弹性力学第七章
- 格式:pdf
- 大小:605.10 KB
- 文档页数:53
题提示和答案《弹性力学简明教程》习题提示和参考答案第二章习题的提示与答案2-1 是2-2 是2-3 按习题2-1分析。
2-4 按习题2-2分析。
2-5 在的条件中,将出现2、3阶微量。
当略去3阶微量后,得出的切应力互等定理完全相同。
2-6 同上题。
在平面问题中,考虑到3阶微量的精度时,所得出的平衡微分方程都相同。
其区别只是在3阶微量(即更高阶微量)上,可以略去不计。
2-7 应用的基本假定是:平衡微分方程和几何方程─连续性和小变形,物理方程─理想弹性体。
2-8 在大边界上,应分别列出两个精确的边界条件;在小边界(即次要边界)上,按照圣维南原理可列出3个积分的近似边界条件来代替。
2-9 在小边界OA边上,对于图2-15(a)、(b)问题的三个积分边界条件相同,因此,这两个问题为静力等效。
2-10 参见本章小结。
2-11 参见本章小结。
2-12 参见本章小结。
2-13 注意按应力求解时,在单连体中应力分量必须满足(1)平衡微分方程,(2)相容方程,(3)应力边界条件(假设)。
2-14 见教科书。
2-15 见教科书。
2-16 见教科书。
2-17 取它们均满足平衡微分方程,相容方程及x=0和的应力边界条件,因此,它们是该问题的正确解答。
2-18 见教科书。
2-19 提示:求出任一点的位移分量和,及转动量,再令,便可得出。
第三章习题的提示与答案3-1 本题属于逆解法,已经给出了应力函数,可按逆解法步骤求解:(1)校核相容条件是否满足,(2)求应力,(3)推求出每一边上的面力从而得出这个应力函数所能解决的问题。
3-2 用逆解法求解。
由于本题中l>>h, x=0,l 属于次要边界(小边界),可将小边界上的面力化为主矢量和主矩表示。
3-3 见3-1例题。
3-4 本题也属于逆解法的问题。
首先校核是否满足相容方程。
再由求出应力后,并求对应的面力。
本题的应力解答如习题3-10所示。
应力对应的面力是:主要边界:所以在边界上无剪切面力作用。
第七章 材料弹性变形与内耗固体材料在受外力作用时,首先会产生弹性变形,外力去除后,变形消失而恢复原状,因此,弹性变形有可逆性的特点。
材料的弹性变形是人们选择和使用材料的依据之一,近代航空、航天、无线电及精密仪器仪表工业对材料的弹性有更高要求,不仅要有高的弹性模量,而且还要恒定。
另一方面,材料的弹性模量是组织不敏感参量,准确测定材料的弹性模量,对于研究材料原子的相互作用和相变等都具有工程和理论意义。
实际上,绝大多数固体材料很难表现出理想的弹性行为,或是材料在交变应力作用下,在弹性范围内还存在非弹性行为,并因此产生内耗。
内耗代表材料对振动的阻尼能力,作为重要的物理性能,工程上有些零件要求材料要有高的内耗以消振,如机床床身、涡轮叶片等,而有些零件则要求材料有低的内耗,以降低阻尼,如弹簧、游丝、乐器等。
另一方面,内耗是结构敏感性能,故可用于研究材料的内部结构、溶质原子的浓度以及位错与溶质原子的交互作用等材料的微观结构问题,是一种很有效的物理性能分析方法。
第一节 材料弹性变形一.弹性模量及弹性变形本质在弹性范围内,物体受力的作用要产生应变,其应力和应变之间的关系符合胡克定律σ=E ε, τ=G γ,p=K θ (7-1)式中,σ、τ和p 分别为正应力、切应力和体积压缩应力;ε、γ和θ 分别为线应变、切应变和体积应变;比例系数E 、G 和K 分别为正弹性模量(杨氏模量)、切变模量和体积模量。
它们均表示材料弹性变形的难易程度,即引起单位变形所需要的应力大小。
在各向同性的材料中,它们之间的关系是G =)1(2μ+E (7-2) K = )21(3μ-E (7-3) 式中,μ为泊松比,即当材料受到拉伸或压缩时,横向应变与纵向应变之比。
可以证明,如果材料在形变时体积不变,则泊松比为0.5。
大多数材料在拉伸时有体积变化(膨胀),泊松比为0.2~0.5。
对于多数金属的μ值约在0.25~0.35之间,G/E 的实验值大约是3/8。
第七章粘弹性一、思考题1. 何谓高聚物的力学性能?从承载速度区分,力学性能可分为哪几类?2. 何谓粘弹性?何谓Boltzmann 叠加原理?何谓时温等效原理?3. 粘弹性实验一般有哪些?何谓应力松弛和蠕变?什么是松弛模量和蠕变柔量?松弛时间与推迟时间有何异同?4. 什么是高聚物的力学滞后和内耗?表征高聚物动态粘弹性的参量有哪些?用什么参量描述其内耗大小?5. 如何由不同温度下测得的E-t 曲线得到某一参考温度下的叠合曲线?当参考温度分别取为玻璃化温度和玻璃化温度以上约50C时,WLF方程中的C2应分别取何值?哪一组数据普适性更好?6. 粘弹性力学模型中的基本元件和基本连接方式有哪些?它们有何基本关系式?写出Maxwell 模型和Voigt 模型的基本微分方程。
广义Maxwell 模型和广义Voigt 模型分别适用于描述高聚物在什么情况下的性质?二、选择题1.高聚物的蠕变与应力松弛的速度( ) CD与温度无关②随着温度增大而减小③随着温度增大而增大2 •用T g为参考温度进行E t曲线时温转换叠加时,温度低于T g的曲线,其lg a值为( )C1 正,曲线向右移动C2 负,曲线向左移动C3 负,曲线向右移动C4 正,曲线向左移动3.高聚物发生滞后现象的原因是( )C1 高聚物的弹性太大C2 运动单元运动时受到内摩擦力的作用C3 高聚物的惰性大4.Voigt 模型可用于定性模拟( )C1 线性高聚物的蠕变C2 交联高聚物的蠕变C3 线型高聚物的应力松弛C4 交联高聚物的应力松弛5.Maxwell 模型可用于定性模拟( )C1 线型高聚物的蠕变C2 交联高聚物的蠕变③线型高聚物的应力松弛(④交联高聚物的应力松弛6 •高聚物黏弹性表现最为明显的温度是()①v T g ②高于T g附近③T f附近7. 高聚物的蠕变适宜用()的模型来描述。
①理想弹簧和理想黏壶串联(②理想弹簧和理想黏壶并联③四元件模型8. 高聚物的应力松弛适宜用哪种模型来描述?()①广义Maxwell模型②广义Voigt模型③四元件模型9. 对于交联高聚物,以下关于其力学松弛行为哪一条正确?()③蠕变能回复到零③应力松弛时应力能衰减到零③可用四元件模型模拟三、判断题(正确的划“V”,错误的划“X”)1. 交联聚合物的应力松弛现象,就是随时间的延长,应力逐渐衰减到零的现象。