七年级上学期第二次月考(12月月考)数学试卷
- 格式:doc
- 大小:61.78 KB
- 文档页数:4
2023-2024学年上学期武汉市江汉区学区四校七年级数学考试时间:120分钟试卷总分:120分一、选择题(本大题共小10题,每小题3分,共30分)1.温度由上升了后是()A.B.C.D.2.2023年武汉“岁末冬绥跨年迎春”系列汽车促消费活动于12月12日发放1000万元“燃油+新能源”购车消费券.1000万用科学记数法表示为()A.B.C.D.3.下列各式中,运算正确的是()A.B.C.D.4.如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是( )A.B.C.D.5.已知是方程的解,则的值是()A.B.6C.4D.56.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是().已知点在线段上,,点在线段的延长线上,,若,则线段的长为(A.40B.4110.如图,为直线上一点,为直角,平分,平分,平分,下列结论:①;②;③与互为补角;④;其中正确的是(.和是同类项,则位于北偏西的方向,同时轮船在南偏东的方向,那么13.整理一批图书,由一个人做要完成这项工作.假设这些人的工作效率相同,应先安排14.有理数、、在数轴上的位置如下图所示,化简:.若、都是有理数,定义“”如下:,例如.现己知,则的值为(1)(2)(1)(2).先化简,再求值:,其中..已知点为线段的中点.点为线段上的点,点为线段的中点.,若线段,,求线段的长;如图2,若,,求线段的长..下表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局)比赛场次胜场负场积分所示的方式折叠,、为折痕,求的度数;所示的方式折叠,、为折痕,若,求的度数;所示的方式折叠,、为折痕,若,请直接写出的度数(用含的式子表示)23.某公园门票价格规定如下表:.已知线段,点、点都是线段上的点.,若点为的中点,点为的中点,求线段的长;(2)若,点是线段的中点,点是线段的中点,请自己作图并求的长;(3)如图3,若,,点,分别从、出发向点运动,运动速度分别为每秒移动个单位,设运动时间为秒,点为的中点,点为的中点,若,求的参考答案与解析1.A解析:解:,故选:A.2.C解析:解:1000万用科学记数法表示为.故选:C.3.B解析:解:A、与不是同类项,不能合并,不合题意;B、,正确,符合题意;C、与不是同类项,不能合并,不合题意;D、,不合题意;故选:B.4.D解析:观察几何体,从左面看到的图形是故选D.5.C解析:解:把代入方程得:,解得:.故选:C.6.D解析:解:剪之前的图形周长= ED+EF+FB+AD+AC+BC,因为两点之间线段最短.剪完之后的图形周长=ED+EF+FB+AD+AB,AC+BC>AB,∴剩下部分的周长比原正方形图片的周长要小,故选:D.7.A解析:解:设该款衣服的标价为x元.根据题意可得.解得.所以衣服标价为每件450元,故①符合题意;衣服促销单价为元,故②符合题意;每件衣服的进价为元,故③符合题意.不打折时商店的每件衣服的利润为元,故④符合题意.故共有4个符合题意.故选:A.8.B解析:解:∵,∴设,∴,∵,∴,∴,∴,∴,故选:B.9.B解析:解:第1个图中黑色小正方形地砖的块数为,第2个图中黑色小正方形地砖的块数为,第3个图中黑色小正方形地砖的块数为,第4个图中黑色小正方形地砖的块数为,第5个图中黑色小正方形地砖的块数为,故选:B.10.A解析:解:∵平分,平分,∴,∴①正确;∵,∴,∴,∴,∴②正确;∵,∴,∴③正确;∵平分,平分,∴,∵平分,平分,∴,∴;∴④正确.综上所述,正确的有①②③④.故选:A.11.解析:解:因为和是同类项,所以,,解得:,.所以故答案为:.12.##141度解析:解:如图:∵A在北偏西,∴,∴,∵B在南偏东,∴,∴.故答案为:.13.3解析:解:设应先安排x人工作,根据题意得:,解得:,答:应先安排3人工作.故答案为:3.14.0解析:解:由数轴可知:b<-c<a<0<a<c<-b,∴a+c>0,c-b>0,a+b<0,∴原式=(a+c)-(c-b)-(a+b)=a+c-c+b-a-b=0,故答案为:0.15.6解析:如图:如果要爬行到顶点B,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AB,与棱a(或b)交于点D1(或D2),小蚂蚁线段AD1→D1B(或AD2→D2B)爬行,路线最短;类似地,蚂蚁经过面AC和AE爬行到顶点B,也分别有两条最短路线,因此,蚂蚁爬行的最短践线有6条.故答案为:6.16.5解析:解:当时,则,解得,不符合题意;当时,则,解得,(舍去),综上,x的值为5.故答案为:5.17.(1)(2)解析:(1).(2).18.(1);(2).解析:(1)解:,去括号,得,移项,得,合并同类项,得,系数化1,得;(2)解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化1,得.19.,解析:解:,当时,原式.20.(1);(2).解析:(1)解:因为,点为线段的中点,所以.因为,所以,因为点为线段的中点,所以;(2)解:因为点为线段的中点,所以,因为,,所以,所以,,因为,点为线段的中点,所以,所以,所以.21.(1)2,1(2)E队已经进行了的11场比赛中胜2场,负9场(3)能实现;D队接下来的7场比赛中胜4场,负3场即可解析:(1)设胜一场积x分,负一场积y分,根据题意,得,解得;根据题意,得,解得,故答案为:2;1.(2)设胜了x场,负场,根据题意,得,解得,故,故E队已经进行了的11场比赛中胜2场,负9场.(3)能实现,队前场得分设后7场胜了x场,则负场,根据题意,得,解得,故D队接下来的7场比赛中胜4场,负3场即可.22.(1);(2);(3).解析:解:(1)由折叠的性质知,,∴,,∴;(2)由折叠的性质知,,∴,,∵,∴,∴;(3)由折叠的性质知,,∴,,∵,∴,则,∴.23.(1)七年级(1)班有学生48人,七年级(2)班有学生54人;(2)可省450元;(3)按照51张票购买比较省钱.解析:(1)解:设七年级(1)班有学生x人,则七年级(2)班有学生人,又由题意得:,则,根据题意列方程为,解得:,,答:七年级(1)班有学生48人,七年级(2)班有学生54人;(2)解:,答:可省450元;(3)解:,,.答:按照51张票购买比较省钱.24.(1)线段的长为30;(2)的长为25或35;(3)或.解析:(1)解:∵M为的中点,N为的中点,∴,,∴;(2)解:如图,点在点的左侧,∵点是线段的中点,点是线段的中点,∴,,∴;如图,点在点的右侧,∵点是线段的中点,点是线段的中点,∴,,∴;综上,的长为25或35;(3)解:运动t秒后,,∵E为的中点,∴,∴,∵,F为的中点,∴,又,∴,或,由得:或,解得:或.。
2023—2024学年陕西省西安高新区第十一初级中学七年级上学期第二次月考数学试卷一、单选题1. 下列方程中:①-2=0;②;③3x-y=2;④x=0是一元一次方程的有()A.4个B.3个C.2个D.1个2. 为了解西安市近9万名考生的数学成绩,教研部门从中抽取800名考生的数学成绩进行统计分析,下列说法正确的是()A.9万名考生是总体B.每位考生的数学成绩是个体C.800名考生是总体的一个样本D.800名考生是样本容量3. 下列变形中正确的是()A.由得B.由得C.由得D.由得4. 为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12B.48C.72D.965. 如图,下列不正确的几何语句是()A.直线和直线是同一直线B.射线和射线是同一射线C.射线和射线是同一射线D.线段和线段是同一线段6. 下列计算正确的是()A.B.C.D.7. 一个多边形的对角线的条数与它的边数相等,这个多边形的边数是()A.7B.6C.5D.48. 《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺.问木长多少尺?设木长尺,则可列方程为()A.B.C.D.9. 已知,则等于()A.48B.261C.540D.4860010. 如图,甲、乙两动点分别从正方形的顶点同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2024次相遇在边()上.A.B.C.D.二、填空题11. 把弯曲的河道改直,可以缩短航程,其依据是 _________________ .12. 线段AB=10cm,BC=5cm,A、B、C三点在同一条直线上,则AC=______ .13. 已知,那么 ____________ .14. 一个幻方中,每一行,每一列,及每一对角线上的三个数之和有相同的值,如图所示已知一个幻方中的三个数,的值是 ____________15. 钟表上在3时和4时之间的 ____________ 时刻,时钟的时针与分针的夹角是成平角.16. 已知,则之间的等量关系是 ____________ .17. 若为定值,关于的一次方程,无论为何值时,它的解总是1,则 ____________ , ____________ .三、解答题18. 解方程:(1)(2)19. 已知:线段和线段及.求作:,使其两边分别为线段和线段,夹角为.(要求:用尺规作图;保留作图痕迹;不写作法.)20. 某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第;合格,一般,良好,优秀,制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全频数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为“良好”和“优秀”的学生共有多少人?21. 如图,已知线段和的公共部分,线段、的中点、之间的距离是,求、的长,22. 一列火车匀速行驶,经过一条长米的隧道需要秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是秒,根据以上数据,求火车的长度.23. 小明和哥哥在环形跑道上练习长跑.他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次.现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥小明刚好相遇了20次(出发时不算),求:(1)哥哥速度是小明速度的多少倍?(2)哥哥追上小明时,小明跑了多少圈?24. 已知:如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角时,3∠AOC=∠BOD,求∠COD的度数;(2)若∠COD保持在(1)中的大小不变,它绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)若∠COD从(1)中的位置开始,边OC、边OD分别绕着点O以每秒20°、每秒10°的速度顺时针旋转(当其中一边与OB重合时都停止旋转),OM、ON分别平分∠BOC、∠BOD.求:①运动多少秒后,∠COD=10°;②运动多少秒后,∠COM=∠BON.。
七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。
B.无限小数是无理数。
C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。
初一素养体验活动数学学科(时间:120分钟)注意事项:1.本试卷共6页,三大题,满分150分,考试时间为120分钟.请用黑色水笔做完整套试卷,画图必须用2B 铅笔.2.请把你认为正确的答案填写在答题纸相应位置,填在试卷上无效.一.选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案填写在答题纸相应位置。
)1.有理数2023的相反数是( )A .2023B .C .D.2.下列方程是一元一次方程的是( )A .B .C .D .3.如图,能用三种方法表示同一个角的是()A .B .C .D .4.下图所示的几何体的俯视图是()主视方向A .B .C .D .5.下面图形经过折叠可以围成棱柱的是()0.5mm 2023-12023-12023243x x -=23x y +=23x x-=-11x x-=1ABC B ∠∠∠、、A .B .C .D .6.下列说法正确的是()A .若,则点为线段中点B .用两个钉子把木条固定在墙上,数学原理是“两点之间,线段最短”C .已知三点在一条直线上,若,则D .已知为线段上两点,若,则7.我国古代数学名著《孙子算经》中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,根据题意可列方程为()A.B .C .D .8.如图所示的运算程序中,若开始输入的值是7,第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2023次输出的结果是()A .1B .4C .7D .8二.填空题(本大题共10小题,每小题3分,共30分,请把你认为正确的答案填写在答题纸相应位置。
)9.2023年“国庆中秋双节假日”期间扬州铁路运输客流量约880000人,将数据880000用科学记数法表示为______.10.单项式与的和仍然是一个单项式,则代数式的值是______.11.关于的一元一次方程的解是______.12.若是关于的一元一次方程的解,则代数式的值是______.13.已知:如图,,,是的平分线,则的度数为______.AC BC =C AB ,,A B C 5,3AB BC ==8AC =,C D AB AC BD =AD BC=()14.512x x -=-21 4.5x x -=+()14.512x x +=-()14.512x x +=+x 22m x y+nx y n m x 140m x m -+=3x =x m 3x n -=53m n -+30ABC ∠=︒70CBD ∠=︒BE ABD ∠CBE ∠第13题14.已知,如图,一条直线上有三点,,,为的中点,则的长为______.第14题15.如图1,是由五个边长都是1的正方形纸片拼接而成的,现将图1沿虚线折成一个无盖的正方体纸盒(图2)后,与线段重合的线段是______.图1 图2第15题16.整式的值随的取值不同而不同,下表是当取不同值时对应的整式的值,则关于的方程的解为______.0122第16题17.如图,将一张长方形纸片分别沿着,使点落在点,点落在点.若点不在同一直线上,且,则的度数为______.第17题A B C 、、24cm AB =13BC AB =D AC DB cm 2FC 3ax b -x x x ()320ax b +-=x 2-1-3ax b-2-4-6-,EP FP B B 'C C 'P B C ''、、10B PC ∠=''︒EPF ∠18.如图,直线与相交于点,,将一等腰直角三角尺的直角顶点与重合,平分.将三角尺以每秒的速度绕点顺时针旋转,同时直线以每秒的速度绕点顺时针旋转,设运动时间为秒,若直线平分,则的值为______.第18题三.解答题(本大题共10小题,共96分,解答应写出必要的文字说明、证明过程或演算步骤,请把答案填写在答题纸相应位置。
浙江省金华市义乌市绣湖中学教育集团2023-2024学年七年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.2:3B.1:2C.3:4D.1:110.湿地公园具有湿地保护与利用、生态观光、休闲娱乐等多种功能.某湿地公园有一块边长为100米的正方形湿地如图所示.为保证游客安全,通过编程使两只带有摄像功能的电子蚂蚁甲、乙沿着这个正方形湿地按A→B→C→D→A的路线来回巡逻,甲从A 点出发,速度是20米/分钟,同时乙从B点出发,速度是45米/分钟,这两只电子蚂蚁第2023次相遇时,是在这个湿地的()二、填空题16.定义:如果两个一元一次方程的解之和为0,我们就称这两个方程为例如:22x =的解为1x =;21x +=的解为1x =-,所以这两个方程为(1)若关于x 的一元一次方程30x m +=与34x x -=-是“友好方程m =.(2)若关于x 的一元一次方程1102023x -=和1202322023x x +=+关于y 的一元一次方程()132023262023y y b --=--的解为三、解答题17.已知代数式:①3-,②5ab -,③22a +,④1x ,⑤21312x x -+,中:(1)属于单项式的有;(填序号)(2)属于多项式的有;(填序号)(3)属于整式的有.(填序号)18.计算:(1)11112432⎛⎫⨯-- ⎪⎝⎭;(2)2233(2)8-+-+-.(1)A 、B 两点之间的距离=;(2)若在数轴上存在一点C ,且2AC BC =,求C 点表示的数;(3)如图2,若在原点O 处及B 处各放一挡板,甲、乙两球同时从A 、B 两处分别以单位/秒,2个单位/秒的速度向左运动;乙球每次碰到挡板后(忽略球的大小,可看作一点)均以原来速度向相反方向运动,甲球在乙球第一次碰到挡板后,以3个单位的速度向相反方向运动直至碰到挡板,此时两球同时停止运动,设甲球运动的时间为(秒),当其中一球到原点距离是另一球到原点距离的3倍时,求此时乙球所在位置对。
2023-2024学年西安市铁一中学七年级(上)第二次月考数学试卷一.选择题(共10小题)1.(3分)下列方程为一元一次方程的是( )A.x+2y=3B.y+3=0C.x2﹣2x=0D.+y=0解析:解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,故选:B.2.(3分)我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为( )A.2.15×107B.0.215×108C.2.15×106D.21.5×106解析:解:将21500000用科学记数法表示为:2.15×107.故选:A.3.(3分)下列变形中,不正确的是( )A.若a﹣c=b﹣c,则a=bB.若,则a=bC.若a=b,则D.若ac=bc,则a=b解析:解:A.∵a﹣c=b﹣c,∴a﹣c+c=b﹣c+c,即a=b,故本选项不符合题意;B.=,乘c,得a=b,故本选项不符合题意;C.a=b,除以c2+2,得=,故本选项不符合题意;D.当c=0时,由ac=bc不能推出a=b,故本选项符合题意.故选:D.4.(3分)如图,点C在线段AB上,点D是AC的中点,如果CD=3cm,AB=10cm,那么BC的长度是( )A.3cm B.3.5cm C.4cm D.4.5cm解析:解:∵点D是AC的中点,∴AC=2CD=2×3=6cm,∴BC=AB﹣AC=10﹣6=4cm.故选:C.5.(3分)有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是( )A.a﹣b>0B.a+b>0C.ab>0D.b﹣a=|a|+|b|解析:解:(A)∵a<0<b,∴a﹣b<0,∴A不符合题意;(B)∵a<0<b,当|a|=|b|,时a+b=0,当|a|>|b|,时a+b<0,当|a|<|b|,时a+b>0,∴B不符合题意;(C)∵a<0<b,∴ab<0,∴C不符合题意;(D)∵a<0<b,∴﹣a>0,∴|b|=b,|a|=﹣a,∴b﹣a=b+(﹣a)=|a|+|b|,∴D符合题意.故选:D.6.(3分)下列叙述正确的是( )A.a的系数是0,次数为1B.单项式5xy3z4的系数为5,次数是7C.当m=3时,代数式10﹣3m2等于1D.多项式2ab﹣3a﹣5次数为2,常数项为﹣5解析:解:a的系数是1,次数为1,则A不符合题意;单项式5xy3z4的系数为5,次数是8,则B不符合题意;当m=3时,代数式10﹣3m2=10﹣3×9=﹣17,则C不符合题意;多项式2ab﹣3a﹣5次数为2,常数项为﹣5,则D符合题意;故选:D.7.(3分)钟表10点30分时,时针与分针所成的角是( )A.120°B.135°C.150°D.225°解析:解:由题意得:4×30°+×30°=135°,∴钟表10点30分时,时针与分针所成的角是:135°,故选:B.8.(3分)如图,OC平分∠AOD,OD平分∠BOC,下列等式中不成立的是( )A.∠COA=∠BOC B.∠COD=∠BODC.∠AOC=∠AOD D.∠AOC=∠AOB解析:解:A、∵OC平分∠AOD,∴∠COA=∠COD,故本选项错误;B、∵OD平分∠BOC,∴∠COD=∠BOD,故本选项正确;C、∵OC平分∠AOD,∴∠COA=∠COD,∴∠AOC=∠AOD,故本选项正确;D、∵OC平分∠AOD,OD平分∠BOC,∴∠AOC=∠COD=∠BOD,∴∠AOC=∠AOB,故本选项正确;故选:A.9.(3分)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x解析:解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.10.(3分)观察下列图形:已知图n中有2023有颗星,则n为( )A.644B.654C.664D.674解析:解:观察图形知:图1中有3×1+1=4颗星,图2中有3×2+1=7颗星,图3中有3×3+1=10颗星,图4中有3×4+1=13颗星,图n中有(3n+1)颗星,当3n+1=2023时,解得:n=674,故选:D.二.填空题(共6小题)11.(3分)若3x4y m与﹣2x4y2是同类项,则m= 2 .解析:解:∵若3x4y m与﹣2x4y2是同类项,∴m=2.故答案为:2.12.(3分)90°﹣78°28′56″= 11°31′4″ .解析:解:90°﹣78°28'56″=89°59′60″﹣78°28′56″=11°31′4″.故答案为:11°31′4″.13.(3分)若从n边形的一个顶点出发,最多可以引5条对角线,则n= 8 .解析:解:设多边形有n条边,则n﹣3=5,解得n=8,故多边形的边数为8,即它是八边形,故答案为:8.14.(3分)已知a、b互为相反数,c、d互为倒数,|m|=1,则的值为 0或﹣2 .解析:解:∵a、b互为相反数,c、d互为倒数,|m|=1,∴a+b=0,cd=1,m=±1,当m=1时,=1+﹣12=1+0﹣1=0;当m=﹣1时,=(﹣1)+﹣12=﹣1+0﹣1=﹣2;由上可得,的值为0或﹣2,故答案为:0或﹣2.15.(3分)如果x=3是方程﹣ax﹣b=5﹣2x的解,那么3﹣6a﹣2b= 1 .解析:解:∵x=3是方程﹣ax﹣b=5﹣2x的解,∴﹣3a﹣b=﹣1,∴3+2(﹣3a﹣b)=3+2×(﹣1)=3﹣2=1.故答案为:1.16.(3分)如图,已知直线l上的三条线段分别为:AB=4,BC=24,CD=8,将线段CD固定不动,线段AB以每秒4个单位的速度向右运动,M、N分别为AB、CD中点,设线段AB的运动时间为t,当7.5≤t≤9时,MN+AD= 6 .解析:解:设运动t秒后,A点表示4t,B点表示4+4t,C点表示28,D点表示36,∵M为AB中点,N为CD中点,∴M点表示4t+2,N点表示32,∴MN=|4t+2﹣32|=|4t﹣30|,AD=|36﹣4t|,∴MN+AD=|4t﹣30|+|36﹣4t|,当≤t≤9时,MN+AD=4t﹣30+36﹣4t=6.故答案为:6.三.解答题(共8小题)17.计算:(1)(﹣2)2+|﹣4|;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b).解析:解:(1)(﹣2)2+|﹣4|=4+4+6=14;(2)2(3a2b﹣2ab2)﹣4(﹣ab2+a2b)=6a2b﹣4ab2+4ab2﹣4a2b=2a2b.18.解方程:(1)2x﹣1=5x+2;(2).解析:解:(1)移项,得2x﹣5x=2+1,合并同类项,得﹣3x=3,系数化为1,得x=﹣1;(2)去分母,得2(5x+1)﹣(2x﹣1)=4,去括号,得10x+2﹣2x+1=4,移项并合并,得8x=1,系数化为1,得x=.19.先化简,再求值:已知代数式,其中x=3,y=﹣3.解析:解:==﹣3x+y2,当x=3,y=﹣3时,原式=﹣3×3+(﹣3)2=﹣9+9=0.20.如图,已知线段a,b,用尺规作一条线段AB,使AB=2a﹣b(不写作法,保留作图痕迹).解析:解:如图所示:线段AB即为所求.21.已知,如图B、C两点把线段AD分成2:5:3三部分,M是AD的中点,CM=6cm,则线段AD的长为多少厘米?解析:解:∵B、C两点把线段AD分成2:5:3三部分,∴设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,∵M为AD的中点,∴AM=DM=AD=5x,∵CM=6cm,即:DM﹣CD=6cm,∴5x﹣3x=6,解得x=3,∴AD=10x=30,线段AD的长为30cm.22.某校准备组织学生参观博物馆,每张门票30元.已知购买团体票有两种优惠方案,方案一:全体人员打7折;方案二:若打8折,有5人可免票.(1)一班有45名学生,选择哪种方案更优惠?(2)二班无论选择哪种方案,需支付购买门票的费用相同,求二班的学生人数.(用一元一次方程求解)解析:解:(1)方案一:30×70%×45=945(元),方案二:30×80%×(45﹣5)=960(元),∵945<960,∴一班选择方案一更优惠;(2)设二班有x人,根据题意得:30×70%•x=30×80%×(x﹣5),解得x=40,答:二班有40人.23.如图,已知∠AOB=120°,∠COD是∠AOB内的一个角,且∠COD=50°,OE是∠AOC的平分线,OF 是∠BOD的平分线,求∠EOF的度数.解析:解:∵OE是∠AOC的平分线,OF是∠BOD的平分线,∴,,∴,∵∠AOB=120°,∠COD=50°,∴∠AOC+∠BOD=∠AOB﹣∠COD=120°﹣50°=70°,∴∠COE+∠DOF=,∴∠EOF=∠COE+∠DOF+∠COD=35°+50°=85°.24.如图,平面内一定点A在直线MN的上方,点O为直线MN上一动点,作射线OA、OP、OA′,当点O在直线MN上运动时,始终保持∠MOP=90°、∠AOP=∠A′OP,将射线OA绕点O顺时针旋转60°得到射线OB(1)如图1,当点O运动到使点A在射线OP的左侧,若OB平分∠A′OP,求∠AOP的度数.(2)当点O运动到使点A在射线OP的左侧,∠AOM=3∠A′OB时,求的值.(3)当点O运动到某一时刻时,∠A′OB=150°,直接写出∠BOP= 105或135或75或45 度.解析:(本题10分)解:(1)∵OB平分∠A′OP,∴设∠A′OB=∠POB=x,∵∠AOP=∠A′OP,∴∠AOP=2x,∵∠AOB=60°,∴x+2x=60,∴x=20°,∴∠AOP=2x=40°;(2)①当点O运动到使点A在射线OP的左侧,∵∠AOM=3∠A′OB,∴设∠A′OB=x,∠AOM=3x.∵OP⊥MN,∴∠AON=180°﹣3x,∠AOP=90°﹣3x.∴.∵∠AOP=∠A′OP,∴∠AOP=∠A′OP=.∴OP⊥MN.∴.∴.∴.②当点O运动到使A在射线OP的左侧,但是射线OB在∠POA′外部时.∵∠AOM=3∠A′OB,设∠A′OB=x,∠AOM=3x,∴∠AOP=∠A′OP=.∴OP⊥MN.∴3x+=90.∴x=24°.∴.(3)①如图3,当∠A′OB=150°时,由图可得:∠A'OA=∠A'OB﹣∠AOB=150°﹣60°=90°.∵∠AOP=∠A'OP,∴∠AOP=45°.∴∠BOP=60°+45°=105°.②如图4,当∠A′OB=150°时,由图可得:∠A'OA=360°﹣150°﹣60°=150°.∵∠AOP=∠A'OP,∴∠AOP=75°.∴∠BOP=60°+75°=135°.当射线OP在MN下面时,∠BOP=75°或45°.综上所述:∠BOP的度数为105°或135°或75°或45°.故答案为:105或135或75或45.。
七年级(上)第二次月考数学试卷一、选择题(每题4分,共40分) 1.-(-6)的相反数是( ).A. -6B.6C.0D. -12、对于单项式4323b a -,下列结论正确的是( )A .它的系数是34,次数是5 B .它的系数是-34,次数是6C .它的系数是34,次数是6D .它的系数是-34,次数是53、一个多项式加上3452--x x 得x x 32--,则这个多项式为( ) A .3742--x x B .362--x x C .362++-x x D .3762---x x4、下列各组单项式中,不是..同类项的是( ) A.22xy -与y x 2 B.b a 321与32ba C.-2x 2y 3与y 3x 2 D.1与-65、一个三位数,个位数是a ,十位数是b ,百位数是c ,这个三位数是( ) A. a+b+c B.abc C.100a+10b+c D.100c+10b+a 6.下列说法正确的是( ) A .有理数包括正数和负数 B .任何有理数都有倒数 C . 最小的整数是0 D .在有理数中有最大的非正数 7.下面给出的图形中,绕虚线旋转一周能形成圆锥的是( )8、下列几何体中,俯视图不是圆的几何体是( )9、下列图形中,不是多边形的是( ) AB . CD10、下列平面图形中,正方体的展开图是( )二、填空题(每题3分,共36分) 11. )34()43(6-⨯-÷=12.单项式 x y -5352π的系数是13.如图所示,与∠A 是同旁内角的角共有 个 14.)23(x x ---=15、当a=1,b=-2时,代数式2212b a +的值是16、某礼堂第一排有a 个座位,后面每一排都比前一排多2个座位,则第n 排的座位数是 17.下列语句错误的有① 相等的角是对顶角; ② 等角的补角相等;③过一点有且只有一条直线与已知直线垂直; ④大于直角的角都是钝角; ⑤射线AB 和射线BA 是两条射线; ⑥若AC =BC ,则C 是AB 的中点。
A BC A B C A B C A B C A B CA B C D(1)(2)(3)…七年级数学(上册)第二次月考试卷(含答案)一、选择题(30分)1、-3的绝对值是( )A. 31 ;B. -3;C. 31-; D. 3; 2、下列说法:①经过两点有一条直线,并且只有一条直线;②两点之间,线段最短;③到线段两端点距离相等的点叫线段的中点;④线段的中点到线段两端点距离相等;其中正确的有( )A. 4个;B. 3个;C.2个;D. 1个;3、第六次全国人口普查公布的数据表明:登记的全国人口约1340000000人,这个数据用科学记数法表示为( )A. 134×107;B. 13.4×108;C. 1.34×109;D. 1.34×1010;4、下列各题合并同类项,结果正确的是( )A. 13ab -4ab=9;B. -5a 2b -2a 2b=-7a 2b ;C.-12a 2+5a 2=7a 2;D. 2x 3+3x 3=5x 6;5、数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动6个单位长度到达点C ,若点C 表示的数是1,则点A 表示的数为( )A. 7;B. 3;C.-3;D. -2;6、已知∠AOB=50°,OC 是∠AOB 的平分线,则∠AOC 的余角是( )A. 40°;B. 50°;C. 65°;D. 75°;7、下列语句正确的是( )A. 画直线AB=10厘米;B. 角平分线是一条线段;C. 画射线OB=3厘米;D. 延长线段AB 到C ,使得BC=AB ;8、下列四个图形能折叠成右边正方体的是( ) 9、计算)2(91)2131()32(-÷÷-⨯-的结果是( ) A. 2; B. 21-; C. 23-; D. 以上答案都不对; 10、如图,数轴上A 、B a 、b ,则下列结论不正确的是( )A. a+b >0;B. ab <0;C.a -b <0;D. ∣a ∣-∣b ∣>0;二、填空题(24分)11、线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一直线上,则AC= 。
七年级上学期第二次月考数学试卷一、选择题:(每题3分,共30分)1.(3分)﹣的倒数是()A.﹣2 B.C.2D.﹣2.(3分)下列语句中,正确的是()A.直线比射线长B.射线比线段长C.无数条直线不可能相交于一点D.两条直线相交,只有一个交点3.(3分)下列方程中是一元一次方程的是()A.=7 B.y2﹣y=1 C.2x﹣3y=1 D.﹣3+x=1﹣x4.(3分)下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+16y2=7 D.9a2b﹣9a2b=05.(3分)若|a|=2,则a=()A.2B.﹣2C.2或﹣2 D.以上答案都不对6.(3分)下列方程中,以x=2为解的方程是()A.x+2=0 B.2x﹣1=0 C.2x+4=6+3x D.2x﹣4=6﹣3x7.(3分)下列变形错误的是()A.由x+7=5,得x+7﹣7=5﹣7 B.由3x﹣2=2x+1,得x=3C.由4﹣3x=4x﹣3,得4+3=4x+3x D.由﹣2x=3,得x=﹣.8.(3分)甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()A.甲说3点时和3点30分B.乙说6点15分和6点45分C.丙说9时整和12时15分D.丁说3时整和9时整9.(3分)如图,四条表示方向的射线中,表示北偏东60°的是()A.B.C.D.10.(3分)同一平面内互不重合的三条直线的交点的个数是()A.可能是0个,1个,2个B.可能是0个,2个,3个C.可能是0个,1个,2个或3个D.可能是1个可3个二、填空题:(每题2分,共16分,)11.(2分)代数式的系数是.12.(2分)若代数式3a5b m与﹣2a5b2是同类项,那么m=.13.(2分)七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理:.14.(2分)一个多边形的一个顶点出发有5条对角线,这是一个边形.15.(2分)如图,∠AOC和∠BOD都是直角,如果∠DOC=36°,则∠AOB是度.16.(2分)48.13°=度分秒.17.(2分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数 1 2 3 4座位数50 53 56 59按这种方式排下去,第n排有个座位.18.(2分)如果x<0,y>0且x2=4,y2=9,则x+y=.三、解答题(前两小题题4分,后两小题5分,共18分)19.(18分)计算下列各题(1)(﹣7)+(+15)﹣(﹣25)(2)(﹣36)×(﹣+)(用运算律)(3)﹣24﹣×[5﹣(﹣3)2](4)x2y﹣3xy2+2yx2﹣y2x.四、综合应用题(共36分)20.(6分)图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.21.(6分)先化简,再求值:,其中.22.(6分)把一个圆分割成三个扇形,它们圆心角的度数比为1:2:3,求最大的扇形的圆心角的度数.23.(6分)如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.24.(6分)已知:如图,线段AB=16cm,E为AB的中点,C为AB上一点,D为AB延长线上的点,且CD=4cm,B为CD的中点.求线段EC和ED的长.25.(6分)数a,b在数轴上的位置如图所示,化简:|a+b|﹣|a﹣b|+|a|﹣|b|.参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)﹣的倒数是()A.﹣2 B.C.2D.﹣考点:倒数.分析:根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:﹣的倒数是﹣2,故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)下列语句中,正确的是()A.直线比射线长B.射线比线段长C.无数条直线不可能相交于一点D.两条直线相交,只有一个交点考点:直线、射线、线段.分析:利用线段有两个端点,不能延伸;射线只有一个端点,可向射线延伸方向延伸;直线无端点,可两向延伸,来解答本题即可.解答:解:∵线段有两个端点,不能延伸;射线只有一个端点,可向射线延伸方向延伸;直线无端点,可两向延伸,∴AB均不正确;C中由过一点可做无数条直线知,是不正确的;故只有D正确.故选D.点评:本题考查的是线段、射线和直线的端点特征.3.(3分)下列方程中是一元一次方程的是()A.=7 B.y2﹣y=1 C.2x﹣3y=1 D.﹣3+x=1﹣x考点:一元一次方程的定义.分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).解答:解:A、不是整式方程,不是一元一次方程;B、未知项的最高次数为2,不是一元一次方程;C、含有两个未知数,不是一元一次方程;D、符合一元一次方程的定义.故选D.点评:本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.(3分)下列各题运算正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+16y2=7 D.9a2b﹣9a2b=0考点:合并同类项.分析:根据同类项的定义及合并同类项法则解答.解答:解:A、3x+3y不是同类项,不能合并,故A错误;B、x+x=2x≠x2,故B错误;C、﹣9y2+16y2=7y2≠7,故C错误;D、9a2b﹣9a2b=0,故D正确.故选:D.点评:本题考查的知识点为:同类项的定义:所含字母相同,相同字母的指数相同;合并同类项的方法:字母和字母的指数不变,只把系数相加减;不是同类项的一定不能合并.5.(3分)若|a|=2,则a=()A.2B.﹣2C.2或﹣2 D.以上答案都不对考点:绝对值.专题:计算题.分析:根据绝对值的意义可知:在数轴上到原点的距离是2的点有两个数,为2或﹣2.解答:解:∵|a|=2,∴a=±2.故选C.点评:注意:互为相反数的两个数的绝对值相等.运用数形结合的思想很容易解决此类问题.6.(3分)下列方程中,以x=2为解的方程是()A.x+2=0 B.2x﹣1=0 C.2x+4=6+3x D.2x﹣4=6﹣3x考点:方程的解.分析:方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替方程中的未知数,所得到的式子左右两边相等.解答:解:A、把x=2代入方程,左边=2+2=4≠右边,故选项错误;B、把x=2代入方程,左边=4﹣1=3≠右边,故选项错误;C、把x=2代入方程,左边=4+4=8,右边=6+6=12,则左边≠右边,故选项错误;D、把x=2代入方程,左边=4﹣4=0,右边6﹣6=0,则左边=右边,故是方程的解.故选D.点评:本题主要考查了方程解的定义,方程的解就是能够使方程两边左右相等的未知数的值,理解定义是关键.7.(3分)下列变形错误的是()A.由x+7=5,得x+7﹣7=5﹣7 B.由3x﹣2=2x+1,得x=3C.由4﹣3x=4x﹣3,得4+3=4x+3x D.由﹣2x=3,得x=﹣.考点:等式的性质.分析:根据等式的性质进行变形,再判断即可.解答:解:A、x+7=5,则x+7﹣7=5﹣7,正确,不符合题意;B、3x﹣2=2x+1,3x﹣2x=1+2,x=3,正确,不符合题意;C、4﹣3x=4x﹣3,4+3=4x﹣3x,正确,不符合题意;D、﹣2x=3,x=﹣,错误,符合题意;故选D.点评:本题考查了等式的性质的应用,主要考查学生的理解能力和判断能力.等式的性质是:①等式的两边都加上(或都减去)同一个数或同一个整式,所对的仍是等式,②等式的两边都乘以(或都除以)同一个不等于0的数,所对的仍是等式.8.(3分)甲、乙、丙、丁四个学生判断时钟的分针与时针互相垂直时,他们每个人都说了两个时间,说对的是()A.甲说3点时和3点30分B.乙说6点15分和6点45分C.丙说9时整和12时15分D.丁说3时整和9时整考点:钟面角.分析:根据时针与分针相距的份数乘以每份的度数,可得答案.解答:解:A、3点30分不到90°,故A错误;B、6点15分比90°多,故B错误;C、12时15分不到90°,故C错误;D、3时整和9时整钟面角都是90°,故D正确;故选:D.点评:本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数.9.(3分)如图,四条表示方向的射线中,表示北偏东60°的是()A.BC.D.考点:方向角.分析:北偏东60°即由北向东偏60°,理解坐标上上北下南的表示方法.解答:解:A中为南偏东60°,B中为北偏东60°,C中为北偏西30°,D中为北偏东30°,所以只有B符合题意,故选B.点评:掌握方向角的表示方法.10.(3分)同一平面内互不重合的三条直线的交点的个数是()A.可能是0个,1个,2个B.可能是0个,2个,3个C.可能是0个,1个,2个或3个D.可能是1个可3个考点:直线、射线、线段.分析:在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.解答:解:由题意画出图形,如图所示:故选C.点评:本题考查了直线的交点个数问题.二、填空题:(每题2分,共16分,)11.(2分)代数式的系数是.考点:单项式.分析:单项式的系数是指单项式中的数字因数,包括符号及分母的数字.解答:解:代数式的数字因数是﹣,故单项式的系数是.点评:本题考查了单项式的系数的概念.注意不要忘了符号和分母的数字.12.(2分)若代数式3a5b m与﹣2a5b2是同类项,那么m=2.考点:同类项.分析:根据同类项:所含字母相同,并且相同字母的指数也相同,可得m的值.解答:解:∵3a5b m与﹣2a5b2是同类项,∴m=2.故答案为:2.点评:本题考查了同类项的知识,解答本题的关键是掌握同类项的定义.13.(2分)七(1)班的同学用二个图钉就把刚获得的校田径运动会团体总分第一名的奖状挂在墙上了,请你用本章的一个知识来说明这样做的道理:过两点有且只有一条直线.考点:直线的性质:两点确定一条直线.分析:要把奖状挂在墙上,需要把奖状挂直,这就需要有一条直线来确保能够实现,过两点有且只有一条直线,可以满足要求.解答:解:由题意知道奖状要挂在墙上必须挂直,需要确定一条直线来实现目的,即需要有两个图钉.利用的道理是:过两点有且只有一条直线.点评:本题考查了直线的基本性质,实现了理论与实际的结合,题型不错.14.(2分)一个多边形的一个顶点出发有5条对角线,这是一个八边形.考点:多边形的对角线.分析:根据n边形从一个顶点引出的对角线与边的关系:n﹣3,列方程求解.解答:解:设多边形有n条边,则n﹣3=5,解得n=8.故多边形的边数为8,即它是八边形.故答案为八.点评:本题考查了多边形的对角线,经过n边形的一个顶点所有的对角线有(n﹣3)条,经过n边形的一个顶点的所有对角线把n边形分成(n﹣2)个三角形.15.(2分)如图,∠AOC和∠BOD都是直角,如果∠DOC=36°,则∠AOB是144度.考点:角的计算;余角和补角.专题:计算题.分析:由余角的性质,结合角的计算求出结果.解答:解:∵∠AOC和∠BOD都是直角,∠DOC=36°,∴∠A OD=54°.∴∠AOB=∠BOD+∠AOD=90°+54°=144°.点评:此题主要考查了学生余角的性质,利用余角性质即可求出该角.16.(2分)48.13°=48度7分48秒.考点:度分秒的换算.分析:根据度分秒的换算,大的单位化小的单位乘以进率,不满一度的化成分,不满一分的化成秒,可得答案.解答:解:48.13°=48°7′48″,故答案为:48°7′48″.点评:本题考查了度分秒的换算,把不满一度的化成分,不满一分的化成秒,都乘以进率60.17.(2分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:排数 1 2 3 4座位数50 53 56 59按这种方式排下去,第n排有(47+3n)个座位.考点:规律型:数字的变化类.分析:通过分析数据可知,观众席的座位每增加1排,就增加3个座位,再通过计算推断得出第n排的座位数.解答:解:根据表格中数据所显示的规律可知:第1排有47+3×1=50个座位,第2排有47+3×2=53个座位,第3排有47+3×3=56个座位,第4排有47+3×4=59个座位,…则第n排有(47+3n)个座位.故答案为(47+3n).点评:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.18.(2分)如果x<0,y>0且x2=4,y2=9,则x+y=1.考点:平方根;有理数的加法;有理数的乘方.专题:计算题.分析:x2=4即x是4的平方根,因而根据x<0,y>0且x2=4,y2=9,就可确定x,y的值,进而求解.解答:解:∵x2=4,y2=9,∴x=±2,y=±3,又∵x<0,y>0,∴x=﹣2,y=3,∴x+y=﹣2+3=1.故答案为:1.点评:本题主要考查了平方根的意义,根据条件正确确定x,y的值是解题关键.三、解答题(前两小题题4分,后两小题5分,共18分)19.(18分)计算下列各题(1)(﹣7)+(+15)﹣(﹣25)(2)(﹣36)×(﹣+)(用运算律)(3)﹣24﹣×[5﹣(﹣3)2](4)x2y﹣3xy2+2yx2﹣y2x.考点:有理数的混合运算;合并同类项.专题:计算题.分析:(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式合并即可得到结果.解答:解:(1)原式=﹣7+15+25=﹣7+40=33;(2)原式=﹣9+20﹣21=﹣10;(3)原式=﹣16+2=﹣14;(4)原式=3x2y﹣4y2x.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、综合应用题(共36分)20.(6分)图中是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.考点:作图-三视图.专题:作图题.分析:由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4,左视图有2列,每列小正方形数目分别为4,3.据此可画出图形.解答:解:点评:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(6分)先化简,再求值:,其中.考点:整式的加减—化简求值.分析:利用去括号法则先化简再求值.解答:解:原式=3x﹣8x+2﹣+2x=﹣3x+,把x=﹣代入上式得:原式=﹣1.点评:此题主要考查学生利用去括号法则先化简再求值的能力,学生做这类题时要认真细心.22.(6分)把一个圆分割成三个扇形,它们圆心角的度数比为1:2:3,求最大的扇形的圆心角的度数.考点:角的概念.分析:首先根据题意,求出最大的扇形的圆心角占圆周角的=;然后根据分数乘法的意义,用360°乘以,求出最大的扇形的圆心角的度数是多少即可.解答:解:360°×=360°×=180°.即最大的扇形的圆心角的度数是180°.点评:此题主要考查了角的概念的应用,要熟练掌握,解答此题的关键是要明确:圆周角等于360°,并能判断出最大的扇形的圆心角的度数占圆周角的几分之几.23.(6分)如图,点A、O、E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.考点:角的计算.专题:计算题.分析:根据角平分线的定义∠COD=∠EOD,所以∠COB的度数等于180°﹣∠AOB﹣∠EOD﹣∠COD,然后代入数据计算即可.解答:解:∵∠EOD=28°46′,OD平分∠COE,∴∠COD=∠EOD=28°46′,∵∠AOB=40°,∴∠COB=180°﹣∠AOB﹣∠EOD﹣∠COD,=180°﹣40°﹣28°46′﹣28°46′,=82°28′.故答案为:82°28′.点评:本题主要考查角的度数的运算,读懂图形分清角的和差关系比较重要,还要注意角是60进制,这也是同学们容易出错的地方.24.(6分)已知:如图,线段AB=16cm,E为AB的中点,C为AB上一点,D为AB延长线上的点,且CD=4cm,B为CD的中点.求线段EC和ED的长.考点:两点间的距离.分析:先根据线段AB=16cm,E为AB的中点得出BE的长,再根据CD=4cm,B为CD 的中点得出BC=BD=2,进而可得出结论.解答:解:∵线段AB=16cm,E为AB的中点,∴BE=AB=8cm.∵CD=4cm,B为CD的中点,∴BC=BD=2cm,∴EC=EB﹣BC=8﹣2=6cm;ED=EB+BD=8+2=10cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.25.(6分)数a,b在数轴上的位置如图所示,化简:|a+b|﹣|a﹣b|+|a|﹣|b|.考点:整式的加减;数轴;绝对值.分析:根据a、b在数轴上的位置可得,a<0<b,然后进行绝对值的化简,去括号,合并同类项求解.解答:解:由图可得,a<0<b,则|a+b|﹣|a﹣b|+|a|﹣|b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.点评:本题考查了整式的加减,解答本题的关键是掌握绝对值的化简、合并同类项法则.。
座号:
武威第二十三中学
——第一学期第2次月考试卷
七年级 数学
(满分120分,时间120分钟)
一、选择题(每小题3分,共30分)
1.据国家环保总局通报,预计北京市污水处理能力可以达到1684000吨,将
1684000•吨用科学记数法表示为( )
A .1.684×106吨
B .1.684×105吨
C .0.1684×107吨
D .16.84×105吨
2. 如果a a -=||,下列成立的是( )
A .0>a
B .0<a
C .0≥a
D .0≤a
3.已知一个多项式与2x 2+5x 的和等于2x 2﹣x+2,则这个多项式为( )
A .4x 2+6x+2
B .﹣4x+2
C .﹣6x+2
D .4x+2
4. 甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是( )
A .30岁
B .20岁
C .15岁
D .10岁
5.下列说法中正确的是( )
A.最小的整数是0
B.有理数分为正数和负数
C.如果两个数的绝对值相等,那么这两个数相等
D.互为相反数的两个数的绝对值相等
6. 如果a 2=(-3)2,那么a 等于 ( )
A 、3
B 、-3
C 、9
D 、±3
7. a 是最大的负整数,b 是绝对值最小的有理数,则 =+200820102009b a
( ) A .-1 B .0 C .2008
1 D .2007 8. 单项式-3πxy²z³的系数和次数分别是( ).
A .-π,5 B. -1,6 C. -3π,6 D. -3,7
9.数m 、n 在数轴上的位置如图所示,则化简|m+n|﹣m 的结果是( )
A .2m+n
B .2m
C .m
D .n
10.某商人一次卖出两件衣服,一件赚了10%,一件亏了10%,卖价都为198元,在这次生意中商人( )
A .亏了4元
B .赚了6元
C .不赚不亏空
D .以上都不对
二、填空(每小题3分,共30分)
11.平方等于它的绝对值的数是
12.5的相反数与-7的绝对值的和的倒数是______。
13.已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________ .
14. 当x= 时,代数式2-3x 与32x
-互为相反数.
15.若5=x ,3=y ,且xy >0,则=+y x
16.若﹣2a 2m b 与a 4b n ﹣1是同类项,则2m ﹣n= .
17. 如果a 、b 互为倒数,c 、d 互为相反数,且m=-1,则代数式2ab-(c+d )+m 2=_______。
18.若(x+5)2+|y ﹣1|=0,则x+y= .
19.若方程3x -4=0与方程6x+4k=12的解相同,则k= .
20.A ,B 两地相距450千米,甲、乙两车分别从A ,B 两地同时出发,相向而行,已知甲车速度为120千米/小时,乙车速度为80千米/小时,则经过 小时,两车相距50千米.
三、解答题(共60分)
21.(每题5分,共15分)计算
(1)﹣12+(﹣2)3÷4×(﹣3)2
(2)(﹣1+0.5)××[﹣4﹣(﹣4)2]﹣22
(3)7x 2﹣[5x ﹣2(x 2﹣x )+6x 2].
22.(5分)先化简,再求值:2(x 2y+xy )﹣3(x 2y ﹣xy )﹣4x 2y ,
其中x=﹣2,y=﹣1.
23.(10分)解方程:
(1).)
(
)
(1
16
1
2
3
2+
-
=
-
+x
x
x(2)
24.(10分)已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm)依次为:7,5,10,8,9,6,12,4
+---+-++
(1)若A点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明
(2)若蜗牛的爬行速度为每秒1
2
cm,请问蜗牛一共爬行了多少秒?
25. (10分)包装厂有工人42人,每个工人平均每小时可以生产圆形铁片120片,或长方形铁片80片,将两张圆形铁片和一张长方形铁片可配套成一个密封圆桶,问如何安排工人生产圆形或长方形铁片能合理地将铁片配套?
26.(10分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?。