初中数学竞赛——二次函数图像的翻折与对称
- 格式:docx
- 大小:65.04 KB
- 文档页数:6
二次函数图像的变化规律及应用引言:二次函数是高中数学中的重要内容之一,它的图像呈现出一种独特的形态,具有丰富的变化规律和广泛的应用。
本文将从图像的变化规律和应用两个方面,对二次函数进行深入的探讨。
一、图像的变化规律1. 平移变换二次函数的图像可以通过平移变换而得到不同的形态。
平移变换是指在坐标平面上将图像整体向左、右、上、下平移的操作。
对于二次函数y=ax^2+bx+c,当平移向右时,a保持不变,b不变,c减小;当平移向左时,a保持不变,b不变,c增大;当平移向上时,a增大,b不变,c增大;当平移向下时,a减小,b不变,c减小。
通过平移变换,我们可以观察到二次函数图像在平面上的移动轨迹,进而掌握其变化规律。
2. 缩放变换缩放变换是指在坐标平面上将图像整体放大或缩小的操作。
对于二次函数y=ax^2+bx+c,当缩放因子为k时,a不变,b不变,c增大(或减小)k倍。
缩放变换可以改变二次函数图像的大小和形状,通过观察不同缩放因子下的图像,我们可以总结出二次函数图像的缩放规律。
3. 翻折变换翻折变换是指在坐标平面上将图像关于某一直线进行对称的操作。
对于二次函数y=ax^2+bx+c,当翻折轴为x轴时,a不变,b变号,c不变;当翻折轴为y轴时,a变号,b不变,c不变;当翻折轴为直线x=k时,a不变,b变号,c变号。
翻折变换可以改变二次函数图像的位置和形状,通过观察不同翻折轴下的图像,我们可以总结出二次函数图像的翻折规律。
二、图像的应用1. 最值问题二次函数的图像呈现出一个开口朝上或朝下的抛物线形态,通过观察图像的顶点,我们可以得出二次函数的最值。
当抛物线开口朝上时,顶点为最小值;当抛物线开口朝下时,顶点为最大值。
最值问题在实际应用中有广泛的应用,例如在物理学中,我们可以通过最值问题求解物体的最高点或最低点。
2. 零点问题二次函数的图像与x轴的交点称为零点,也叫根或解。
通过观察图像与x轴的交点,我们可以求解二次函数的零点。
word 格式-可编辑-感谢下载支持第7讲 二次函数图像的翻折和对称典型例题一. 抛物线的翻折【例1】 将抛物线沿2234y x x =+-沿x 轴翻折,求所得抛物线的解析式.【例2】 (1)将抛物线2345y x x =+-沿直线2y =翻折,求所得抛物线的解析式.(2)将抛物线2321y x x =--沿直线3y =-翻折,求所得抛物线的解析式.【例3】 将抛物线2y ax c =+沿x 轴翻折以后与抛物线2142y x =-+重合,求a 和c 的值.【例4】 将抛物线沿2234y x x =+-沿y 轴翻折,求所得抛物线的解析式.【例5】 (1)将抛物线2321y x x =--沿y 轴翻折,求所得抛物线的解析式.(2)将抛物线2241y x x =-+沿直线2x =翻折,求所得抛物线的解析式.(3)将抛物线2321y x x =--沿直线1x =-翻折,求所得抛物线的解析式.【例6】 抛物线2y ax bx c =++关于直线x m =对称的曲线与x 轴的交点坐标是多少?二. 含绝对值的函数与方程【例7】 画出函数256y x x =--的图像.【例8】 讨论方程2231x x m -+=(m 为实数)的解的个数与m 的关系.word 格式-可编辑-感谢下载支持【例9】 (1)画出函数21y x =-+的图像;(2)为使方程21x b -+=+有4个不同的实数根,求b 的变化范围.【例10】 画出函数256y x x =--的图像.【例11】 讨论方程2610x x m -+=(m 为实数)的解的个数与m 的关系.【例12】 已知函数212y x x =--的图像与x 轴交于相异两点A 、B ,另一抛物线2y ax bx c =++过点A 、B ,顶点为P ,且APB ∆是等腰直角三角形,求a ,b ,c .【例13】 讨论函数237y x x =-+的图像与函数22336y x x x x =-+-+的图像的交点的个数.【例14】 设方程24x ax +=只有三个不相等的实根,求..的值和相应的3个根.word 格式-可编辑-感谢下载支持作业1. (1)将抛物线2345y x x =+-沿直线x 轴翻折,求所得抛物线的解析式.(2)将抛物线2221y x x =--沿直线3y =-翻折,求所得抛物线的解析式.2. (1)将抛物线2242y x x =-+沿直线1x =-翻折,求所得抛物线的解析式.(2)将抛物线2323y x x =--沿直线x 轴翻折,求所得抛物线的解析式.3. (1)画出函数232y x x =-+的图像.(2)画出函数245y x x =--的图像.4. 讨论方程245x x m --=(m 为实数)的解的个数与m 的关系.5. 讨论方程2257x x m --=(m 为实数)的解的个数与m 的关系.6. k 为何值时,关于x 的方程210x x k ---=有3个或3个以上的实根?。
初中数学知识归纳二次函数的性质与变形初中数学知识归纳:二次函数的性质与变形二次函数是初中数学中重要的一个概念,它在解决实际问题中有着广泛的应用。
在学习二次函数时,我们需要了解其性质和变形。
通过归纳与总结,本文将介绍二次函数的性质与变形,帮助读者更好地掌握这一内容。
一、二次函数的性质1. 对称轴与顶点二次函数的图像是一条抛物线,它的对称轴是通过抛物线顶点的一条线。
对称轴与x轴垂直,是抛物线的镜像轴。
顶点是抛物线的最低点或最高点,也是对称轴上的点。
2. 开口方向与最值二次函数的开口方向取决于二次项的系数,当二次项系数大于0时,抛物线向上开口,最值为最小值;当二次项系数小于0时,抛物线向下开口,最值为最大值。
3. 零点与交点二次函数的零点是使函数值为0的自变量值。
可以通过求解二次方程来计算零点。
当二次函数与x轴相交时,交点即为零点。
二、二次函数的变形1. 平移变换平移变换改变了函数图像的位置,有以下两种情况:a. 水平平移:将二次函数的图像沿着x轴平移,平移的距离取决于平移向量的值。
当平移向量为正时,图像左移;当平移向量为负时,图像右移。
b. 垂直平移:将二次函数的图像沿着y轴平移,平移的距离取决于平移向量的值。
当平移向量为正时,图像上移;当平移向量为负时,图像下移。
2. 缩放变换缩放变换改变了函数图像的形状和大小,有以下两种情况:a. 水平缩放:将二次函数的图像沿着x轴缩放,缩放的比例由缩放因子确定。
当缩放因子大于1时,图像变宽;当缩放因子在0和1之间时,图像变窄。
b. 垂直缩放:将二次函数的图像沿着y轴缩放,缩放的比例由缩放因子确定。
当缩放因子大于1时,图像变高;当缩放因子在0和1之间时,图像变矮。
3. 翻折变换翻折变换改变了函数图像关于x轴或y轴的对称性,有以下两种情况:a. x轴翻折:将二次函数的图像沿着x轴翻折,改变了抛物线的开口方向。
原本向上开口的抛物线变为向下开口,反之亦然。
b. y轴翻折:将二次函数的图像沿着y轴翻折,改变了抛物线的左右关系。
二次函数的平移翻折与缩放二次函数的平移、翻折与缩放是数学中常见的概念,它们描述了二次函数图像相对于原点的位置、方向和大小的变化。
在本文中,我将详细介绍二次函数的平移、翻折与缩放的概念和公式,并通过实例来说明其应用。
一、平移平移是指二次函数图像在平面上沿着坐标轴的平行方向上移动一定的距离。
对于二次函数y = a(x-h)² + k,其中(h, k)表示原点O到新的位置的平移向量。
横向平移:当平移向量为(h, 0)时,图像将沿x轴方向移动h个单位。
若h>0,图像向右移动;若h<0,图像向左移动。
纵向平移:当平移向量为(0, k)时,图像将沿y轴方向移动k个单位。
若k>0,图像向上移动;若k<0,图像向下移动。
通过改变平移向量的值,我们可以观察到二次函数图像在平面上不同位置的变化。
例如,考虑二次函数y = x²,若将其向右平移3个单位,则新的函数为y = (x-3)²。
图像向右移动了3个单位,其形状保持不变。
二、翻折翻折是指二次函数图像关于坐标轴进行对称。
分为横向翻折和纵向翻折两种情况。
横向翻折:当翻折轴为x轴时,二次函数图像关于x轴进行对称。
对于二次函数y = a(x-h)² + k,进行横向翻折后,新的函数为y = -a(x-h)² + k。
此时,形状不变,但图像位于原来位置的上方。
纵向翻折:当翻折轴为y轴时,二次函数图像关于y轴进行对称。
对于二次函数y = a(x-h)² + k,进行纵向翻折后,新的函数为y = a(-x-h)² + k。
此时,形状不变,但图像位于原来位置的左侧。
通过翻折操作,我们可以将二次函数图像在平面上不同位置进行对称变换。
例如,考虑二次函数y = x²,若将其关于x轴翻折,则新的函数为y = -x²。
图像关于x轴对称,形状保持不变。
三、缩放缩放是指二次函数图像在平面上根据比例因子进行拉伸或压缩。
初中数学二次函数的图像关于对称轴的对称点坐标如何确定二次函数的图像关于对称轴的对称点是数学中一个重要的概念,它可以帮助我们确定二次函数图像的关于对称轴对称的点的坐标。
下面我将为你详细介绍二次函数图像关于对称轴的对称点坐标的确定方法,并提供一些解题技巧和实例。
一、二次函数图像关于对称轴的对称点的确定方法1. 对称点的定义:-二次函数图像关于对称轴的对称点是指图像中一个点和对称轴上的点关于对称轴对称,即它们的横坐标相等,纵坐标互为相反数。
2. 对称点的确定:-对称点可以通过对称轴的横坐标和已知点的纵坐标的关系来确定。
二、对称点的求解技巧1. 求解对称点的横坐标:-对称点的横坐标与已知点的横坐标相等,因为它们关于对称轴对称。
2. 求解对称点的纵坐标:-对称点的纵坐标是已知点的纵坐标的相反数,因为它们关于对称轴对称。
三、解题技巧和实例分析1. 解题技巧:-先确定二次函数的方程和对称轴的方程。
-求解对称点的横坐标,横坐标与已知点的横坐标相等。
-求解对称点的纵坐标,纵坐标是已知点的纵坐标的相反数。
2. 实例分析:例题:已知二次函数的方程为y = x² - 4x + 3,求二次函数图像关于对称轴x = 2的对称点坐标。
解析:首先,确定对称轴的方程为x = 2。
接下来,求解对称点的横坐标。
已知对称轴为x = 2,因此对称点的横坐标也为x = 2。
再求解对称点的纵坐标。
对称点的纵坐标是已知点的纵坐标的相反数。
已知点的纵坐标为y = 2² - 4*2 + 3 = -1,因此对称点的纵坐标为y = -(-1) = 1。
所以,二次函数图像关于对称轴x = 2的对称点坐标为(2, 1)。
通过这个例题,我们可以看出二次函数图像关于对称轴的对称点坐标是通过对称轴和已知点的纵坐标的关系来确定的。
希望以上内容对你理解二次函数图像关于对称轴的对称点坐标有所帮助。
二次函数九大题型二次函数是高中数学中的重要内容,它是一种形式为f(x)=ax2+bx+c的函数,其中a、b和c是实数且a≠0。
在学习二次函数的过程中,我们会遇到许多不同类型的题目。
本文将详细介绍二次函数九大题型,包括函数的定义、用途和工作方式等。
1. 函数图像的平移定义:平移是指将原来的函数图像沿着坐标轴进行水平或垂直方向上的移动。
对于二次函数f(x)=ax2+bx+c,平移后的函数可以表示为g(x)=a(x−ℎ)2+k,其中(ℎ,k)是平移后图像上任意一点的坐标。
用途:平移可以帮助我们研究二次函数图像在坐标系中的位置和性质。
通过改变平移量(ℎ,k)的值,我们可以观察到图像在坐标系中的左右、上下移动。
工作方式:1.水平平移:改变参数ℎ的值来实现水平方向上的平移。
当ℎ>0时,图像向左移动;当ℎ<0时,图像向右移动。
2.垂直平移:改变参数k的值来实现垂直方向上的平移。
当k>0时,图像向上移动;当k<0时,图像向下移动。
2. 函数图像的翻折定义:翻折是指将原来的函数图像沿着坐标轴进行对称操作。
对于二次函数f(x)=ax2+bx+c,翻折后的函数可以表示为g(x)=−ax2−bx−c。
用途:翻折可以帮助我们研究二次函数图像在坐标系中的对称性和性质。
通过改变参数a、b和c的值,我们可以观察到图像在坐标系中的左右、上下对称。
工作方式:1.关于 x 轴翻折:将二次函数中的每个 y 值取相反数,即可实现关于 x 轴的翻折。
2.关于 y 轴翻折:将二次函数中的每个 x 值取相反数,即可实现关于 y 轴的翻折。
3.关于原点翻折:先关于 x 轴翻折,再关于 y 轴翻折,即可实现关于原点的翻折。
3. 函数图像的缩放定义:缩放是指将原来的函数图像沿着坐标轴进行拉伸或压缩。
对于二次函数f(x)= ax2+bx+c,缩放后的函数可以表示为g(x)=a(mx)2+b(mx)+c,其中m是缩放因子。
用途:缩放可以帮助我们研究二次函数图像在坐标系中的大小和形状。
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
二次函数与像变换抛物线的平移翻折与缩放二次函数是一个非常重要的数学概念,在数学和物理学等领域中有着广泛的应用。
其中,像变换是一种常见的方法,可以通过平移、翻折和缩放来改变二次函数的图像。
本文将介绍二次函数与如何进行平移、翻折和缩放操作,以及这些操作对函数图像的影响。
一、二次函数的标准形式二次函数的标准形式为:y = ax^2 + bx + c其中,a、b、c为实数,a不等于0。
a决定了二次函数的开口方向和图像的扩张或收缩程度,b决定了图像相对于y轴的平移,c则表示二次函数的纵截距。
二、平移操作平移操作可以改变二次函数图像的位置,使其在坐标平面上向左、向右、向上或向下移动。
1. 水平平移在二次函数标准形式中,通过改变b的值可以实现水平平移。
若b>0,则函数图像向左平移;若b<0,则函数图像向右平移;若b=0,则函数图像不发生平移。
2. 垂直平移通过改变c的值,可以实现二次函数图像的垂直平移。
若c>0,则函数图像向上平移;若c<0,则函数图像向下平移;若c=0,则函数图像不发生平移。
三、翻折操作翻折操作可以改变二次函数图像的朝向,使其上下翻折或左右翻折。
1. 上下翻折如果将二次函数的整体结果乘以-1,即使a取-a的值,则可以实现二次函数图像的上下翻折。
上翻折:a>0;下翻折:a<0。
2. 左右翻折将二次函数中x的值取相反数,可以实现二次函数图像的左右翻折。
左翻折:b>0;右翻折:b<0。
四、缩放操作缩放操作可以改变二次函数图像的大小,使其变窄或变宽。
1. 水平缩放通过改变a的值,可以实现二次函数图像的水平缩放。
当a>1时,函数图像变瘦;当0<a<1时,函数图像变胖。
2. 垂直缩放同样是通过改变a的值,可以实现二次函数图像的垂直缩放。
当a>1时,函数图像变矮;当0<a<1时,函数图像变高。
通过以上的操作,可以将二次函数的图像进行不同程度的调整,以满足实际问题中的需要。
初一数学联赛班七年级第 7 讲二次函数图像的翻折和对称
典型例题
一 . 抛物线的翻折
【例 1】将抛物线沿 y 2x 2
沿 x 轴翻折,求所得抛物线的解析式.
3x 4
【例 2】( 1)将抛物线 y3x2 4 x 5 沿直线 y 2 翻折,求所得抛物线的解析式 .
( 2)将抛物线 y
2
2 x 1 沿直线 y
3 翻折,求所得抛物线的解析式 . 3x
【例 3】将抛物线2 c 沿x轴翻折以后与抛物线y 12
重合,求 a 和 c 的值 .
y ax x4
2
【例 4】将抛物线沿y 2x23x 4 沿y轴翻折,求所得抛物线的解析式.
七年级初一数学联赛班
【例 5】( 1)将抛物线 y3x2 2 x1沿y轴翻折,求所得抛物线的解析式.
( 2)将抛物线 y
2
4x 1 沿直线x 2 翻折,求所得抛物线的解析式. 2x
( 3)将抛物线 y
2
2 x1沿直线x 1 翻折,求所得抛物线的解析式. 3x
【例 6】抛物线 y ax2bx c 关于直线 x m 对称的曲线与x 轴的交点坐标是多少?
二. 含绝对值的函数与方程
【例 7】画出函数y x25x 6 的图像.
初一数学联赛班七年级【例 8】讨论方程2x23x 1 m (m为实数)的解的个数与m 的关系 .
【例 9】( 1)画出函数 y
2
23 x 1 的图像;x
( 2)为使方程 x223x11x b 有 4 个不同的实数根,求 b 的变化范围.
3
【例 10】画出函数y x2 5 x 6 的图像.
七年级初一数学联赛班
【例 11】讨论方程x2 6 x 10 m (m为实数)的解的个数与m 的关系 .
【例 12】已知函数y x2x 12的图像与x轴交于相异两点 A 、B ,另一抛物线 y ax2bx c 过点 A 、
B ,顶点为P ,且APB 是等腰直角三角形,求 a ,b, c .
【例 13】讨论函数y x2 3 x 7 的图像与函数y x23x x23x 6 的图像的交点的个数.
初一数学联赛班七年级【例 14】设方程x2ax 4 只有三个不相等的实根,求..的值和相应的 3 个根 .
作业
1. ( 1)将抛物线 y
2
4x 5 沿直线x轴翻折,求所得抛物线的解析式. 3x
( 2)将抛物线 y 2 x22x 1 沿直线 y 3 翻折,求所得抛物线的解析式 .
2. ( 1)将抛物线y 2 x24x 2 沿直线x 1 翻折,求所得抛物线的解析式.
( 2)将抛物线y 3 x22x 3 沿直线 x 轴翻折,求所得抛物线的解析式 .
3. ( 1)画出函数y x23x2的图像.
( 2)画出函数y x2 4 x5的图像.
七年级初一数学联赛班
4.讨论方程 x2 4 x 5 m (m为实数)的解的个数与m 的关系 .
5.讨论方程2x25x 7 m (m为实数)的解的个数与m 的关系 .
6. k 为何值时,关于x 的方程x2 1 x k 0 有3个或3个以上的实根?。