,
氧离子产生局部电荷,电子把能量推入电极。
当电池离开太阳光的环境的时候,就需要在太阳能电池板上把光
子转换成电流,以便进行电源输出。
太阳能电池板的外部装置会把人
造的晶晶电流输出到配套的电源系统中,从而提供电能。
太阳能电池
板的晶硅层则像一个电容器,它可以把电子能量储存起来,等到用的
时候释放出来。
太阳能电池板在利用太阳能把光子转换成电流的时候只需要一点
儿光就可以工作,而当能量输出用完后,也不会有任何污染,因此受
到越来越多人的青睐。
太阳能电池板及其工作原理太阳能电池板及其工作原理性能及特点:太阳能电池分为单晶硅太阳电池(坚固耐用,使用寿命一般可达20年。
光电转换效率为15%。
)多晶硅太阳电池(其光电转换效率约14.5%,材料制造简便,节约电耗,总的生产成本较低非晶硅太阳电池。
)非晶硅太阳能电池(其光电转换率为10%,成本低,重量轻,应用方便。
)太阳能发电原理:太阳能不象煤和石油一样用交通工具进行运输,而是应用光学原理,通过光的反射和折射进行直接传输,或者将太阳能转换成其它形式的能量进行间接传输。
直接传输适用于较短距离。
基本上有三种方法:基本上有三种方法:通过反射镜及其它光学元件组合,改变阳光的传播方向,达到用能地点;通过光导纤维,可以将入射在其一端的阳光传输到另一端,传输时光导纤维可任意弯曲;采用表面镀有高反射涂层的光导管,通过反射可以将阳光导入室内。
间接传输适用于各种不同距离。
将太阳能转换为热能,通过热管可将太阳能传输到室内;将太阳能转换为氢能或其它载能化学材料,通过车辆或管道等可输送到用能地点;空间电站将太阳能转换为电能,通过微波或激光将电能传输到地面。
太阳能的光电转换是指太阳的辐射能光子通过半导体物质转变为电能的过程,通常叫做"光生伏打效应”,太阳电池就是利用这种效应制成的。
当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。
被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子-空穴对。
这样,光能就以产生电子-空穴对的形式转变为电能、如果半导体内存在P-n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n 区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P-n结附近形成与势垒电场方向相反光的生电场。
光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。
若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。
如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。
太阳能发电原理图如下:教你制作太阳能电池第一步:制作二氧化钛膜(1)先把二氧化钛粉末放入研钵中与粘合剂进行研磨(2)接着用玻璃棒缓慢地在导电玻璃上进行涂膜(3)把二氧化钛膜放入酒精灯下烧结10~15分钟,然后冷却第二步:利用天然染料为二氧化钛着色如图所示,把新鲜的或冰冻的黑梅、山梅、石榴籽或红茶,加一汤匙的水并进行挤压,然后把二氧化钛膜放进去进行着色,大约需要5分钟,直到膜层变成深紫色,如果膜层两面着色的不均匀,可以再放进去浸泡5分钟,然后用乙醇冲洗,并用柔软的纸轻轻地擦干。
第三步:制作正电极由染料着色的TiO2为电子流出的一极(即负极)。
正电极可由导电玻璃的导电面(涂有导电的SnO2膜层)构成,利用一个简单的万用表就可以判断玻璃的哪一面是可以导电的,利用手指也可以做出判断,导电面较为粗糙。
如图所示,把非导电面标上‘+’,然后用铅笔在导电面上均匀地涂上一层石墨。
第四步:加入电解质利用含碘离子的溶液作为太阳能电池的电解质,它主要用于还原和再生染料。
如图所示,在二氧化钛膜表面上滴加一到两滴电解质即可。
第五步:组装电池把着色后的二氧化钛膜面朝上放在桌上,在膜上面滴一到两滴含碘和碘离子的电解质,然后把正电极的导电面朝下压在二氧化钛膜上。
把两片玻璃稍微错开,用两个夹子把电池夹住,两片玻璃暴露在外面的部分用以连接导线。
这样,你的太阳能电池就做成了。
第六步:电池的测试在室外太阳光下,检测你的太阳能电池是否可以产生电流。
多晶硅太阳能电池制作工艺众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳能电池的光电转换效率,降低生产成本应该是我们追求的最大目标。
从目前国际太阳能电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。
从工业化发展来看,重心已由单晶向多晶方向发展,主要原因为: [1]可供应太阳能电池的头尾料愈来愈少;[2]对太阳能电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;[3]多晶硅的生产工艺不断取得进展,全自动浇铸炉每生产周期(50小时)可生产200公斤以上的硅锭,晶粒的尺寸达到厘米级;[4]由于近十年单晶硅工艺的研究与发展很快,其中工艺也被应用于多晶硅电池的生产,例如选择腐蚀发射结、背表面场、腐蚀绒面、表面和体钝化、细金属栅电极,采用丝网印刷技术可使栅电极的宽度降低到50微米,高度达到15微米以上,快速热退火技术用于多晶硅的生产可大大缩短工艺时间,单片热工序时间可在一分钟之内完成,采用该工艺在100平方厘米的多晶硅片上作出的电池转换效率超过14%。
据报道,目前在50~60微米多晶硅衬底上制作的电池效率超过16%,利用机械刻槽、丝网印刷技术在100平方厘米多晶上效率超过17%,无机械刻槽在同样面积上效率达到16%,采用埋栅结构,机械刻槽在130平方厘米的多晶上电池效率达到15.8%。
下面从两个方面对多晶硅电池的工艺技术进行讨论:1. 实验室高效电池工艺实验室技术通常不考虑电池制作的成本和是否可以大规模化生产,仅仅研究达到最高效率的方法和途径,提供特定材料和工艺所能够达到的极限。
1.1关于光的吸收对于光吸收主要是:(1)降低表面反射;(2)改变光在电池体内的路径;(3)采用背面反射。
对于单晶硅,应用各向异性化学腐蚀的方法可在(100)表面制作金字塔状的绒面结构,降低表面光反射。
但多晶硅晶向偏离(100)面,采用上面的方法无法作出均匀的绒面,目前采用下列方法:[1]激光刻槽用激光刻槽的方法可在多晶硅表面制作倒金字塔结构,在500~90 0nm光谱范围内,反射率为4~6%,与表面制作双层减反射膜相当,而在(100)面单晶硅化学制作绒面的反射率为11%。
用激光制作绒面比在光滑面镀双层减反射膜层(ZnS/MgF2)电池的短路电流要提高4%左右,这主要是长波光(波长大于800nm)斜射进入电池的原因。
激光制作绒面存在的问题是在刻蚀中,表面造成损伤同时引入一些杂质,要通过化学处理去除表面损伤层。
该方法所作的太阳电池通常短路电流较高,但开路电压不太高,主要原因是电池表面积增加,引起复合电流提高。
[2]化学刻槽应用掩膜(Si3N4或SiO2)各向同性腐蚀,腐蚀液可为酸性腐蚀液,也可为浓度较高的氢氧化钠或氢氧化钾溶液,该方法无法形成各向异性腐蚀所形成的那种尖锥状结构。
据报道,该方法所形成的绒面对700~1030微米光谱范围有明显的减反射作用。
但掩膜层一般要在较高的温度下形成,引起多晶硅材料性能下降,特别对质量较低的多晶材料,少子寿命缩短。
应用该工艺在225cm2的多晶硅上所作电池的转换效率达到16.4%。
掩膜层也可用丝网印刷的方法形成。
[3]反应离子腐蚀(RIE)该方法为一种无掩膜腐蚀工艺,所形成的绒面反射率特别低,在45 0~1000微米光谱范围的反射率可小于2%。
仅从光学的角度来看,是一种理想的方法,但存在的问题是硅表面损伤严重,电池的开路电压和填充因子出现下降。
[4]制作减反射膜层对于高效太阳电池,最常用和最有效的方法是蒸镀ZnS/MgF2双层减反射膜,其最佳厚度取决于下面氧化层的厚度和电池表面的特征,例如,表面是光滑面还是绒面,减反射工艺也有蒸镀Ta2O5, PECVD沉积Si3N3等,ZnO导电膜也可作为减反材料。
1.2金属化技术在高效电池的制作中,金属化电极必须与电池的设计参数,如表面掺杂浓度、PN结深,金属材料相匹配。
实验室电池一般面积比较小(面积小于4cm2),所以需要细金属栅线(小于10微米),一般采用的方法为光刻、电子束蒸发、电子镀。
工业化大生产中也使用电镀工艺,但蒸发和光刻结合使用时,不属于低成本工艺技术。
[1]电子束蒸发和电镀通常,应用正胶剥离工艺,蒸镀Ti/Pa/Ag多层金属电极,要减小金属电极所引起的串联电阻,往往需要金属层比较厚(8~10微米),缺点是电子束蒸发造成硅表面/钝化层介面损伤,使表面复合提高。
因此,工艺中,采用短时蒸发Ti/Pa层,在蒸发银层的工艺。
另一个问题是金属与硅接触面较大时,必将导致少子复合速度提高,工艺中,采用了隧道结接触的方法,在硅和金属成间形成一个较薄的氧化层(一般厚度为20微米左右)应用功函数较低的金属(如钛等)可在硅表面感应一个稳定的电子积累层(也可引入固定正电荷加深反型)。
另外一种方法是在钝化层上开出小窗口(小于2微米),再淀积较宽的金属栅线(通常为10微米),形成mushroom—like 状电极,用该方法在4cm2 Mc-Si上电池的转换效率达到17.3%。
目前,在机械刻槽表面也运用了Shallow angle (oblique)技术。
1.3 PN结的形成技术[1]发射区形成和磷吸杂对于高效太阳能电池,发射区的形成一般采用选择扩散,在金属电极下方形成重杂质区域而在电极间实现浅浓度扩散,发射区的浅浓度扩散即增强了电池对蓝光的响应,又使硅表面易于钝化。
扩散的方法有两步扩散工艺、扩散加腐蚀工艺和掩埋扩散工艺,目前采用选择扩散,150mm×150mm电池转换效率达到16.4%,n++、n+区域的表面方块电阻分别为20Ω和80Ω。
对于Mc-Si材料,扩磷吸杂对电池的影响得到广泛的研究,较长时间的磷吸杂过程(一般3~4小时),可使一些Mc-Si的少子扩散长度提高两个数量级。
在对衬底浓度对吸杂效应的研究中发现,即便对高浓度的衬第材料,经吸杂也能够获得较大的少子扩散长度(大于200微米),电池的开路电压大于638mv, 转换效率超过17%。
[2]背表面场的形成及铝吸杂技术在Mc-Si电池中,背p+p结由均匀扩散铝或硼形成,硼源一般为BN、BBr、APCVD SiO2:B2O8等,铝扩散为蒸发或丝网印刷铝,800度下烧结所完成,对铝吸杂的作用也开展了大量的研究,与磷扩散吸杂不同,铝吸杂在相对较低的温度下进行。
其中体缺陷也参与了杂质的溶解和沉积,而在较高温度下,沉积的杂质易于溶解进入硅中,对Mc-Si产生不利的影响。
到目前为至,区域背场已应用于单晶硅电池工艺中,但在多晶硅中,还是应用全铝背表面场结构。
[3]双面Mc-Si电池Mc-Si双面电池其正面为常规结构,背面为N+和P+相互交叉的结构,这样,正面光照产生的但位于背面附近的光生少子可由背电极有效吸收。
背电极作为对正面电极的有效补充,也作为一个独立的栽流子收集器对背面光照和散射光产生作用,据报道,在AM1.5条件下,转换效率超过19%。
1.4 表面和体钝化技术对于Mc-Si,因存在较高的晶界、点缺陷(空位、填隙原子、金属杂质、氧、氮及他们的复合物)对材料表面和体内缺陷的钝化尤为重要,除前面提到的吸杂技术外,钝化工艺有多种方法,通过热氧化使硅悬挂键饱和是一种比较常用的方法,可使Si-SiO2界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面,在氢气氛中退火可使钝化效果更加明显。