2.3等差数列前N项和的公式
- 格式:ppt
- 大小:1.18 MB
- 文档页数:12
2.3 等差数列的前n 项和公式(2) 课前预习 ● 温故知新 学前温习1.等差数列的前n 项和公式设等差数列{n a }的公差为d ,其前n 项和Sn= 或Sn= .2.等差数列的前n 项和公式与二次函数的关系 新课感知1.在等差数列{n a }中,若1a >0,d <0,则Sn 是否存在最大值?若存在,如何求?2. 已知{}n a 是等差数列,n S 是其前n 项和,求证:12186126,,S S S S S --也成等差数列。
由此推广,你能得到什么结论? 课堂学习 ● 互动探究 知识精讲1.等差数列的前n 项和有如下的性质.(1)若{a n }为等差数列,前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…也为等差数列.(2)等差数列{a n }中,数列⎩⎨⎧⎭⎬⎫S n n 仍为等差数列.(3)等差数列{a n }中,若S m =S p (m≠p),则S m +p =0. (4)在等差数列{a n }中,①若项数为偶数2n ,则S 2n =n(a 1+a 2n )=n(a n +a n +1)(a n ,a n +1为中间两项);S 偶-S 奇=nd ;S 奇S 偶=a na n +1.②若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=nn -1. (5)若数列{n a }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则a n b n =n n --2121S T.2.求等差数列的前n 项和S n 的最值有两种方法: (1)利用二次函数的最值特征求解.S n =n 1a +nn -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n=d 2⎣⎢⎡⎦⎥⎤n -⎝ ⎛⎭⎪⎫12-a 1d 2-d 2⎝ ⎛⎭⎪⎫12-a 1d 2.由二次函数的对称性及n∈N *知,当n 取最接近12-a 1d 的正整数时,S n 取到最大值(或最小值),值得注意的是最接近12-a 1d 的正整数有时有1个,有时有2个. (2)根据项的正负来定.若1a >0,d<0,则数列前n 项和有最大值,可由n a ≥0,且1+n a ≤0,求得n 的值 若1a <0,d>0,则数列前n 项和有最小值,可由n a ≤0,且1+n a ≥0,求得n 的值 课堂点拨1、在等差数列{ a n }中, 125a =,179s s =,求n s 的最大值.解析:方法一:由S 17=S 9,得25×17+172(17-1)d =25×9+92(9-1)d , 解得d =-2,∴S n =25n +n2(n -1)(-2)=-(n -13)2+169, 由二次函数性质得当n =13时,S n 有最大值169. 方法二:先求出d =-2(同方法一), ∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0a n +1=25-2n<0,得⎩⎪⎨⎪⎧n≤1312n>1212.∴当n =13时,S n 有最大值169. 方法三:先求出d =-2(同方法一),1,..S S a a a a a a a a a a a a a d a a a ⋯<>∴><1791011171017111612151314131413140020000Q ,由=得+++=, 而+=+=+= +故+==-,,,故n =13时,Sn 有最大值169.方法四:先求出d =-2(同方法一)得S n 的图象如图所示,由S 17=S 9知图象对称轴n =9+172=13, ∴当n =13时,取得最大值169.【点拨】求等差数列前n 项和的最值,常用的方法: (1)利用等差数列的单调性,求出其正负转折项; (2)利用性质求出其正负转折项,便可求得和的最值;(3)利用等差数列的前n 项和Sn=An 2+Bn (A 、B 为常数)为二次函数,根据二次函数的性质求最值.2、已知数列{n a }为等差数列,其前12项和354,在前12项中,偶数项之和与奇数项之和的比为32∶27,求这个数列的通项公式.解析:方法一:由等差数列的性质可知奇数项a 1,a 3,a 5,…,a 11与偶数项a 2,a 4,a 6,…,a 12仍然成等差数列,设{a n }的首项为a 1,公差为d ,则 S 偶=a 2×6+6×52×2d=6a 1+36d , S 奇=a 1×6+6×52×2d=6a 1+30d , ⎩⎪⎨⎪⎧12a 1+66d =354,6a 1+36d 6a 1+30d =3227,解得⎩⎪⎨⎪⎧a 1=2,d =5.∴a n =a 1+(n -1)d =5n -3.方法二:设奇数项与偶数项的和分别为S 奇,S 偶, ∴⎩⎪⎨⎪⎧S 偶+S 奇=354,S 偶S 奇=3227,∴⎩⎪⎨⎪⎧S 偶=192,S 奇=162,∴d=192-1626=5, 又∵S 奇=a 1+a 11×62=3(2a 1+10d)=162, ∴a 1=2,∴a n =a 1+(n -1)d =5n -3.【点拨】等差数列{n a }中,a 1,a 3,a 5,…是首项为a 1,公差为2d 的等差数列,a 2,a 4,a 6,…是首项为a 2,公差为2d 的等差数列.当项数为2n 时,S 偶-S 奇=nd ,方法2中运用到了这些,利用等差数列前n 项和公式列方程组求解或根据等差数列的奇数项依次成等差数列,偶数项依次成等差数列求解.3、两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,求a n b n . 解析: 方法一:设a n =a 1+(n -1)d ,b n =b 1+(n -1)e. 取n =1,则a 1b 1=S 1T 1=12,所以b 1=2a 1.所以S n T n =na 1+n n -12d nb 1+n n -12e =a 1+n -12d b 1+n -12e =a 1+n 2d -d22a 1+n 2e -e 2=2n3n +1,故en 2+(4a 1-e)n =32dn 2+⎝ ⎛⎭⎪⎫3a 1-32d +d 2n +a 1-d 2.从而⎩⎪⎨⎪⎧a 1-d2=0,4a 1-e =3a 1-d ,e =32d.即⎩⎪⎨⎪⎧d =2a 1,e =3a 1.所以a n b n =2n -13n -1.方法二:设S n =an 2+bn ,T n =pn 2+qn(a ,b ,p ,q 为常数), 则S n T n =an +b pn +q =2n3n +1,所以3an 2+(3b +a)n +b =2pn 2+2qn ,从而⎩⎪⎨⎪⎧3a =2p ,3b +a =2q ,b =0,即⎩⎪⎨⎪⎧a =2q ,b =0,p =3q ,所以S n =2qn 2,T n =3qn 2+qn.当n =1时,a 1b 1=S 1T 1=12;当n≥2时,a n b n =S n -S n -1T n -T n -1=2n -13n -1方法三:1212112121()22()22n n n n n n n n n a a a a S n b b b b T ----+===+2(21)21=.3(21)131n n n n --=-+- 【点拨】由S n T n =7n +2n +3,设S n 与T n 时,如果设成S n =(7n +2)k ,T n =(n +3)k 则错误.从此 的性质方向讲是正确的.但要考虑到等差数列的前n 项和为关于n 的二次函数,所以应设为S n =(7n +2)kn ,T n =(n +3)kn. , 当堂达标1.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .92、设{}n a 是公差为2的等差数列,若5097741=++++a a a a Λ, 则99963a a a a ++++Λ的值为 ( ) A. 78 B. 82 C. 148 D. 1823. 设S n 是等差数列{}n a 的前n 项和,若3163=S S ,则=126S S ( ) (A )103 (B ) 31 (C )8 (D )914. 已知数列}{n a 、}{n b 都是公差为1的等差数列,其首项分别为1a 、1b ,且511=+b a ,*11,N b a ∈.设n b n a c =(*N n ∈),则数列}{n c 的前10项和等于( )A .55B .70C .85D .1005.等差数列{a n }中,S n 是其前n 项和,a 1=-11,S 1010-S 88=2,则S 11=( )A .-11B . 11C .10D 。
2.3 等差数列的前n 项和(一)[学习目标]1.掌握等差数列前n 项和公式及其推导方法;2. 会用等差数列的前n 项和公式解决一些简单的有关的问题 [预习导引]1.数列前n 项和的概念把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n . 即S n =a 1+a 2+…+a n 问题1:如何由数列的前n 项和n S 求出通项公式n a ?2.等差数列前n 项和公式问题2:如何快速计算1+2+…+n=?问题3:受上述算法的启示,如何推导等差数列前n 项和公式n S ,方法是什么?新知1:等差数列前n 项和1()2n n n a a S +=(常与性质“若m n k l +=+则m n k l a a a a +=+”使用) 问题4:将通项1(1)n a a n d =+-代入上式,你能得到怎样的前n 项和公式n S ?新知2:等差数列前n 项和21(1)A B 2n n n S na d n n -=+=+其中A ________,B __________==(常建立1,a d 的方程组或看成关于n 的函数)题型一 与前n 项和S n 有关的基本量的计算 例1 在等差数列{a n }中(1)a 1=56,a n =-32,S n =-5,求n 和d . (2)已知d =2,a n =11,S n =35,求a 1和n .跟踪演练1在等差数列{a n }中(1)已知a 6=10,S 5=5,求a 8和S 10;(2)已知a 3+a 15=40,求S 17.题型二 等差数列前n 项和的最值例2 已知等差数列5,427,347,…的前n 项和为S n ,求使得S n 最大的序号n 的值.跟踪演练2 设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的范围; (2)问前几项的和最大,并说明理由.题型三 利用S n 与a n 的关系求a n例3 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?跟踪演练3 已知数列{a n }的前n 项和S n =3n ,求a n .当堂达标A 组1. 在等差数列{}n a 中,10120S =,那么110a a +=( ). A. 12 B. 24 C. 36 D. 482.在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663.一个五边形的内角度数成等差数列,且最小角是046,则最大角是( ) A.0108 B. 0139 C. 0144 D. 01704.在小于100的正整数中共有 个数能被3除余2? 这些数的和是 。
2.3 等差数列的前n 项(1)课前预习学前温习1.等差数列的定义:2.等差数列的通项公式3.等差数列的常用性质(1)通项公式的推广:n a =m a + ,(n , m∈N*).(2)若{}n a 为等差数列,且k+l=m+n ,(k ,l ,m ,n∈N*),则 .(3)若{}n a 是等差数列,则a a a ++k k m k 2m ,,,…(k ,m∈N*)是公差为 的等差数列. 新课感知1.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和Sn= 或Sn= .2.如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?课堂学习 ● 互动探究知识精讲1、等差数列前n 项和公式的推导:(1) 用“倒序相加法”进行求和。
],)1([...)2()(1111d n a d a d a a S n -+++++++=①],)1([...)2()(d n a d a d a a S n n n n n --++-+-+=②由①+②,得 2n S =1111n n n n a a a a a a a a ++++n 个()+()+()+...+())(1n a a n +=由此得到等差数列}{n a 的前n 项和的公式2)(1n n a a n S +=(2)其他的推导途径 123...n n S a a a a =+++=1111()(2)...[(1)]a a d a d a n d +++++++-=1[2...(1)]na d d n d ++++-=1[12...(1)]na n d ++++-=1(1)2n n na d -+ 2. 等差数列前n 项和公式的理解2)(1n n a a n S +=或n S =1(1)2n n na d -+ (1)公式的结构特征:第一个公式反映了等差数列的任意的第k 项与倒数第k 项的和等于首项与末项的和这个内在性质。
数列的前n项和方法总结
数列是数学中常见的一种数值序列,求解数列的前n项和在许多数学和实际问题中都具有重要意义。
下面是关于数列的前n项和的几种常见方法总结:
1. 等差数列的前n项和:
若数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,那么数列的前n项和Sn = (n/2)(a1 + an)。
2. 等比数列的前n项和:
若数列的通项公式为an = a1 * r^(n-1),其中a1为首项,r为公比(r ≠ 0),那么数列的前n项和Sn = a1 * (1-r^n)/(1-r)。
3. 斐波那契数列的前n项和:
斐波那契数列是一种特殊的数列,前两项为1,后续项为前两项之和。
若n 为正整数,那么斐波那契数列的前n项和为Sn = F(n+2) - 1,其中F(n)表示第n项斐波那契数。
4. 平方数列的前n项和:
平方数列是一种特殊的数列,每一项都是某个正整数的平方。
若数列的通项公式为an = n^2,那么数列的前n项和Sn = (n(n+1)(2n+1))/6。
5. 等差子数列的前n项和:
若一个数列是等差数列的子数列,其公差与等差数列相同,那么子数列的前n项和等于原等差数列的前n项和减去首项之前的和。
以上是几种常见数列的前n项和的求解方法。
在实际应用中,根据数列的特点和通项公式选择适当的方法来计算数列的前n项和会更加高效和方便。
2.3 等差数列前n 项和4、等差数列的前n 项和公式:①22111()(1)1()2222n n n a a n n d S n a d n a d n A n B n +-==+=+-=+(其中A 、B 是常数,所以当0d ≠时,n S 是关于n 的二次式且常数项为0) ②特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法:(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列;(2)等差中项:数列{}n a 是等差数列-11122(2)2n n n n n n a a a n a a a +++⇔=+≥⇔=+; (3)数列{}n a 是等差数列n a kn b ⇔=+(其中b k ,是常数); (4)数列{}n a 是等差数列2n S A n B n ⇔=+,(其中A 、B 是常数)。
6、等差数列的证明方法:定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列.7、提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)设项技巧:①一般可设通项1(1)n a a n d =+-②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++,…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d d S n a d n a n -=+=+-是关于n 的二次函数且常数项为0。