2021年考研数学模拟卷二共三套试卷及答案解析
- 格式:pdf
- 大小:546.24 KB
- 文档页数:52
2021考研数学二考试历年真题及答案详解一、选择题(本题共10小题,每小题5分,共50分。
每小题给出的四个选项中,只有一个选项是符合题目要求,把所选选项前的字母填在答题卡指定位置上)1.当x→0时,是x7的()。
A.低阶无穷小B.等价无穷小C.高阶无穷小D.同阶但非等价无穷小【答案】C【考点】常用等价无穷小;【解析】因为当x→0时,,所以是x7的高阶无穷小,故选C项。
2.函数,在x=0处()。
A.连续且取极大值B.连续且取极小值C.可导且导数为0D.可导且导数不为0【答案】D【考点】连续和可导的定义;【解析】因为故f(x)在x=0处连续。
因为故f′(0)=1/2,故选D项。
3.有一圆柱体,底面半径与高随时间变化的速率分别为2cm/s,-3cm/s,当底面半径为10cm,高为5cm时,圆柱体的体积与表面积随时间变化的速率分别为()。
A.125πcm3/s,40πcm3/sB.125πcm3/s,-40πcm3/sC.-100πcm3/s,40πcm3/sD.-100πcm3/s,-40πcm3/s【答案】C【考点】复合函数求导;【解析】由题意知,dr/dt=2,dh/dt=-3,有V=πr2h,S=2πrh+2πr2,则当r=10,h =5时,dV/dt=-100π,dS/dt=40π,故选C项。
4.设函数f(x)=ax-blnx(a>0)有2个零点,则b/a的取值范围为()。
A.(e,+∞)B.(0,e)C.(0,1/e)D.(1/e,+∞)【答案】A【考点】函数单调性及极值;【解析】函数求导得f′(x)=a-b/x,令f′(x)=0,则有驻点x=b/a,得:在区间(b/a,+∞)上,f′(x)>0,f(x)单增;在区间(-∞,b/a)上,f′(x)<0,f(x)单减。
即f(b/a)为函数f(x)的极小值,若f(x)有2个零点,则f(b/a)=a·b/a-bln(b/a)<0,从而ln(b/a)>1,可得b/a>e,故选A项。
2021年考研数学二真题一、选择题:(1~8小题,每题4分,共32分。
以下每题给出的四个选项中,只有一个选项是符合题目要求的。
) (1)以下反常积分中收敛的是 (A)∫√x+∞2xx (B)∫xxx+∞2xx(C)∫1xxxx+∞2xx (D) ∫xx x+∞2xx 【答案】D 。
【解析】题干中给出4个反常积分,别离判定敛散性即可取得正确答案。
∫√x+2=2√x |2+∞=+∞;∫xxxx+∞2xx =∫xxx +∞2x (xxx )=12(xxx )2|2+∞=+∞;∫1xxxx+∞2xx =∫1xxx+∞2x (xxx )=ln (xxx )|2+∞=+∞; ∫xxx +∞2xx=−∫x +∞2xx −x=−xx−x|2+∞+∫x −x +∞2xx=2x−2−x−x |2+∞=3x −2,因此(D)是收敛的。
综上所述,此题正确答案是D 。
【考点】高等数学—一元函数积分学—反常积分 (2)函数x (x )=lim x →0(1+xxx x x )x 2x在(-∞,+∞)内(A)连续 (B)有可去中断点 (C)有跳跃中断点 (D)有无穷中断点 【答案】B【解析】这是“1∞”型极限,直接有x(x)=limx→0(1+xxx xx)x2x=x lim x→0x 2x(1+xxx xx−1)=e x limx→0xxxxx=x x(x≠0),x(x)在x=0处无概念,且limx→0x(x)=limx→0x x=1,因此x=0是x(x)的可去中断点,选B。
综上所述,此题正确答案是B。
【考点】高等数学—函数、极限、持续—两个重要极限(3)设函数x(x)={x αcos1xβ,x>0,0,x≤0(α>0,x>0).假设x′(x)在x=0处连续,则(A)α−β>1(B)0<α−β≤1(C)α−β>2(D)0<x−β≤2【答案】A【解析】易求出x′(x)={xx α−1cos1xβ+βxα−β−1sin1xβ,x>0,0,x≤0再有x+′(0)=limx→0+x(x)−x(0)x=limx→0+xα−1cos1xβ={0, α>1,不存在,α≤1,x−′(0)=0于是,x′(0)存在⟺α>1,现在x′(0)=0.当α>1时,limx→0xα−1cos1xβ=0,lim x→0βxα−β−1sin1xβ={0, α−β−1>0,不存在,α−β−1≤0,因此,x′(x)在x=0持续⟺α−β>1。
2021考研数学二真题及答案解析考研数学二对于很多考生来说是一个重要的挑战,它涵盖了众多的知识点和题型,需要考生具备扎实的数学基础和较强的解题能力。
接下来,我们就一起详细地分析一下 2021 年考研数学二的真题及答案。
先来看选择题部分。
第一题考查了函数的基本性质,要求判断函数的奇偶性。
这需要考生熟练掌握奇偶函数的定义和判断方法。
第二题则涉及到极限的计算,对于这类题目,考生需要掌握常见的极限运算规则和方法。
比如其中有一题,给出了一个复杂的函数表达式,让求其在某一点的极限值。
这就需要我们运用等价无穷小替换、洛必达法则等方法来进行求解。
在解题过程中,要注意对函数进行合理的变形和化简,避免盲目计算导致出错。
再看填空题部分。
填空题通常考查一些较为基础但容易被忽略的知识点。
比如其中有一题是关于定积分的计算,这就要求考生对定积分的基本公式和运算方法有清晰的掌握。
另外,还有一题考查了曲线的切线方程,需要先求出函数的导数,然后代入切点的坐标来确定切线的斜率,进而得出切线方程。
这部分题目虽然难度相对不大,但需要考生在计算过程中保持细心和准确。
接下来是解答题部分。
这部分题目综合性较强,对考生的知识运用能力和解题思路要求较高。
比如有一道关于多元函数求极值的问题。
首先要对函数求偏导数,然后令偏导数等于零,解出可能的极值点。
接着,通过判断二阶偏导数的正负来确定是极大值还是极小值。
这道题不仅考查了考生对多元函数求极值方法的掌握,还考验了其计算能力和逻辑推理能力。
还有一道关于常微分方程的题目。
需要先判断方程的类型,然后运用相应的解法来求解。
在解题过程中,要注意初始条件的运用,确保答案的完整性和准确性。
总的来说,2021 年考研数学二的真题难度适中,既考查了基础知识的掌握,又注重了对综合能力的检验。
对于准备考研数学二的同学来说,通过对这套真题的分析和研究,可以明确考试的重点和方向。
在复习过程中,要注重基础知识的巩固,多做练习题,提高解题的熟练度和准确性。
2021年全国硕士研究生招生考试数学(二)试题真题讲义一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.是的()(B )等价阶无穷小(D )同阶但非等价无穷小在处()(A )低阶无穷小(C )高阶无穷小2.函数(A )连续且取得极大值(B )连续且取得极小值(C )可导且导数等于零(D )可导且导数不为零3.有一圆柱体,底面半径与高随时间的变化率分别为,,当底面半径为高为时,圆体的体积与表面积随时间的变化速率为()(A )(C )4.函数(A )5.设函数(A )(C )6.设函数(A )7.设函数(A )(C )8.二次型()(A )2,09.设3阶矩阵表示出,则()在区间可微且(B )上连续,则(C )((B )(D ))(B )在(B )(D )有2个零点,则的取值范围是()(D ),则(),(C )处的2次泰勒多项式为(B )(D ),则(D )()的正惯性指数与负惯性指数依次为(B )1,1(C )2,1,若向量组(D )1,2可以由向量组线性(A)(C)10.已知矩阵的解均为的解均为解解(B)(D)的解均为的解均为,使得解解为对角矩,若三角可逆矩和上三角可逆矩阵阵,则、分别取()(A)(B)(C)(D)二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.12.设函数________.由参数方程确定,则________.13.设函数由方程确定,则________.14.已知函数15.微分方程有,则的通解为________.________.16.多项式的项的系数为________.三、解答题:17~22小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
请将答案写在答题纸指定位置上。
17.求极限.18.设函数19.设函数满足,求函数的凹凸性及渐近线.,为曲线,求和满足.的解..记的长度为,绕轴旋转的旋转曲面的面积为20.是微方程(1)求(2)设21.设;为曲线上的一点,记处法线在轴上的截距为与轴围成,求.最小时,求.的坐标.由曲线22.设矩阵仅有两个不同特征值,若相似于对角矩阵.求,求逆矩阵,使得.。