直 线的参数方程
- 格式:docx
- 大小:36.53 KB
- 文档页数:1
直线的几种表达形式直线是平面几何中最基本的图形之一,我们常常需要用不同的方式来表达直线的性质和特点。
本文将介绍直线的几种常见表达形式,帮助读者更好地理解和应用直线的相关概念。
1. 两点式表达直线的两点式表达是最常见和直观的表达方式之一。
两点式表达通过给出直线上的两个点的坐标来唯一确定一条直线。
其中,直线上的两个点分别称为直线的首点和末点。
例如,我们可以表示一条直线L通过两个点A(2, 3)和B(5, 7)的两点式表达为:L:[(2, 3), (5, 7)]。
这意味着直线L上的所有点都满足直线上点的坐标满足点到直线两个端点的距离与线段的长度成比例的关系。
2. 斜截式表达斜截式是另一种常用的直线表达形式,它将直线的性质与直线在坐标系中的截距联系起来。
斜截式表达形式为y = mx + c,其中m为直线的斜率,c为直线与y轴的截距。
例如,我们可以表示一条斜率为2,截距为3的直线L的斜截式表达为:L:y = 2x + 3。
这表示直线L上的每个点都满足y坐标等于2倍的x坐标加上3。
斜截式表达形式可以直接通过直线与坐标轴的交点确定直线的截距,通过斜率可以推导直线的斜率与直线在坐标系中的夹角。
3. 一般式表达一般式是直线的另一种常见表达形式,也被称为标准型。
一般式表达形式为Ax + By + C = 0,其中A、B、C为常数,且A、B至少有一个不为零。
例如,我们可以表示一条过点(3, 4)和(1, 2)的直线L的一般式表达为:L:2x -y + 2 = 0。
这表示直线L上的每个点都满足2倍的x坐标减去y坐标再加上2等于0。
一般式表达形式可以通过将斜截式表达式整理并与0相等得到。
它能够用于表示任意方向的直线,对于可以写成斜截式的直线,一般式表达形式与斜截式相等。
4. 参数方程表达参数方程是一种特殊的直线表达形式,通过使用一个或多个参数来描述直线上的点。
参数方程表达形式为x = x₀ + at,y = y₀ + bt,其中x₀、y₀为直线上的一个已知点的坐标,a、b为直线的方向向量的两个分量,t为参数。
高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。
直线的参数方程及应用基础知识点击: 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t为直线上任意一点.(2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<02、 直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程. ⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t|① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方; 特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x④ 当t>0时,点P 在点P 0的右侧;⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧; 问题2:直线l 上的点与对应的参数t 是一一对应关系.问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 ,则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题4:一般地,若P 1、P 2、P 3是直线l 上的点, 所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点则t 3=221t t + 基础知识点拨:1、参数方程与普通方程的互化 例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义. 点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2⎩⎨⎧+=+-= t 313y tx (t.2中,参数t 的1l 的参数方程 例301,3),倾斜角yx ,为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 233211(t为参数)和方程⎩⎨⎧+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.问题5:直线的参数方程⎩⎨⎧+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)2、直线非标准参数方程的标准化 一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. 例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦, 而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较 容易.例5:直线⎩⎨⎧-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( )A 65°B 25°C 155°D 115°3、 直线⎪⎪⎩⎪⎪⎨⎧+-=-=ty tx 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 21 4、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l 的方程: ⎩⎨⎧+=+=bty y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣C 2221ba t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t 351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离. 二、直线参数方程的应用 例6:已知直线l 过点P (2,0),斜率为34,直线l和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|;(2)M 点的坐标; (3)线段AB 的长|AB| 点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷. 例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便. 例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
直线的参数方程
直线的参数方程:
1、定义:直线的参数方程是一种表示直线的数学表达式,它是由一个普通方程式参数化而来,能够用简单的数学公式描述一条直线。
2、形式:直线的普通方程式为Ax+By+C=0,参数方程式表示为
\begin{cases}x=at+b\\y=ct+d\end{cases},其中a,b,c,d是常数,这条线的开始点和终止点分别是A(b,d),B(a+b,c+d),这条线的斜率为
m=\frac{c}{a}。
3、应用:直线的参数方程式可以用来解决一些数学的实际问题,如确定直线的斜率、表示直线空间平面内的位置关系以及描述两点之间的距离、判断两点间的方位以及计算直线上任意一点到直线两端点的距离等等。
4、解法:可以通过以下方法求解参数方程式:
(1)找出直线上的两点A、B;
(2)计算出直线的斜率m=\frac{y_2-y_1}{x_2-x_1};
(3)把斜率带入参数方程式,求出a和c的值,即:a=m, c=-m;(4)用A点求出b和d的值,即:b= x_1, d= y_1;
(5)完成求解。