(完整版)数形结合练习
- 格式:doc
- 大小:66.01 KB
- 文档页数:2
数形结合1.如图1,大长方形的面积从整体看为S=m(a+b+c),同时这个大长方形的面积也可以从局部表示成:S=S1+S2+S3=ma+mb+mc;于是有m(a+b+c)=ma+mb+mc。
2.如图2,大长方形的面积从整体可以表示成(a+b)(m+n),同时这个大长方形的面积也可以从局部表示成S=S1+S2+S3+S4=ma+mb+na+nb;于是有(a+b)(m+n)=ma+mb+na+nb.。
3.如图3,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形S4旋转到小长方形S3的位置,则此时的阴影部分的面积又可以看成S1+S2+ S3=(a+b)(a-b)。
于是有(a+b)(a-b)=a2-b2。
4.如图4:将边长为b的小正方形放到边长为a的正方形的一角,空白部分的面积从整体计算为a2-b2;而如果从局部考虑,其面积可以看作为两个梯形S1+S2之和,其面积为()()()()))((22babababababa-+=-++-+。
于是有(a+b)(a-b)=a2-b2。
5.如图5,大正方形的面积从整体可以表示为(a+b)2,从局部可以表示为也可以表示为S=S1+ S2+ S3+S4,同时S=a2+ab+ab+b2=a2+2ab+b2,于是有(a+b)2=a2+2ab+b2。
6.如图6,从整体看,这个图形的面积为(a+b)(a+2b),从局部我们可以看出,它分为6部分,这6部分的面积之和为a2+3ab+2b2,所以(a+b)(a+2b)= a2+3ab+2b2。
数形结合例题例1 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2析解:图1的阴影部分面积等于边长为a的正方形面积与边长为b的正方形的面积差,表示为a2-b2.图2中阴影部分是长方形,其中长为a+b,宽为a-b,其面积为(a+b)(a-b).根据两个图形中阴影部分的面积相等,有a2-b2=(a+b)(a-b).故选C.例2 如图3是四张全等的长方形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a、b的恒等式________.析解:空白部分的面积可看成是一个正方形,它的边长为a-b,所以面积为(a-b)2;空白部分面积又可看成大正方形面积与四个长方形面积的差,大正方形的面积为(a+b)2,aba -baba -b甲乙每个长方形的面积为ab ,所以空白部分面积为(a +b )2-4ab .因此有恒等式(a +b )2-4ab =(a -b )2成立.故填(a +b )2-4ab =(a -b )2.例3 图4是由一个边长为a 的正方形与两个长、宽分别为a 、b 的小长方形拼接而成的长方形ABCD ,则整个图形可表达出一些等式,请你写出其中任意三个等式______、______、_______.析解:读懂题意,观察图中数据关系是关键,其次利用面积写出代数式,.根据图形的组合特点,由面积间的相等关系,写出符合要求的等式,如:a 2+2ab =a (a +2b );a (a +b )+ab =a (a +2b ); a (a +2b )-a (a +b )=ab ;a (a +2b )-ab =a (a +b );a (a +2b )-a 2=2ab ;a (a +2b )-2ab =a 2.数形结合解题1.将图甲中阴影部分的小长方形变换到图乙位置,根据两个图形的面积关系可以得到一个关于a 、b 的恒等式为( )A()222b 2ab a b a +-=- B.()2222b ab a b a ++=+C()()22b a b -a b a -=+D.()ab a b a a -=-22.图①是一个边长为()m n +的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是( )A .22()()4m n m n mn +--= B .222()()2m n m n mn +-+= C .222()2m n mn m n -+=+ D .22()()m n m n m n +-=-3.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( )A .2m +3B .2m +6C .m +3D .m +64.七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:2222)(b ab a b a ++=+.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:2232)2)((b ab a b a b a ++=++.(请按照图⑴中卡片的形状来画图5.数形结合是一种重要的数学方法,,你能利用这种方法把算式(2a+b)(a+2b)=2a 2+5ab+2b 2的合理性解释清楚吗aa bb⑴(2)(3)。
小学数学数形结合练习题一、判断正误1. 下列图形中,哪个是多边形?A. 长方形B. 圆形C. 五角星D. 弧形答案:A2. 下列图形中,几个图形是直角三角形?A. 0B. 1C. 2D. 3答案:C3. 下列哪个图形是长方体?A. 球B. 圆锥C. 正方体D. 圆柱体答案:C二、选择题4. 请根据图形选择正确的名词。
(1)正方形(2)长方形(3)菱形(4)梯形A. (1)和(4)B. (2)和(3)C. (1)和(3)D. (2)和(4)答案:A5. 下面哪几个图形的边是曲线?A. 圆B. 四边形C. 五边形D. 三角形答案:A三、填空题6. 请根据题图填空。
(1)图中有___个长方形。
(2)图中有___条曲线边。
(3)图中有___个三角形。
(4)图中有___个正方形。
答案:(1)3 (2)2 (3)4 (4)67. 已知边长为5cm的正方形围成一个正方形区域,求这个区域的周长。
答案:20cm四、计算题8.将下列几何图形按照形状分类,并填写正确的图形名称和数量。
(1)矩形 (2)圆(3)梯形 (4)正方形(5)三角形(6)长方形答案:(1)长方形,2个(2)圆,0个(3)梯形,0个(4)正方形,3个(5)三角形,1个(6)长方形,1个9.某学校的操场为长方形,长为50m,宽为30m。
学生们要在操场上划分一个正方形区域作为足球场,求这个足球场的边长和面积。
答案:边长为30m,面积为900m²。
总结:通过以上数学练习题,我们复习了几何图形的分类和形状判断,以及计算周长和面积的方法。
希望同学们能够通过这些练习题加深对数学知识的理解,提升自己的数学水平。
加油!。
1 / 2数形结合练习一.选择题:1.向高为 H 的水瓶中灌水,注满为止,假如灌水量 v 与水深 h 的函数关系以以以下图,那么水瓶的形状是2.已知定义在R 上的偶函数 f(x)在( 0, +∞)上是增函数且 f( 1)=0 则知足3f (log 1 x) >0 的 x 的取值范围是8(A ){ 1} ∪(2, +∞ ) ( B )(0,1)(C )(0, 1)∪ (2, +∞) (D ) (2, +∞ )2223.方程 lgx=sinx 的根的个数是(A )1 个 (B )2 个 (C )3 个 (D )无数个4.函数 y =a|x|和 y= x+a 的图像恰巧有两个公共点,则实数 a 的取值范围为(A )(1, +∞ ) ( B )(-1, 1) (C )(-∞ , -1) (D )(-∞ , - 1)∪(1, +∞) 5.已知 0<a<1,方程 a |x| | log a x | 的实数根的个数是(A )1 个 (B )2 个 (C )3 个 (D )以上都有可能 .若不等式2-log a < 0在 (0, 1 内恒建立 ,则 a 的取值范围是6x x )2(A )[ 1, 1)( B ) (0, 1)(C ) ( 1, 1) (D )(0, 1)1616167.代数式 x 2 y 2 x 2( y 1)2( x 1) 2 y 2(x 1) 2( y 1)2 的最小值为(A )2 (B )2 2( C )4 (D )4 2.函数 = sin2x+acos2x 图像的一条对称轴为 x =-,那么 a 等于8 y8(A ) 2( B )- 2( C )1 (D )- 19.直线 y=a (a ∈R )与曲线 y = cot(ωt),(ω> 0)的相邻两交点之间的距离是(A )k(B )2( C ) (D )以上都不对二.填空题:1.已知有向线段 PQ 的起点 P 和终点 Q 分别为(- 1,1)和( 2, 2),若直线 l :x+my+m=0 与 PQ 的延伸线订交,则 m 的取值范围是 . 2.若直线 l :y =kx+1 与曲线 c :x =y 2 1 只有一个公共点,则实数 k 的取值1范围是.3.函数 y=23x 的值域是1x4.若 a ∈ (0,1) ,则T= sin(1+a) , T =sin(1- a), T =cos(1+a) 的大小关系1232为.5.方程 |x- |2x+1||=1 的不一样样样实根的个数为.6.函数 u=2x 15 2x 的最大值是.三.解答题:.已知+十 3的最大值 .), 求 2a b14a+9b=10(a,b∈6 R2.假如对于x 的方程sinx+acosx= 2 恒有解,务实数 a 的取值范围3.已知函数 f(x)=ax2-c 知足一 4≤f(1)≤- 1,- 1≤f(2)≤5,求 f(3)的范围.4.已知 a ≥0, b≥0, a+b=1,求证:a1b 1≤2.225.若 A={ x| -2≤x≤a} , B={ y| y=2x+3,x∈A}, C={ z| z=x2, x∈ A} ,若 C B,求 a 的值.6.已知抛物线 C:y=- x2+mx-1,点 A(3,0), B(0, 3), 求抛物线 C 与线段AB 有两个不一样样样交点时 m 的范围.22 / 2。
高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。
数形结合的题目1. 已知一个圆的面积为 $\pi$,求它的周长。
解:圆的面积为$\pi r^2$,所以$r=1$。
周长为$2\pi r=2\pi$。
2. 在一个边长为 $1$ 的正方形中,一只苍蝇从一个角爬到另一个角,求苍蝇爬行的最短距离。
解:由于正方形的两条对角线相等,所以苍蝇从一个角到另一个角的最短距离为对角线的长度,即 $\sqrt{2}$。
3. 已知一个等边三角形的周长为 $6$,求其面积。
解:设该三角形的边长为 $a$,则 $a\times 3=6$,即 $a=2$。
由于该三角形是等边三角形,所以它的高等于边长的一半,即$\frac{\sqrt{3}}{2}\times 2=\sqrt{3}$。
所以该三角形的面积为$\frac{1}{2}\times 2\times\sqrt{3}=\sqrt{3}$。
4. 在一个正方形中,一条对角线被分成两段,比为 $3:4$。
求正方形的边长。
解:设正方形的边长为 $a$,则对角线的长度为 $\sqrt{2}a$。
由于对角线被分成的两段比为 $3:4$,所以两段分别为$\frac{3}{7}\sqrt{2}a$ 和 $\frac{4}{7}\sqrt{2}a$。
根据勾股定理,我们得到$(\frac{3}{7}\sqrt{2}a)^2+(\frac{4}{7}\sqrt{2}a)^2=(\sqrt{2}a)^2$,化简得 $a=7$。
5. 已知半径相等的两个圆相切,其中一个圆的面积为$16\pi$,求另一个圆的面积。
解:由于两个圆相切,所以它们的切点处连线的长度等于两个圆的半径之和,即 $r+r=2r$。
设另一个圆的面积为 $S$,则$S=\pi(2r)^2-\pi r^2=3\pi r^2$。
设第一个圆的面积为 $16\pi$,则 $\pi r^2 = 16\pi$,即 $r=4$。
所以另一个圆的面积为 $3\pir^2=3\times 16\pi=48\pi$。
小学数学数形结合练习题题目一:数形结合的认知训练1. 看图填空:(a) 在图中,将所有的三角形标记一下。
(b) 将你周围的物体,如书桌、椅子等尽可能多地找出正方形、长方形和圆形,并分别写下它们的名称。
2. 计算下列各图形的周长和面积:(a) 根据提供的边长,计算正方形的周长和面积。
(b) 根据提供的长和宽,计算长方形的周长和面积。
(c) 根据提供的半径,计算圆形的周长和面积。
(d) 尝试设计一个你认为面积最大的正方形,画出它的示意图,并计算周长和面积。
3. 图形转换:(a) 请将以下图形按照标号进行旋转,并写出每个旋转后的图形名称。
图1:正方形图2:长方形图3:三角形图4:圆形(b) 请将以下图形按照标号进行翻转,并写出每个翻转后的图形名称。
图1:正方形图2:长方形图3:三角形图4:圆形4. 找规律:(a) 请观察以下数字序列,找出其规律,并写出下一个数字:1, 4, 9, 16, ...(b) 请观察以下形状序列,找出其规律,并画出下一个形状:△, □, ○, ▽, ...5. 图形拼凑:(a) 使用提供的拼图块,组合成一个正方形。
(b) 使用提供的拼图块,组合成一个长方形。
(c) 使用提供的拼图块,组合成一个圆形。
6. 图形推理:给出以下图形的排列顺序,请写出图形编号,并解释其排列规律。
图1:▽图2:□ 图3:○ 图4:△题目二:数形结合的实际应用1. 实际问题运用:(a) 小明家花园的形状是长方形,长为8米,宽为5米,他要在花园的四周围上一圈砖。
砖的规格是2米长、1米宽,请问他需要多少块砖?如果砖的价格是每块20元,他需要多少钱?(b) 小红的家有一个圆形的花坛,直径是3米。
她想在花坛周围种植一圈花草,每株花草之间的间距是20厘米。
她需要多少株花草?题目三:数形结合的解决问题能力训练1. 智力题:(a) 小明手上有12枚硬币,其中有一个是假币,假币的重量比真币轻。
小明有一个天平,最多能使用3次天平,能否找出假币?如果能,请写出解决方法;如果不能,请解释原因。
第五十二讲数形联合A组一、选择题1. 已知函数 f(x)= x2+ e x-1(x<0) 与 g(x)= x2+ ln( x+ a)的图象上存在对于y 轴对称的点,则 a 2的取值范围是 ()A.-∞,1-∞,e) C.-1, eD.- e,1e B.(e e答案: B分析:由题意可得,当x>0 时, y= f(- x)与 y= g(x)的图象有交点,即g(x)= f(- x)有正解,即 x2+ln( x+ a) = (-x)2+ e-x-12有正解,即 e-x- ln(x+ a)-12= 0 有正解,令 F(x)= e-x- ln(x1-x-1-x1+a)-,则 F′(x)=- e<0,故函数 F(x)= e- ln(x+ a)-在 (0,+∞)上是单一递减2x+ a2的,要使方程g(x)= f(- x)有正解,则存在正数 x 使得 F(x) ≥0,即 e-x-ln( x+ a)-1≥0,所以2e x1 e x1x 在(0,+∞)上单一递减,所以e 011a≤e2x ,又y= e2a< e20= e2,选B.2. 函数 f(x)= 1 x 2 (| x |1),假如方程 f(x)=a 有且只有一个实根,那么 a 知足 ( )| x |(| x |1)A. a<0B.0≤ a<1C.a=1D.a>1答案: C分析:由图知 a=1 时,图象只有一个交点,应选 C.3.已知圆 C:( x-3)2+( y-4)2=1和两点 A(-m,0),B( m,0)( m>0),若圆 C上存在点 P,使得∠ APB=90°,则 m的最大值为()A.7B.6C.5D.4答案: B分析 . 依据题意,画出表示图,以下图,则圆心 C 的坐标为 (3,4) ,半径 r = 1,且 | AB | =2m .1因为∠ APB = 90°,连结 OP ,易知 | OP |= 2| AB | =m .要求 m 的最大值,即求圆 C 上的点 P 到原点 O 的最大距离 .22因为 | OC | = 3 + 4 = 5,所以 | OP |max = | OC | + r = 6,1224. 设平面点集 A = {( x ,y )|( y - x ) · ( y -x ) ≥ 0} , B = {( x , y )|( x - 1) +( y - 1) ≤1} ,则 A∩B 所表示的平面图形的面积为 ( ) 334πA. 4πB.5πC.7πD.21答案: D 分析:因为对于会合A , ( y - x ) y - x ≥ 0,y - x ≥0,y - x ≤0,所以1或1其表示的平面地区如图 .y -x ≥ 0y - x ≤ 0,对于会合 B , ( x - 1) 2+ ( y -1) 2≤ 1 表示以 (1,1) 为圆心, 1 为半径的圆及其内部地区,其面积为π .12由题意意知 A ∩ B 所表示的平面图形为图中暗影部分,曲线y = x 与直线 y =x 将圆 ( x -1) +( - 1) 2=1 分红1, 2, 3,4四部分 . 因为圆 ( x - 1)2+( y- 1) 2=1 与 y = 1 的图象都对于直ySSSSx线 y = x 对称,进而 S =S , S = S ,而 S + S + S + S =π,所以 S=S +S = π暗影 2.1234123424二、填空题5. 已知函数 y = f ( x )( x ∈ R) ,对函数 y = g ( x )( x ∈ I ) ,定义 g ( x ) 对于 f ( x ) 的“对称函数” 为函数 y= h( x)( x∈ I ),y= h( x)知足:对随意x∈ I ,两个点( x,h( x)),( x,g( x))对于点( x,f ( x))对称.若 h( x)是 g( x)=4-x2对于f ( x) = 3x+b的“对称函数” ,且h( x)> g( x) 恒成立,则实数 b的取值范围是 ________.答案: (210,+∞ )分析由已知得h x+ 4-x2) = 6+ 2- 4-x 2(x)> ()=3+,所以 (.2x b h x x b h g x恒成立,即 6x +2- 4-2> 4-x2,3 +> 4-x2恒成立 .b x x b在同一坐标系内,画出直线y=3x+ b 及半圆 y=2如图所4-x(b示) ,可得>2,即b>2 10,故答案为 (2 10,+∞ ). 10x2y26.椭圆a2+b2= 1( a>b>0) 的左、右极点分别是A,B,左、右焦点分别是 F1,F2,若| AF1|,| F1F2 | , | F1B| 成等比数列,则此椭圆的离心率为________.【分析】1121122∵ | AF| =a-c,|FF|= 2c, | F B| =a+c,且三者成等比数列,则| FF|11222c5=| AF| · | F B| ,即 4c=( a-c) · ( a+c) ,得a= 5c,∴ e=a=5.【答案】5 5三、解答题7. 已知函数f (x) = 2lnx-x2+( ∈R).ax a(1) 当=2时,求f (x) 的图象在x= 1处的切线方程;a(2) 若函数g( x)= f (x)-ax+ m在1, e上有两个零点,务实数m的取值范围.e22解: (1)当 a=2时, f( x) = 2ln x-x+ 2x,f′ ( x) =x- 2x+2,切点坐标为 (1 , 1),切线的斜率k= f ′(1)=2,则切线方程为y-1=2( x-1),即 y=2x-1.(2)g( x)=2ln x- x2+ m,2- 2(x+ 1)(x- 1)则 g′( x)=x-2x=x.1∵ x∈e,e,∴当 g′( x)=0时, x=1.1当 <x<1 时,g′( x)>0 ;e当 1<x<e 时,g′ ( x)<0.故 g ( x ) 在 x = 1 处获得极大值 g (1) = m - 1.112121 1又 g e = m - 2- e 2, g (e) = m + 2- e , g (e) - g e = 4- e + e 2<0,则 g (e)< g e ,1∴ g ( x ) 在 , e 上的最小值是 g (e) . e1g ( x ) 在, e 上有两个零点的条件是eg ( 1)= m - 1>0,11 g e = m - 2-e 2≤ 0,1解得 1<m ≤ 2+e 2 ,1∴实数 m 的取值范围是1,2+ e 2 .8. 已知函数 f(x)的图象是由函数g(x)=cos x 的图象经以下变换获得:先将g(x)图象上全部点π的纵坐标伸长到本来的2 倍 (横坐标不变 ),再将所获得的图象向右平移2个单位长度 .(1) 求函数 f(x)的分析式,并求其图象的对称轴方程;(2) 已知对于 x 的方程 f( x) +g( x)=m 在 [0,2 π)内有两个不一样的解α, β.2m 2 ①务实数m 的取值范围;②证明: cos(α- β)=- 1.5解 法一 (1) 将 g(x)= cos x 的图象上全部点的纵坐标伸长到本来的2 倍(横坐标不变 )获得 y=2cos x 的图象,再将 y =2cos x 的图象向右平移π y = 2cos x -π 个单位长度后获得的图象,22故 f(x)= 2sin x.进而函数 f(x)= 2sin x 图象的对称轴方程为πx = k π+(k ∈ Z ).2(2) ① f(x)+g(x)= 2sin x + cos x = 52sin x + 1cos x = 5sin(x + φ)55此中 sin φ= 1, cos φ=255.依题意, sin(x + φ)= m在 [0,2π)内有两个不一样的解α, β,当且仅当m< 1,故 m 的取值55范围是 (- 5, 5).②证明 因为 α, β是方程5sin( x + φ)=m 在 [0,2π)内的两个不一样的解。
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。
数形结合专项训练一、选择题1.有理数a,b在数轴上的对应点如图1所示,则│a│+│a+b│-│b-a│等于()A.2b+a B.2b-a C.a D.bba c0a(1) (2)2.已知有理数a,b,c在数轴上的对应点如图2所示,则下列关系式中成立的是()A.c+b>a+b B.bc>ab C.b-c>a-c D.ca>ba3.将正整数按如图所示的位置顺序排列,根据图中的排列规律,2003应在(• )A.○A位 B.○B位 C.○C位 D.○D位4.a,b为数轴上的两个数,且a在b的右边,那么a+b()A.大于零 B.小于零 C.等于零 D.不能确定5.数轴上表示互为相反数的两个点相互之间的距离是4,这两个数是()A.0和4 B.0和-4 C.2和-2 D.4和-46.若有理数a,b在数轴上的对应点的位置如图3所示,则下列结论中正确的是()A.b>a B.│a│>-b C.│b│>-a D.│a│>│b│(3) (4) (5)7.有一个密码系数,其原理如下面的杠图所示:输入x → x+6 →输出,当输出的结果为10时,则输入的x为()A.4 B.-4 C.16 D.-16二、填空题8.已知a,b,c•在数轴上的位置如图4所示,•用“<•”或“>•”连接,•则a-b_____0,abc_______0,b_______c.9.数a,b在数轴上的位置如图5所示,则│b│_____│a│.(填“>”“<•”或“=”)10.m,n都是负数,n比m大,那么在数轴上,m,n都在原点的________侧,m点比n•点距离原点______.11.若x<y<0,则(x+y)(x-y)的符号为______,(x+y)·(x-y)的符号为____,(x-y)(y-x)的符号为_____.三、解答题12.如图所示,小丽在写作业时,不慎将两滴墨水滴在数轴上,根据图中的数值,试确定墨迹盖住的整数共有几个?13.如图所示,某计算装置有一数据入口A和一运算结果的出口B,•如果小颖输入2后,所得的结果为5,这个计算装置中究竟是怎样进行计算的呢?•若小颖输入的数为x,请你用x表示运算规则.(至少写出三种运算规则)14.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A后,继续向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置,说明点C可以看作是蚂蚁从原点出发,•向哪个方向爬行了几个单位长度得到的.答案:1.C [提示:由图可知a<0,a+b<0,b-a>0,所以│a│-│a+b│-│b-a│=-a+(a+b)-(b-a)=-a+a+b-b+a=a,故选C.] 2.B [提示:由图可知,a>0,b>0,因为a>c,所以a+b>c+b,故A错;因为b<a,•所以b-c<a-c,故C错;因为c<b,a>0,所以ca>ba,故D错,因为bc>0,ab<0,所以bc>ab,故选B.]3.B [提示:由图可观察到:A位置的数为4n+2;B位置的数为4n+3;C位置的数为4(n+1);D位置的数为4n+5(n为自然数),而2003=4×500+3,故2003应在B位置,故选B] 4.D [提示:因为a在b的右边,所以a+b>0或a+b<0或a+b=0,故大小不能确定,应选D] 5.C [提示:因为互为相反数的两个点之间的距离为4,而2和-2既互为相反数,又│2│+│-2│=4,故选C.]6.C [提示:由图可知0<a<1,b<-1,所以b>a错误;│a│-b错误;│a│>│b│也错误,│b│>-a正确,故选A.]7.A [提示:由图可知输入的x与6的和为10,则x=4,故选A.]8.> > > [提示:由图可知,a>0,b<0,c<0,且│a│>│b│.]9.> [提示:从图中可以看到a>0,b<0,所以a>b.]10.左远 [提示:因为m<n<0,所以m,n都在原点左侧,但m点比n点距离原点远.] 11.正负负 [提示:因为x<y<0,所以x+y<0,x-y<0,所以(x+y)(x-y)>0,•即符号为正,同样可得(x+y)(y-x)及(x-y)(y-x)的符号为负.]12.解:原点左边的-1的负号被盖住,-6.3与-1之间有5个整数,0与4.1之间有4个整数,所以共有9个整数.13.解:能用x表示运算规则:如2x+1,x2+1,3x-1.14.解:(1)点A表示4,点B表示6,点C表示-4.(2)点C是蚂蚁从原点出发向左爬行了4个单位长度得到的.。
初一数形结合的典型例题
例题1,一个正方形的边长为5cm,求它的周长和面积。
解答,正方形的周长等于四条边的长度之和,即周长 = 5cm +
5cm + 5cm + 5cm = 20cm。
正方形的面积等于边长的平方,即面积
= 5cm × 5cm = 25cm²。
例题2,一个长方形的长为12m,宽为8m,求它的周长和面积。
解答,长方形的周长等于两倍的长加两倍的宽,即周长= 2 × 12m + 2 × 8m = 40m。
长方形的面积等于长乘以宽,即面积 = 12m × 8m = 96m²。
例题3,一个圆的半径为3cm,求它的周长和面积(取π ≈
3.14)。
解答,圆的周长等于2πr,其中r为半径,即周长= 2 ×
3.14 × 3cm ≈ 18.84cm。
圆的面积等于πr²,即面积 = 3.14
× 3cm × 3cm ≈ 28.26cm²。
例题4,一个三角形的底边长为6cm,高为4cm,求它的面积。
解答,三角形的面积等于底边乘以高再除以2,即面积 = 6cm × 4cm ÷ 2 = 12cm²。
这些例题涵盖了常见的数形结合题型,通过计算周长和面积,能够帮助我们理解几何形状的特征和计算方法。
当然,在实际应用中,还有更多复杂的数形结合问题需要解决,但这些例题可以作为初步的练习和基础知识的巩固。
希望这些例题能对你有所帮助。
数形结合思想单元测试一、选择题.1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。
则ðU (A∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞)解析:涉及数集的运算,画出数轴可求{}A B=/12x x ⋂<<,进而得ðU (A∩B)=(-∞,1]∪[2,+∞); 2.如图,直线A x +B y +C =0(AB ≠0)的右下方有一点(m ,n ),则A m +B n +C 的值( ) A 与A 同号,与B 同号 B 与A 同号,与B 异号 C 与A 异号,与B 同号D 与A 异号,与B 异号A,D ,不妨设 A>0, 则B<0,C<0,因为点(m ,n )在直线的下方,所以A m +B n +C>0,故选B.3.设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β.则a 的取值范围是( ); A (–2,–3)∪(–3,2) B (–2,–3) C (–3,2) D 不确定 解析:作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2).故选A 。
4.方程sin(x –4π)=41x 的实数解的个数是( )A.2B.3C.4D.以上均不对解析:由函数与方程思想知:方程的根转化为对应函数图像的交点的横坐标,分别作出函数y=sin(x –4π)和函数y=41x 的图像,由图像知交点个数为3个,故方程的根有3个。
5.已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A.α<a <b <βB.α<a <β<bC.a <α<b <βD.a <α<β<b解析:令g (x )= f (x ) +2=(x –a )(x –b )(其中a <b ),可知函数f (x )的图像向上平移2个单位可得函数g (x ),而方程g (x )=0的两个跟为a ,b ,结合图像可知α<a <b <β。
例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么?
分析:原方程变形为2x 2-3x =2k 后可转化为函数
y =2x 2-3x 。
和函数y =2k 的交点个数问题.
解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛
物线,随着k 的变化,易知2k =-8
9或-1≤2k <5时只有一个公共点.∴ k =-169或-21≤k <2
5. 点拨解疑:方程(组)解的个数问题一般都是通过相
应的函数图象的交点问题去解决.这是用形(交点)解决
数(实根)的问题.
例题3.已知s =
1
322+-t t ,则s 的最小值为 。
分析:等式右边形似点到直线距离公式.
解:|s |=1
|32|2+-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y
-3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t
-3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.
点拨解疑:由数的形式联想到数的几何意义也即形,从而以形辅数解决问题.类似地如n bx m ay --联想到斜率,1cx d b
++联想到定比分点公式,(x -a )2+(y -b )2
联想到距离,|z 1-z 2|联想到两点间距离等.。
小学数形结合练习题
1. 数轴上表示1和2的点的距离是多少?表示-1和2的点的距离是多少?
2. 在一条直线上,有两个点A和B,点A在点B的左边。
现在有4个单位长度的棒,如何用这些棒把A和B连接起来?
3. 将一根绳子绕成一个圆形,然后从圆心处将绳子剪断,拉直后得到的直线长度是多少?
4. 用3个边长为2cm的正方形,拼成一个长方形,这个长方形的周长是多少cm?
5. 一个长方形的长是宽的3倍。
如果长和宽各增加2cm,那么新的长方形的周长是原来的多少倍?
答案:
1. 在数轴上表示1和2的点的距离是1,表示-1和2的点的距离是3。
2. 在一条直线上,有两个点A和B,点A在点B的左边。
现在有4个单位长度的棒,可以这样连接A和B:将第一个棒放在点A右边一个单位长度处,第二个棒放在点B左边一个单位长度处,第三个棒放在点B右边一个单位长度处,第四个棒放在点A左边一个单位长度处。
这样就能将A和B连接起来。
3. 将一根绳子绕成一个圆形,从圆心处将绳子剪断后拉直得到的直线长度等于圆的周长。
4. 用3个边长为2cm的正方形拼成的长方形周长是16cm。
5. 一个长方形的长是宽的3倍。
如果长和宽各增加2cm,那么新的长方形的周长是原来的多少倍?
原来的长方形周长为: 2 × (3 + 1) = 8cm
新的长方形周长为: 2 × (3 + 3) = 12cm
所以新的周长是原来的 12/8 = 1.5倍。
六年级数学上册专项练习:数形结合规律(含解析)一、选择题(共3题;共6分)1.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是().A. 86B. 52C. 38D. 742.用火柴棒按下图的方式摆放第12个图形需要()根小棒.A. 30B. 36C. 393.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米.n个杯子叠起来的高度可以用下面()的关系式来表示.A. 6n-10B. 3n+11C. 6n-4D. 3n+8二、填空题(共9题;共14分)4.下图是小明用火柴搭成的1条、2条、3条“金鱼”……则搭6条“金鱼”需要火柴________根.5.一些小棒按下面的方式摆放.摆第7个图形需要________根小棒;摆第10个图形需要________根小棒.6.如图,用同样大小的黑色棋子按如图所示的方式摆图案,按照这样的规律摆下去,第20个图案需棋子________枚.7.若=1,=2,=3,则=________.8.如图,有一座四层楼房,每个窗户有4块玻璃,分别涂上灰色和白色,每个窗户代表一个数字.每层楼有三个窗户,从左向右表示一个三位数.四个楼层表示的三位数有791,275,362,612.第三层楼表示的三位数是________.9.观察如图,第6个图有________个圆点,第n个图比它前一个图多________个圆点.图序 1 2 3 4 ……点群……圆点数1 5 14 30 ……10.下列图中有大小不同的平行四边形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个……第5幅图中有________个,第n幅图中有________个.11.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16 、24……第8个图形共有________个▲.第n个图形中共有________个▲.12.小明用吸管和图钉钉三角形形状(如下图,线段表示吸管,黑点表示图钉).(1)照样子钉4个三角形,需要________个图钉和________个吸管.(2)小明用100个图钉,同时要再用________根吸管,就能钉成________个三角形.三、解答题(共2题;共9分)13.1张长方形桌子可坐6人,按下图方式将桌子拼在一起.(1)2张桌子拼在一起可坐多少人?3张桌子呢?n张桌子呢?(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐________人.(3)在(2)中,若改成每8张桌子拼成1张大桌子,则共可坐________人.14.探索规律.(1)按小方块的摆放规律把表格填写完整.层数 1 2 3 4 …7 …n方块个数5 15 30 ________ …________ …________(2)当所用的小方块达到330个时,搭成的台阶共有________层.答案解析部分一、选择题1.【答案】 A【考点】数形结合规律【解析】【解答】解:8×10+6=86,所以m的值是86.故答案为:A.【分析】从已给的规律可以得出,右上角的数=左上角的数+4,左下角的数=左上角的数+2,右下角的数=右上角的数×左上角的数-左上角的数.据此作答即可.2.【答案】 C【考点】数形结合规律【解析】【解答】6+3×(12-1)=6+33=39(根)故答案为:C【分析】观察图可知,如果把图形的序数设为n,小棒的个数与图形的序数间的关系为:小棒的个数=6+3×(n-1),以此即可解答.3.【答案】 D【考点】数形结合规律【解析】【解答】1个杯子重叠部分的高度:(26-20)÷2=6÷2=3(厘米)下面没有重叠部分的高度是:20-3×4=20-12=8(厘米)n个杯子叠起来的高度可以用3n+8来表示.故答案为:D.【分析】根据条件“4个杯子叠起来高20 厘米,6个杯子叠起来高26厘米”可知,2个杯子叠起来重叠部分的高度是:26-20=6(厘米),也就是一个杯子上面的重叠部分是3厘米,有几个杯子重叠,就有几个3厘米,再加上下面未重叠的高度就是总高度,据此分析解答.二、填空题4.【答案】 38【考点】数形结合规律【解析】【解答】解:搭6条“金鱼”需要火柴38根.故答案为:38.【分析】1条鱼需要火柴6+2根,2条鱼需要火柴6×2+2=14根,3条鱼需要火柴6×3+2=20根,……n条鱼需要火柴6n+2根.据此作答即可.5.【答案】 15;21【考点】数形结合规律【解析】【解答】7×2+1=15(根);10×2+1=21(根).故答案为:15;21.【分析】此题主要考查了数形结合的规律,观察图形可得规律:摆第n个图形需要2n+1根小棒,据此列式解答.6.【答案】 62【考点】数形结合规律【解析】【解答】解:2+3×20=2+60=62(枚)故答案为:62.【分析】规律:棋子的枚数=2+图案个数×3,按照这样的规律计算即可.7.【答案】 9【考点】数形结合规律【解析】【解答】解:(10+8)÷2=9故答案为:9.【分析】观察已知三个图形中的三个数字,发现用左边两个数字的和除以右边的数字来计算,所以用左边的8与10的和除以2即可.8.【答案】 791【考点】数形结合规律【解析】【解答】解:第三层楼表示的三位数是791.故答案为:791.【分析】从下往上数,一层和四层最右边的窗户形状相同,那么表示这两层的数字的最后一位相同,所以“362和612”表示这两层,且表示2,那么一层左边的数字就是2,所以一层用275表示.那么第三层楼表示的三位数就是791.9.【答案】 91;【考点】数形结合规律【解析】【解答】观察如图,第6个图有=91个圆点,第n个图比它前一个图多个圆点.故答案为:91;.【分析】此题主要考查了数形结合的知识,关键是找出图形的变化规律,观察可得规律:第n个图比它前一个图多个圆点,据此解答.10.【答案】 9;2n-1【考点】数形结合规律【解析】【解答】解:第5幅图中:5×2-1=9(个),第n幅图中:(2n-1)个.故答案为:9;2n-1.【分析】规律:平行四边形的个数=图形的个数×2-1,根据规律计算即可.11.【答案】 76;n2+n+4【考点】数形结合规律【解析】【解答】根据分析可知,第8个图形共有4+8×(8+1)=76个▲.第n个图形中共有4+n×(n+1)=n2+n+4个▲.故答案为:76;n2+n+4.【分析】先观察每个图形的最外侧都有4个▲,再观察每个图形内部▲的行数和列数,则有第1个图形中有4+1×2=6个▲,第2个图形中有4+2×3=10个▲,第3个图形中有4+3×4=16个▲,则第n个图形中有4+n×(n+1)=n2+n+4个▲,据此规律解答.12.【答案】(1)6;9(2)197;98【考点】数形结合规律【解析】【解答】解:(1)照样子钉4个三角形,需要6个图钉和9个吸管;(2)小明用100个图钉,同时要再用197根吸管,就能钉成98个三角形.故答案为:(1)6;9;(2)197;98【分析】图中要钉成n个三角形,需要2n+1根吸管和n+2个图钉.(1)将n=4代入公式作答即可;(2)现在是100个图钉,所以n+2=100,解得n=98,所以可以钉成98个三角形,然后再将n=98代入2n+1就可以得出需要吸管的根数.三、解答题13.【答案】(1)解:2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,n张桌子拼在一起可坐2n+4人.(2)112(3)100【考点】数形结合规律【解析】【解答】解:(2)5×2+4=10+4=14(人)14×(40÷5)=14×8=112(人)(2)8×2+4=16+4=20(人)20×(40÷8)=20×5=100(人)故答案为:(2)112;(3)100.【分析】(1)规律:能坐的人数=桌子张数×2+4,根据规律用字母表示;(2)根据规律先计算出5张桌子拼成的1张大桌子能坐的人数,40张桌子能拼成8张大桌子,这样用1张大桌子能坐的人数乘8即可求出坐的总人数;(3)先计算出8张桌子拼成的1张大桌子能坐的人数,40张桌子能拼成5张大桌子,用1张大桌子能坐的人数乘5即可求出可以坐的总人数.14.【答案】(1)50;140;(1+2+3+4+……+n)×5或(1+n)×n× 或1×5+2×5+3×5++n×5(2)11【考点】数形结合规律【解析】【解答】(1)按小方块的摆放规律,填表如下:层数 1 2 3 4 …7 …n方块个数 5 15 30 50 …140 …(1+n)×n×(2)(1+n)×n×=330解:(1+n)×n×5=330×2(1+n)×n×5÷5=660÷5(1+n)×n=132因为11×12=132,所以n=11.【分析】(1)观察图形排列可得规律:当小方块摆放n层时,方块的个数是:(1+n)×n×;(2)根据题意,要求搭成的台阶一共有几层,直接将数据代入字母式子中求值,据此解答.。
初三数形结合练习题1. 三角形ABC中,∠ACB = 90°,AB = 3cm,BC = 4cm。
求∠BAC的度数。
解析:根据直角三角形的性质,我们知道∠ACB = 90°。
又已知AB = 3cm,BC = 4cm,因此可以使用勾股定理求解。
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
可以表示为:AB² + BC² = AC²。
代入已知数据,得到3² + 4² = AC²。
计算得到9 + 16 = AC²。
最终得到AC² = 25,即AC = 5cm。
接下来,我们可以使用正弦定理来计算∠BAC的度数。
根据正弦定理,∠BAC的正弦值等于对边长度与斜边长度的比值。
可以表示为:sin(∠BAC) = AB/AC。
代入已知数据,得到sin(∠BAC) = 3/5。
可以通过查表或使用计算器得到sin(∠BAC) ≈ 0.6。
因此,∠BAC的正弦值约等于0.6。
为了计算∠BAC的度数,我们可以使用反正弦函数,即:∠BAC = arcsin(0.6)。
通过计算,可以得到∠BAC的度数约为 36.87°。
2. 一个正方形的边长为6cm,求其周长和面积。
解析:正方形的周长即为正方形的四条边的长度之和。
可以表示为:周长= 4 ×边长。
代入已知数据,得到周长 = 4 × 6cm。
计算得到周长 = 24cm。
正方形的面积可以通过边长的平方计算得到。
可以表示为:面积 = 边长²。
代入已知数据,得到面积 = 6cm × 6cm。
计算得到面积 = 36cm²。
因此,该正方形的周长为24cm,面积为36cm²。
3. 计算三角形的面积:已知一个三角形的底边长为8cm,高为5cm。
求其面积。
解析:三角形的面积可以通过底边长和高的乘积的一半来计算。
可以表示为:面积 = (底边 ×高) / 2。
初二数形结合思想练习题1. 问题描述:一辆汽车经过一个路口时,路口的交通灯是红色的。
汽车在路口停了一会儿,等交通灯变绿后才继续行驶。
假设交通灯红色亮灯的时间为30秒,绿色亮灯的时间为60秒,黄色亮灯的时间为10秒。
已知汽车从刚开始等待时交通灯刚好变成红灯,且当交通灯变绿时,汽车马上启动通过路口。
求在一个小时内,汽车有多少次能通过该路口。
2. 解题思路:要求在一个小时内汽车通过路口的次数,可以通过计算每次信号灯周期所用的时间,然后将其乘以每小时的周期数来得到最终结果。
在求解前,需先进行一些假设:每小时交通灯变换的周期数为n。
解题步骤如下:1) 计算一个周期内红灯、绿灯和黄灯所用的时间。
- 红灯:30秒;- 绿灯:60秒;- 黄灯:10秒;2) 计算一个周期所用的总时间。
一个周期所用的总时间 = 红灯时间 + 绿灯时间 + 黄灯时间 = 30秒 + 60秒 + 10秒 = 100秒。
3) 计算一个小时内通过路口的次数。
每小时通过的周期数 = 60分钟 × 60秒 ÷一个周期所用的总时间 = 3600秒 ÷ 100秒 = 36个周期。
汽车通过路口的次数 = 每小时通过的周期数 ×每个周期通过的次数。
4) 计算每个周期通过的次数。
- 红灯:汽车需要停下,不计入通过次数;- 绿灯:汽车可以通过,计入通过次数;- 黄灯:过渡阶段,汽车不计入通过次数。
综上所述,汽车能通过路口的次数应为:汽车通过次数 = 每小时通过的周期数 ×每个周期通过的次数 = 36 × 1 = 36次。
因此,汽车在一个小时内能通过该路口的次数为36次。
3. 结论:在一个小时内,汽车有36次能通过该路口。
通过此题目的解答,学生可以练习数形结合的思想,将数学问题与形状、图形等进行联系,培养他们的综合运算能力和解决实际问题的能力。
这种练习有助于提高学生的数学思维能力,并增强他们对数学的兴趣与学习动力。
五年级数形结合练习题题目1:在平面直角坐标系中,有一条直线y = 2x + 3和一条直线过点(3, 1)且平行于y轴,设与y轴的交点为A。
请问:1.1 若直线y = 2x + 3与y轴的交点为B,求线段AB的长度。
1.2 若平行于y轴直线与y = 2x + 3交于点C,请计算三角形ABC的面积。
1.3 若点A的纵坐标为正数,求直线y = 2x + 3与x轴的交点的横坐标。
题目2:某地区小学五年级的学生进行趣味运动会,田径比赛项目有短跑、长跑和接力赛。
现有45名同学要参加比赛,其中有15名同学只选择一项比赛,20名同学选择两项比赛,10名同学选择三项比赛。
2.1 请问共有多少名同学参加了短跑项目?2.2 若有5名同学只参加了接力赛,求只参加长跑项目的同学人数。
2.3 若一名同学只能选择一项比赛,求他选择长跑项目的概率。
题目3:某校五年级有60名学生,他们的数学成绩分布如下:成绩在80分以上的学生人数为36人;成绩在70分以上但不及80分的学生人数为14人;成绩在60分以上但不及70分的学生人数为6人;成绩在60分以下的学生人数为4人。
请统计以下信息:3.1 学生平均成绩是多少?3.2 成绩在80分以上的学生所占的百分比是多少?3.3 成绩在60分以下的学生所占的百分比是多少?题目4:小明为了每天保证充足的睡眠时间,制定了一份作息计划。
他每晚10点睡觉,早上6点起床。
其中,他计划用1小时做作业,其他时间留给其他活动。
4.1 小明每天能休息多少小时?4.2 若小明每天早上跑步30分钟,那么他在其他时间还剩余多少小时?4.3 若小明做作业的时间减少到40分钟,他的休息时间会增加多少分钟?题目5:一个半径为5cm的圆与一个边长为10cm的边的正方形相切。
请计算:5.1 圆的面积是多少?5.2 正方形的面积是多少?5.3 圆和正方形的外切矩形的面积是多少?题目6:小明参加了一个数学竞赛,其中有10道单选题和5道多选题。
1.下列哪个图形不能完全由三角形拼成?
A.正方形
B.长方形
C.圆形
D.平行四边形
2.在数轴上,点A表示数字5,点B是点A右侧第三个单位长度的点,则点B表示的数
字是?
A. 2
B.7
C.8
D.15
3.一个边长为4厘米的正方形,如果它的边长增加到6厘米,面积会增加多少平方厘米?
A. 4
B.12
C.20
D.36
4.直线l上有三个点A、B、C,且AB=BC=4cm,则AC的长度是?
A.4cm
B.6cm
C.8cm
D.无法确定
5.一个圆形花坛的周长是20米,如果在花坛周围每隔2米种一棵树,那么最多可以种
多少棵树(不考虑花坛内部的树)?
A.8棵
B.9棵
C.10棵
D.11棵
6.下列哪个图形不是轴对称图形?
A.等腰三角形
B.平行四边形(非特殊)
C.正方形
D.圆
7.用10根等长的小棒可以摆出多少个不同的三角形?(小棒不能折断)
A.1个
B.2个
C.3个
D.4个
8.在一个直角坐标系中,点P(3,4)关于x轴对称的点的坐标是?
A.(3,4)
B.(3,-4)
C.(-3,4)
D.(-3,-4)
9.一个长方形的长是宽的3倍,周长是24厘米,则这个长方形的面积是多少平方厘米?
A.12
B.18
C.24
D.36
10.下列哪个描述正确地表示了坐标平面上的点(a,b)到原点(0,0)的距离?
A.|a| + |b|
B. a + b
C.√(a^2 + b^2)
D.a^2 + b^2。
数形结合练习
一.选择题:
1.向高为H 的水瓶中注水,注满为止,如果注水量v 与水深h 的函数关系如图所示,那么水瓶的形状是
2.已知定义在R 上的偶函数f (x )在(0,+∞)上是增函数且f (31)=0则满足)(log 81x f >0的x 的取值范围是 (A ){
21}∪(2, +∞) (B )(0, 21) (C )(0, 2
1)∪(2, +∞) (D )(2, +∞) 3.方程lg x =sin x 的根的个数是
(A )1个 (B )2个 (C )3个 (D )无数个
4.函数 y =a |x |和 y = x +a 的图像恰好有两个公共点,则实数a 的取值范围为
(A )(1, +∞) (B )(-1, 1) (C )(-∞, -1) (D )(-∞, -1)∪(1, +∞) 5.已知0<a <1,方程|log |||x a a x =的实数根的个数是
(A )1个 (B )2个 (C )3个 (D )以上都有可能
6.若不等式x 2-log a x <0在(0, 2
1)内恒成立, 则a 的取值范围是 (A )[161, 1) (B )(0, 161) (C )(16
1, 1) (D )(0, 1) 7.代数式22222222)1()1()1()1(-+-++-+-+++y x y x y x y x 的最小值为
(A )2 (B )22 (C )4 (D )42
8.函数 y =sin2x +a cos2x 图像的一条对称轴为x =-
8
π,那么a 等于 (A )2 (B )-2 (C )1 (D )-1
9.直线y =a (a ∈R )与曲线y =cot(ωt ),(ω>0)的相邻两交点之间的距离是
(A )ωπk (B )ωπ2 (C )ω
π (D )以上都不对 二.填空题:
1.已知有向线段PQ 的起点P 和终点 Q 分别为(-1,1)和(2, 2),若直线l :x +my +m =0与PQ 的延长线相交,则m 的取值范围是 .
2.若直线l :y =kx +1与曲线c :x =12+y 只有一个公共点,则实数k 的取值
范围是 .
3.函数y =x
x ++-132的值域是 4.若 a ∈(0, 2
1),则 T 1=sin(1+a ),T 2=sin(1-a ), T 3=cos(1+a )的大小关系为 .
5.方程 |x -|2x +1||=1的不同实根的个数为 .
6.函数 u =x x 2512-+-的最大值是 .
三.解答题:
1.已知4a +9b =10(a ,b ∈6 R +), 求2a 十3b 的最大值.
2.如果关于 x 的方程 sin x +a cos x =2恒有解,求实数 a 的取值范围
3.已知函数f (x )=ax 2-c 满足一4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的范围.
4.已知 a ≥0, b ≥0, a +b =1,求证:2
121+++b a ≤2.
5.若 A ={x | -2≤x ≤a }, B ={y | y =2x +3,x ∈A }, C ={z | z =x 2, x ∈A },若C ⊆B ,求a 的值.
6.已知抛物线C :y =-x 2+mx -1,点A (3,0),B (0, 3), 求抛物线C 与线段AB 有两个不同交点时m 的范围.。