城市表层土壤重金属污染论文(原创)
- 格式:doc
- 大小:1.60 MB
- 文档页数:20
城市表层土壤重金属污染分析摘要:文章利用单项污染指数衡量各区域内每种重金属元素对各监测点的污染程度,由尼梅罗算法得到8种重金属元素对各区域的污染程度;用因子分析法得到各种重金属元素污染的主要原因;由重金属元素的传播特征利用优化方法确定了污染源位置。
关键词:重金属污染尼梅罗算法因子分析法1 引言在以经济建设为一切工作重心的今天,工业化进程突飞猛进的同时重金属污染问题日趋严重。
重金属一旦进入土壤很难在生物循环过程中分解,当重金属在土壤中累积量超过土壤本身的承受能力时,不仅会影响土壤动植物的生长发育,而且还会通过植物的吸收、富集,并最终通过食物链进入人体,给人体健康带来巨大的危害。
目前,关于土壤重金属污染的研究已成为一个热点问题。
本文以2011年全国大学生数学建模竞赛题为背景,就某城区As、Cd、Cr、Cu、Hg、Ni、Pb、Zn八种主要重金属对土壤的污染状况展开研究。
考虑到不同的区域环境受人类活动影响的程度不同,所以按照功能,将城区划分为生活区、工业区、山区、主干道路区及公园绿地区。
研究过程中主要采用标点检测取样的办法获得各重金属的浓度数据,在此基础上给出了土壤重金属污染的研究办法。
具体做法是先由尼梅罗算法确定各区域的污染程度,同时利用因子分析法寻求污染原因,而后依据重金属的传播特征进行回溯,这样即可确定污染源的位置。
2 各区域重金属的污染程度对于重金属对土壤环境的污染程度,由于涉及多种元素,可用单项污染指数来衡量某一监测点某种元素对该点的污染程度,并用综合污染指数来衡量这八种重金属元素对该点的综合污染程度。
研究过程中,监测取样的方法获得的只是各金属在某一监测点的浓度,而通过这些数据很难直接评价污染程度,所以可选取一个统一的标准,将这些元素的浓度进行转化。
将各金属元素浓度背景值的上限作为标准,以浓度值在背景上限值中所占的比重作为污染程度。
可定义单项污染指数为:参照国家GB15618-1995《土壤环境质量标准》中对土壤质量等级给出的标准,就能得到重金属元素对各功能区的污染程度。
一 、问题重述土壤是人类赖以生存的主要自然资源之一,也是人类生态环境的重要组成部分。
然而随着工业、城市污染的加剧和农用化学物质种类、数量的增加以及人类随着经济和社会及科学的发展逐渐向原始生态环境的扩进,土壤重金属污染日益严重。
目前,全世界各类重金属的排放量居高不下,其中Ni 的排放量大约100万吨、Mn 的排放量约在1500万吨、Pb 大约500万吨、Cu 约340万吨、Hg 大约在1.5万吨。
另据我国农业部进行的全国污灌区调查显示,土壤重金属污染具有污染物在土壤中移动性差、滞留时间长、不能被微生物降解的特点,并可经水、植物等介质最终影响人类的健康,总体上治理和恢复的难度较大。
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
本文针对题目提出的几个问题,就以下四个方面展开讨论:(1) 应用点模式空间分析概念给出8种主要重金属元素在该城区的空间分布,这里不仅考虑每种重金属元素在该城区的空间分布,还考虑了不同区域中8中不同重金属元素的空间分布,从而结合不同的视角分析该城区内不同区域重金属的污染程度;(2) 重金属污染源主要来自随着大气沉降进入土壤的重金属、随污水进入土壤的重金属、随固体废弃物进入土壤的重金属和随农用物资进入土壤的重金属4个主要方面,本文结合主成分分析,给出该城区主要的污染源以及不同类型区域的污染源,进而结合实际讨论重金属污染的主要原因;(3) 针对现有数据的分布特征,包括该城区8种重金属空间分布和不同类型区域的重金属空间分布,建立数学规划模型,讨论了重金属扩散的中心位置和扩散方向,确定了污染源的位置;(4) 讨论了模型的优缺点,并分析了各类重金属污染对地质变化的前瞻性后果预测,具体给出了不同重金属对于环境污染的危害程度,提出了可能的解决方案,主要是针对预测结果的土壤重金属污染修复的可能性规划方案。
城市表层土壤论文:泉州市城市表层土壤重金属污染评价研究【中文摘要】随着城市化的推进,人类活动将大量的污染物带入城市环境中,造成了城市环境污染,其中以城市土壤重金属污染最为严重。
城市土壤重金属通过地面扬尘、食物链传递等途径破坏城市生态环境,危害人类健康。
本文以泉州市城市表层土壤(0~15cm)为研究对象,将研究区划分为交通区、商业区、城市绿地、居民区和工业区5个功能区,采集了47个表层土壤样品,分析测试了18种重金属元素,评价了重金属污染程度,并探讨了其可能来源,得到的主要结论如下:(1)运用数学统计分析方法,研究了泉州市城市表层土壤18种重金属元素的含量特征。
结果表明,每种重金属元素在土壤中都有一定程度的富集;而以重金属Mn、Sb、Sn、Cd、Pb、Zn、Cu、Hg、Ni的富集程度较高,其含量远高于土壤环境背景值。
(2)以泉州市土壤环境背景值为评价基准,分别运用地累积指数法和潜在生态危害指数法评价了泉州市城市表层土壤重金属的污染程度。
地累积指数法评价结果表明,Sb、Hg污染程度最高,工业区的污染程度要明显高于其他功能区,18种重金属元素污染程度高低排序为:Hg>Sb>Ni>Sn>Co>Zn>Pb>Li>Cd>Bi>Mn>Cr>As>Fe>V>Cu>Sc>Ti。
潜在生态危害指数法评价结果表明,Cd和Hg是最主要的生态风险贡献因子,12种重金属元素的生态危害等级排序为:Hg > Cd >Cu>Pb>Ni>As>Zn> Co>Cr>V>Mn>Ti;各功能区潜在生态危害排序为:工业区>城市绿地>商业区>交通区>居民区。
(3)以国家土壤环境质量标准(GB15618-1995)为标准,运用模糊数学综合评价模型,以Cd、Hg、As、Cu、Pb、Cr、Zn和Ni 8种重金属作为评价因子,对泉州市城市土壤环境质量进行了评价。
城市表层土壤重金属污染分析一、引言随着城市化进程的加快,城市土壤受到重金属等污染物的威胁问题日益凸显。
城市表层土壤是城市生态环境中的重要组成部分,受到重金属污染的影响会对人类健康和生态系统造成重大影响。
因此,对城市表层土壤中重金属污染的分析具有重要意义。
二、重金属在城市表层土壤中的来源城市表层土壤中重金属主要来源于工业排放、交通尾气、生活垃圾填埋和农药施用等活动。
这些活动导致了土壤中重金属含量的逐渐积累,从而引发了土壤污染问题。
三、常见的城市表层土壤重金属污染物种城市表层土壤中常见的重金属污染物种包括铅(Pb)、镉(Cd)、铬(Cr)、汞(Hg)等。
这些重金属对人体健康和环境造成严重危害,需要引起重视。
四、城市表层土壤重金属污染的影响1.对人体健康的影响–长期暴露于重金属污染土壤中会导致慢性中毒,严重影响身体健康。
–儿童和孕妇更容易受到重金属污染的影响,引起神经系统和生殖系统的损伤。
2.对生态系统的影响–土壤中的重金属会影响土壤微生物的活性,破坏土壤生态系统平衡。
–重金属还会进一步污染地下水,威胁周围生态环境的稳定性。
五、城市表层土壤重金属污染分析方法1.采样方法–选择合适的采样点位,并采用土壤钻孔或其它方法获取土壤样品。
2.实验分析–利用化学分析方法,对土壤样品中的重金属进行检测和分析,包括原子吸收光谱等技术手段。
3.数据处理–对实验数据进行统计分析和处理,得出城市表层土壤中重金属的含量及分布情况。
六、城市表层土壤重金属污染治理建议1.减少污染源–减少工业废气排放、加强交通管理,从源头减少重金属排放。
2.土壤修复–利用植物吸收、土壤修复技术等手段,对污染土壤进行修复和改良。
3.加强监测–定期对城市表层土壤进行监测,及时发现并处理重金属污染问题。
结论城市表层土壤中的重金属污染是一个严重的环境问题,对人类健康和生态系统造成威胁。
因此,开展城市表层土壤重金属污染的分析研究具有重要意义,可以为环境保护和城市可持续发展提供科学依据。
土壤重金属污染研究进展土壤重金属污染来源广、毒性大,隐蔽性强,是我国目前面临的重大环境问题之一。
对土壤重金属污染的来源、重金属对人体和环境的危害以及土壤重金属污染的治理途径等进行了探讨。
土壤重金属污染研究进展重金属有多种不同的定义。
在环境化学领域中,重金属是指比重大于4或5的金属。
重金属污染物不但包括生物毒性显著的汞、镉、铅、铬和类金属砷,还包括毒性较弱的重金属锌、铜、钴、镍、锡、钒等重金属元素。
土壤重金属污染隐蔽性强、毒性大、难降解且能沿食物链富集,是人们优先考虑去除的污染物。
1污染来源土壤重金属污染来源大体可以分为工业来源、农业来源、交通来源。
1.1工业来源。
煤和石油等化石燃料燃烧释放大量含有重金属的有害气体和粉尘,工厂排放的烟气、粉尘等气体污染物经大气环流扩散,以干、湿的沉降方式进入到水体与土壤中,造成土壤重金属污染。
工业生产过程如采矿、选矿、矿物加工等排放的废水、废气、废渣是土壤中汞、铅、镉、砷等重金属污染的主要来源。
1.2农业来源。
主要来源于农田污水灌溉、污泥利用,化肥、有机肥、农药和杀虫剂的滥用以及塑料薄膜的大量使用等。
农用物资施用和农业污灌是农田土壤中汞、铬、砷、铜、锌等重金属污染的重要来源。
1.3城市交通来源。
主要来源于汽车排放的尾气及轮胎磨损产生的粉尘。
汽油、润滑油的燃烧和发动机及其他镀金部件磨损可释放出铅、镉、铜、锌等重金属粉尘。
2污染危害重金属一旦进入土壤,就很难被微生物降解或者从土壤中去除,因此重金属对土壤的理化性质、生物特性和微生物群落结构都产生重大危害。
受到重金属污染的土壤,其物理结构和化学性质都会发生变化,危害极大。
2.1导致经济损失。
土壤的重金属污染会造成耕地面积持续减少、土壤质量下降和生物毒害增多,导致农作物大幅度减产,从而影响到粮食供给、农业可持续发展和区域经济增长。
2.2危害人体健康。
酸雨、土壤添加剂等外界环境条件的变化,提高了土壤中重金属的活性和生物有效性,使得重金属较易被植物吸收利用,重金属污染物难以降解,直接或间接地危害到处于食物链顶端的人类的身体健康,引发骨痛病、儿童血铅、高血压、心脑血管,癌症等疾病。
重金属对土地影响1重金属指比重大于4或5的金属,约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。
尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。
如汞中毒的临床表现有,全身症状为头痛、头昏、乏力、发热。
口腔及消化道症状表现为齿龈红肿酸痛、糜烂出血、牙齿松动、龈槽溢脓,口腔有臭味,并有恶心、呕吐、食欲不振、腹痛、腹泻。
皮肤接触可出现红色斑丘疹,以四肢及头面部分布较多。
少数患者可有肾损害,个别严重者可有咳嗽、胸痛、呼吸困难、绀紫等急性间质性肺炎的表现。
重金属中毒会使体内的蛋白质凝固,这个你可以从高三的化学书看到,如果轻微中毒,就大量喝牛奶,牛奶中的蛋白质会和重金属反应,这样不会损伤到你自身的身体机能,喝了以后马上就医2对什么是重金属,目前尚没有严格的统一定义,在环境污染方面所说的重金属主要是指汞(水银)、镉、铅、铬以及类金属砷等生物毒性显著的重元素。
重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。
重金属在人体内能和蛋白质及酶等发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中累积,造成慢性中毒。
重金属元素由于某些原因未经处理就被排入河流、湖泊或海洋,或者进入了土壤中,使得这些河流、湖泊、海洋和土壤受到污染,它们不能被生物降解。
鱼类或贝类如果积累重金属而为人类所食,或者重金属被稻谷、小麦等农作物所吸收被人类食用,重金属就会进入人体使人产生重金属中毒,轻则发生怪病(水俣病、骨痛病等),重者就会死亡。
所以我们不要过量地进食海产,每次进食前一定要把海产彻底煮熟,以免吃入细菌。
重金属污染的特点是:(1)除被悬浮物带走的外,会因吸附沉淀作用而富集于排污口附近的底泥中,成为长期的次生污染源;(2)水中各种无机配位体(氯离子、硫酸离子、氢氧离子等)和有机配位体(腐蚀质等)会与其生成络合物或螯合物,导致重金属有更大的水溶解度而使已进入底泥的重金属又可能重新释放出来;(3)重金属的价态不同,其活性与毒性不同。
中国城市土壤重金属污染现状及防治对策xxxx学院 xxx专业 2011级二班 xxx xxxx学号指导教师XXX 讲师摘要本文分析了城市土壤重金属的空间分布和形态特征,总结了城市土壤重金属通过食物链传递、地面扬尘和污染城市水体威胁人类的健康,讨论了城市土壤重金属的主要来源为燃煤释放、机动车尾气、市区内垃圾堆放以及大气干湿沉降,并提出从源头上减少重金属的污染排放及治理被重金属污染的土壤的防治对策。
关键词城市土壤重金属污染防治措施本文所指的城市土壤是指出现在城市和城郊地区、受人类活动强烈影响的、非农用的、厚度大于50 cm的一类土壤,广泛分布在公园、道路、体育场、城市河道、城郊、垃圾添埋场、废气工厂、矿山周围,或被建筑和工业设施所覆盖。
城市工业发达,污染源众多,重金属污染源不仅数量多,而且种类繁多。
加上城市人口集中,人类活动频繁,与土壤直接或间接接触的几率很高,相比于自然土壤或农用土壤而言,这类土壤的重金属污染更容易对人体健康造成危害。
城市土壤的重金属污染已成为国际研究的热点,我国学者对城市土壤的重金属污染研究起步较晚,系统而深入的工作还不多,但也初步积累了一些资料。
本文综述中国城市土壤重金属污染现状,并提出了相应的对策与建议。
1 中国城土壤重金属污染特点1.1 空间分布特征总体来说,城市土壤中重金属含量要明显高于郊区及远离城市的农田土壤的含量,城市是郊区土壤重金属污染的源。
随蔬菜地与城市距离的增加,南京市郊菜地土壤中重金属含量从城区到郊区这一距离上呈下降趋势,郊区到农区则基本不变[1]。
成都市区主要污染元素为Hg、Pb、Zn和Cu,其污染状况市区及工厂区比城郊严重,且表现出一环路>二环路>三环路的趋势。
全国煤炭之乡、能源重化工基地山西太原市区土壤中Cu、Cd、Cr、Zn、Mn等5种元素的含量均高于郊区[2]。
市区内部土壤重金属分布呈现一定的规律,表现为交通干线两侧,人类活动密集的闹市区、广场,老工业区,居民区污染较为严重,而公园、风景区等受人为活动影响较少的功能区,污染则较轻。
环 境 科 学为加强对城市土壤重金属污染和城市地质环境演变研究及土壤修复方案提供理论依据,现以某城市城区土壤地质环境调查数据为目标进行建模研究,将所考察城区划分为间距1公里左右网格子区域,按照每平方公里1个采样点对表层土进行取样、编号,用GPS记录采样点的位置。
用专门仪器测试分析,获得每个样本所含多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素背景值。
1 符号及假设1.1符号及说明(如表1)1.2模型假设重金属元素污染物在土壤中的浓度变化主要是受到重金属元素在土壤中传播的影响,通过空气沉降的很小,可以忽略。
重金属污染物的空间分布状况能够利用已知的采样数据进行推测出。
各污染源附近的地方,其重金属污染物的浓度主要受到该污染源的影响,其他污染源对其的影响可以忽略不计。
2 模型建立与求解2.1基于三次样条的空间分布模型在问题中我们将根据该所谓的样条插值是一种改进的分段线性插值方法,是按照一定光滑性要求“装配”起来的分段多项式。
为了避免高次函数可能带来的龙格现象,我们采用三次样条插值,将该城市的采样调查的样本数据进行插值计算,方法如下:假设三次样条函数)(3x S 在节点处有连续的一阶和二阶导数,必须附加3(n-1)个光滑性约束条件,即对1,,2,1 n i 成立:)0()0()0()0()0()0(333333i ii i i i x S x S x S x S x S x S (1)110103)()()()()( i iii i i i i i i i i i i m h x x h m h x x h y h x x y h x x x S (2)其中i i i x x h 1,1 i i x x x ,而)1()(,)1()(),32()(),12()1()(21202120 x x x x x x x x x x x x (3)通过matlab编程计算得到:8种主要重金属元素在该城区的空间分布,其中三维图表现的是每种重金属在该城区不同位置取样点测得的浓度(Z 轴代表浓度),图上的不同颜色表示区域(区域1-5分别用深蓝、浅蓝,浅绿,棕黄、红色表示),二维平面图表现的是每种重金属在不同区域的平均浓度,由此空间分布图可以较直观的观察8种主要重金属元素在不同区域的分布。
城市表层土壤重金属污染来源与分布问题摘要:本文针对在城市快速化发展和人口不断增加背景下,对城市表层土壤受重金属污染问题进行了综合分析。
基于八种主要元素在城区空间分布,土壤受污染主要原因,传播特征以及为今后如何更好地研究地质演变问题分别建立了构思或模型,并对求解结果进行了分析。
我们已知综合系数比较严重的区域,以及污染比较严重部分取样点。
综合考虑自变量,本地用地类型,综合周围区域用地类型,以及题中的实际数据,比较全面的分析了该城区不同区域重金属元素对土壤污染的原因。
关键词:表层土壤重金属分析模糊数学高斯模型尺度空间理论土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。
此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染。
一、交通区和工业区大气中重金属沉降大气中的重金属主要来源于工业生产、汽车尾气排放及汽车轮胎磨损产生的大量含重金属的有害气体和粉尘等。
它们主要分布在工矿的周围和公路、铁路的两侧。
大气中的大多数重金属是经自然沉降[2]和雨淋沉降进入土壤的。
如瑞典中部Falun市区的铅污染它主要来自于市区铜矿工业厂、硫酸厂、油漆厂、采矿和化学工业产生大量废物,由于风的输送,这些细微颗粒的铅,从工业废物堆扩散至周围地区。
南京某生产铬的重工业厂铬污染叠加已超过当地背景值4.4倍,污染以车间烟囱为中心,范围达1.5 km2,污染范围最大延伸下限1.38 km。
俄罗斯的一个硫酸生产厂也是由工厂烟囱排放造成S、V、As的污染。
公路、铁路两侧土壤中的重金属污染,主要是Pb、Zn、Cd、Cr、Co、Cu 的污染为主。
它们来自于含铅汽油的燃烧,汽车轮胎磨损产生的含锌粉尘等。
它们成条带状分布,以公路、铁路为轴向两侧重金属污染强度逐渐减弱;随着时间的推移,公路、铁路土壤重金属污染具有很强的叠加性。
公路或铁路两侧的土壤铅含量增高,向两侧含量逐渐降低,且在地表0~30 cm铅的含量较高沿途严重污染重金属Pb、Zn、Cd,其沉降粒子浓度超过当地土壤背景值2~8倍,而公路旁重金属浓度比沉降粒子中高7~26倍铅除了分布在公路两侧以外,还受阶地地貌和盛行风的影响,高铅出现在低地,公路顺风一侧铅含量较高。
城市表层土壤重金属污染分析摘要随着城市经济的快速发展和城市人口的不断增加, 人类活动对城市环境质量的影响日显突出. 本文针对这一问题, 根据获得的数据资料开展城市环境质量的评价, 研究人类活动影响下城市地质环境的演变模型.针对问题1, 本文根据已给出的样点数据对城区进行分块, 并运用Griddata 函数对原有数据进行差值操作,绘制三维地形图. 采用Muler地积指数法对各区表层土壤中8种重金属污染程度划分级别, 分析该城市各功能区的重金属污染程度. 根据重金属污染指数, 运用MATLAB软件画出8种主要重金属元素在该城区的空间分布, 并针对污染程度将8种主要重金属元素在该城区的污染程度进行排序.针对问题2, 本文运用MATLAB软件对8种重金属进行相关性比较, 依据重金属的污染分布规律将其分为四类. 从四类中分别筛选出具有代表性的元素进行研究. 采用层次分析法, 定性的找到4大污染原因. 再通过对数据的分析处理,得到各类重金属污染的主要原因,寻找异同点.针对问题3, 本文将问题1中得到的各样点的8种重金属的Muler地积指数值进行累加得到样点的综合污染指标, 用MATLAB软件绘制等高图. 颜色的深浅反映出各区重金属的污染程度, 运用统计知识寻找到两个污染源. 建立高斯分布模型,分析得到重金属污染物的传播特征, 并利用已有数据对模型进行校正,绘制模拟图与实际图进行拟合比较,通过模型可以计算出除污染源外各点的近似污染值.针对问题4,为了更好地研究城市地质环境的演变模式,还应收集“地质环境系统特征”、“产业结构分布特征”以及“不同时间下的各样点重金属含量”的具体数据,对已有模型进行推广与改进, 并根据污染源的传播衍射特征, 构建了地质环境演变的动态模型.根据数据的分析与所建立的模型, 可以一定程度上拟合出较符合事实的重金属污染分布特征.关键字:重金属污染地积指数高斯分布等高图问题重述随着人类生活水平的提高,人们更加关注周围的环境问题,,十二五规划中也提出要加强环境治理与污染预防. 土壤是生存之本,必须提高对土壤污染的监测与治理力度. 随着工业化在全球范围内的飞速发展,以及人口的不断增加,城市逐渐划分为五大功能区:生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,且不同的区域环境受人类活动影响的程度不同. 人类活动对城市环境质量的影响日显突出,对城市异常环境的研究,以及如何查证获取相关资料开展城市环境评价,研究人类影响下城市地质的演变模式,日益成为人们关注的焦点.通过上述分析,运用数学建模的方法解决如下问题:●通过对已知数据的整理画出该城区的平面图,分析附表所给数据,得出8种主要重金属因素在该城区的空间分布,并以不同的颜色表示该城区内不同区域重金属的污染程度.●对所给数据进行处理,分析出不同功能区对重金属的污染权重,并得出重金属污染的主要原因.●根据上两题得出的结论,画出污染区域图,并结合图表来分析重金属污染物的传播特征,并建立模型求得污染源的位置.●从各角度分析所建立模型的优缺点,以及收集相关信息来更好地研究城市地质环境的演变模式,并讨论如何通过这些信息来建立模型解决问题.模型假设1. 海拔因素在考虑城功能区分布时认为是暂时不变量, 且对于土壤中重金属的传播属于次要因素.2. 采样点附近地区的功能属性与样点相同.3. 污染的扩散满足正态分布.4. 污染强度是均匀连续变化的, 不存在突变的现象.5. 研究污染传播途径时,考虑主要污染源,对次要污染源的影响可以忽略不计.6. 重金属污染程度可以用地积指数计算得到的eolg值来反映.7. 多个污染源对于研究点的污染彼此独立,且满足叠加效应.符号说明lg地积累指数eoφ地区级数和ϕ金属级数和α方案层第i个元素对于目标层的权重iβ方案层第i个元素所占的比例iλ最大特征值maxγ方案层第i个元素特征向量iCn元素在采样点的含量Bn元素在土壤中的背景值O目标层P方案层CI一致性指标RI随机一致性指标模型建立1问题一:1.1地区划分:按照功能划分城区, 分为5类(生活区、工业区、山区、主干道路区及公园绿地区),分析附件1中的相关数据,运用MATLAB进行处理. 发现样点所属的区域类别在城区里的综合分布并不完全具有规律性, 但从统计角度来说, 存在一定的概率性分布. 各城区的大致地理分布如图1-1所示:图1-1由图看出, 虽然某些样点是孤立存在的, 但样点的分布总体上存在统计意义. 如:图中点附近多为, 此区域为山区;点附近多为, 此区域为交通区, 依次类推. 根据点的分布及城区的划分, 运用统计知识, 我们做出各区域在该城区的大致地理位置直观图. 并运用MATLAB 拟合出“三维地形图”:图1-2 三维地形图该图运用差值法, 将离散的点近似成一个可以预见的平面, 其中X, Y 表示平面坐标值, 纵向Z 轴表示海拔, 且在坐标中, 原点所处地势较为平缓, 随着X 、Y 值的增加, 可以发现Z 值也随之增加, 由“三维地形图”可以发现图1-1中“山区”的划定较为合理, 符合实际地形特征.1.2污染指标:为研究该城区不同区域的重金属污染程度, 我们采用“地积指数”对城市土壤表层中重金属污染浓度进行等级划分. Muller 指数的表达式为2lg log [/]eo Cn k Bn =⨯, 式中, Cn 是元素n 在土壤中的含量, Bn 是土壤中该金属元素在土壤中的背景值, k 为系数, 取1.5. 定义如表1-1:表1-1 地积指数eo lg 分级表“地积指数” eo lg 的引入, 能够较为直观地观察出该地区的污染程度, 通过污染程度等级的划分, 为下文讨论各区域重金属污染程度给出了明确的评定标准.1.3功能区污染程度评价:我们对数据按采集点的所属区域进行整理, 求出不同功能区各重金属浓度的平均值, 并将各重金属平均浓度与背景值进行比较. 如表1-2:表1-2 各功能区重金属平均浓度从表格中可以比较出不同功能区的各项重金属元素浓度的差别, 运用地积指数:]/[log lg 2Bn k Cn eo ⨯=对浓度整理, 划分等级, 得到分级表格1-3:通过比较不同重金属元素在各功能区的地积指数与级别, 可以非常直观地看出不同功能区各重金属的污染程度的差异. 定义“功能区综合污染程度”为φ:∑==81i i n φ对各功能区进行级数求和可以得到表1-4:比较8种重金属级数和的数值,发现工业区的综合污染指数最大, 为15. 交通区的综合污染指数为12, 生活区的综合污染指数略高于公园区为9, 公园区的综合污染指数为7. 山区的综合污染指数最小, 为0.将各金属元素的纵向相加, 求纵向级数. 定义“金属级数和”为ϕ:∑==51j j n ϕ运用相同的方法可以得到:Hg 的级数和为11, Cu 的级数和为8, Zn 的级数和为7, Cd 的级数和为5, As 的级数和为4, Pb 的级数和为4, Cr 的级数和为3, Ni 的级数和为1. 从金属级数和角度可以发现, Hg 在该城市的污染程度较大. 污染最为严重, Ni 金属在该城市的污染程度最小.1.4单金属元素污染分布:首先, 我们针对同一种金属对各采样点进行地积指数计算. 以金属Cr 为例, 运用eo lg 计算可以得到197个无污染的采样点, 103个轻度污染点, 11个中度污染点, 3个中强度污染点, 2个严重污染点. 按等级绘制图1-3图1-3 Cr 元素城区污染程度分布由图看出: 污染程度较为严重的点主要集中在工业区和交通区, 且污染程度成发散状. 从中不难推断出:污染并不是单独存在一个区域的, 它对周围的环境也会产生影响, 存在向周围扩散的趋势. 为进一步研究, 我们结合图1-1, 得到一个复合图1-4, 从图中可以观察得到相关信息:较为严重的污染样点大多集中在工业区和交通区, 且在工业区的左下方, 受工业区的污染影响, 公园也受到一定污染.图1-4从图1-4中可以发现Cr在生活区与山区的污染程度较轻, 在工业区的污染分布不太均匀, 交通区也有较严重的Cr污染, 但主要分布在工业区的左下角,且分布集中在坐标(45.0⨯)附近, 由此可大致推断出污染的主要原10104.0⨯, 4因为工业生产, 同时土壤重金属污染也会传播至其它地区.运用相同的方法,分别对As、Cd、Cu、Hg元素依据浓度级数绘制分布图.如图1-5, 1-6, 1-7,1-8所示:图 1-5 图1-6图1-7 图1-8从不同种金属元素的分布图中可得到相同的结果:污染较严重的点集中于坐标(4105.0⨯)附近. 若用地区划分可以得到污染最严重的为工业区,4.0⨯, 410且传播方向为以最严重点为中心, 向外发散. 且比较不同金属的污染程度, 可以得出不同种金属的污染范围不同, 但都呈现出坐标右上角点的污染程度小于坐标左下角点. 与1.1中的地区划分相联系, 可以得到山区的综合污染程度普遍低于工业区和交通区.1.5各金属的主要污染分别选取了各金属元素中污染级数较高的样点, 对其进行处理与绘图, 得到各金属的综合污染分布,如图1-9所示:图1-9工业区有多处不同金属污染级数较高的点出现, 且有多个点重合. 从此发现重金属污染的源头主要集中在工业区, 且对周围地区存在一个辐射影响: 越远离工业区污染程度越弱. 不同金属的污染分布不相同, 但在总体上而言存在集中与分散关系. 重金属污染的传播方式将在第三问的模型中给出.2问题二:2.1各金属元素相关性比较由第一问的数据处理结果和图1-3得到:不同的金属在该区域污染度上存在着较高的相似性. 为深入研究不同金属之间存在的污染相关性, 我们将8种金属的分布以及其污染程度作为研究对象, 运用MATLAB软件进行相关性分析, 得到相关系数矩阵如下:通过相关系数矩阵的比较我们可以将相关性较高的几种金属进行组合归类,结果如下:Cr、Cu、Ni为一类, Cd、Pb、Zn为一类, 此外As、Hg与其他金属的相关性均不高, 独立归为一类. 下面运用置信矩阵对其相关性进行验证, MAC模态置信矩阵如下:表2-2若置信矩阵中数值05.0说明两者的相似性较高, 可以说明归类是可行的. 从置信矩阵对金属元素的分类进行验证, 从置信矩阵中可以发现分类是满足分类要求的.综上, 我们根据相关性分析与置信矩阵的检验将8种金属根据样点的污染程度分布规律得到以下分类:表2-32.2污染原因模型功能区共有5类, 分别为:生活区、交通区、山区、公园区、工业区. 从这五个功能区出发并分析重金属的元素属性, 可以得到以下4个污染原因, 分别为:工业污染、交通污染、生活污染、农业污染. 在此, 五个功能区受这四个污染原因的影响具有十分明显的差异性. 工业区—工业污染较严重, 生活区—生活污染较严重, 交通区—交通污染较严重, 山区—农业污染较严重. 构建模型如下:图2-1模型中, 研究的目标为:重金属污染的原因. 重金属污染的原因有4种, 为了进一步定量分析, 我们需要确定这4种污染的权重.(1)根据2.1中对于相关性分析, 我们将8种金属归为4类, 在这4类中分别选取一种金属, 对其研究, 不妨选取(第一类:As, 第二类Hg, 第三类Cr, 第四类Pb)做为研究对象. (2)依据假设, 工业区污染所代表的为工业污染, 交通区污染所代表的为交通污染, 生活区污染所代表的为生活污染, 山区污染所代表的为农业污染. 将不同地区污染程度的均值来反映不同类型的污染状况,将浓度的数值量纲统一, 得到表2-4:以As 为例71=α, 62=α, 63=α, 44=α, 根据ij j i a ⇒αα:可以得到正互反矩阵A :⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=13/23/27/42/3117/62/3117/64/76/76/71A 对矩阵A 求最大特征值4max =λ 一致性检验:N 阶正互反矩阵最大特征值max λ=n 时, 为一致性矩阵. 一致性指标1--=n nCI λ, 当CI 值越小, 不一致越严重, 随机一致性指标RI,RI 满足表2-5数据:经计算, 一致性比例CR =0=RI CI , 认为是一致性矩阵. 根据最大特征值计算特征向量:)0.34,0.51,0.51,.600(1=γ根据特征向量算出重金属As 的污染原因:=污染As 山区生活交通工业PP P P 34.051.051.060.0+++ 运用相同的方法对Cr 、Hg 和Pb 进行求解, 得到各重金属污染原因结构函数: =污染Hg 山区生活交通工业PP P P 14.014.054.081.0+++ =污染Cr 山区生活交通工业PP P P 36.062.053.044.0+++ =污染Pb 山区生活交通工业PP P P 30.052.044.067.0+++ 通过观察可以看出, Hg 、Pb 和As 受工业影响最为严重, 影响系数分别为0.81, 0.67, 0.60;而Cr 受生活污染最为严重, 影响系数为0.62. 我们还发现, As 与Pb 受各类污染影响的比例系数相近, 据报道和相关资料得到, Pb 与As 主要受工业三废(废气, 废水, 废渣)的影响, 同时在交通发达地区, 汽车尾气排放和轮胎磨损也是造成污染的相关原因. Hg 受工业污染最为严重, 一个重要的原因是燃煤污染, 其次是工业三废污染, 大气中含Hg 污染物的干湿对城市土壤Hg 的污染也有很大影响. Cr 污染受各功能区影响比例系数都较高, 主要来源于城市居民生活累加到土壤中的Cr 、交通污染、工业三废以及一些商业活动等.3问题三3.1污染源位置对样点的各金属计算各自的eo lg 值, 例计算样点A 的8中金属的eo lg 值, 分别为:1lg eo 、2lg eo ……n eo lg 计算样点A 的综合污染eo lg 值为:=综合eo lg 81lg i i eo =∑ 运用MATLAB 软件, 根据各个样点的综合污染eo lg 值, 绘制等高图:图3-1红色等高线为污染最严重的区域, 其次为黄色等高线. 图中红色区域较小, 且位于点(2000,3000)附近, 在红色等高线附近依次为黄色等高线、青色等高线、蓝色等高线, 即指污染程度逐渐降低并有向外扩散的趋势. 将图中红色等高线近似为圆形, 画出圆心, 近似将其作为污染源, 截取局部图加以说明:图3-2取出红色区域, 画出范围图,求出圆心(污染源), 从图中的颜色分布可知,圆心色彩最重, 随着圆半径的增加, 颜色逐渐变浅, 可以从图中推测出重金属的污染呈扩散的趋势. 从图中看出圆心A 位于坐标(2400,3200)且红色区域涵盖了20个网格. 运用相同的方法,求出另一个圆心B 的坐标(6000,8500). 如图3-3所示.图3-3综上所述, 通过数据处理以及MATLAB 绘图可以从中选择出两个污染源A 与B, 其坐标分别为(2400,3200), (6000,8500). 且A 点为主要污染源, B 点为次要污染源. 但两者在污染传播的总体方式相近, 可以运用相同的模型, 但需要选取不同的权重值.3.2传播特征模型通过3.1的研究可以确定两个污染源A(2400,3200), B(6000,8500). 确定了污染源之后, 通过建立模型研究传播特征, 并运用模型推断出周围地区的污染程度.3.2.1单个污染源传播模型污染源为0H (000z y x ,,),研究点为)(z y x G ,,, 研究点距离污染源的距离为d (km), 距离污染源为d 的点处污染程度为P(d).G 与H 之间的距离202020)()()(z z y y x x d -+-+-=如图3-4所示, H 为污染源, G 为研究点, H 与G 点的距离为d , 在H 点的污染程度为P(0),在G 点的污染程度为P(d),为研究G 点的污染程度, 需要建立以d 为自变量的函数.依据假设, 污染源的污染扩散满足中心极限, 即以P(O)为峰值, 0=X 为对称轴, 做正态分布.图3-4]2)(exp[2122σμσπ--=d P ◎μ为均数即X=μ为对称轴, 令污染源的位置在Y 轴上可以得到μ=0. ◎峰值的大小为σπ21对模型进行校正, 将峰值的大小转化为H 点的污染程度. ◎ σ为标准差, 即满足公式:∑=--=ni i x n 122)(11μσ. 标准差σ决定正态曲线的陡峭或扁平程度, 即代表了扩散能力.不同的重金属的扩散能力并不相同,也就是说σ值的大小由于金属本身与环境所共同作用, 在确定了金属的属性与环境后, σ是一个定值,对于数据的处理可以计算得到σ的值.图3-5经过校正后得到单个污染源传播模型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=--=--=-+-+-=∑=0)(11]2)(exp[)0()()()(12222202020μμσσμn i i x n d p P z z y y x x d 此模型建立在正态分布的基础上, 利用已有数据对正态模型进行校正, 得到单污染源的传播模型. 它满足正态分布的基本性质, P 值所代表的值为研究点在污染源的影响下, 按照正态的传播方式所得到的污染值.3.2.2多个污染源的传播模型依据假设, 在传播时, 每个污染源独立传播互不影响, 但对于作用点而言存在叠加的效应. 如图3-6所示, 建立模型如下:图3-6i 22221()()()(0)exp[]21()10i i i i i i n i i i i i d P P d d P d p x n μσσμμ=⎧=⎪⎪=⎪⎪--⎪=⎨⎪⎪=-⎪-⎪⎪=⎩∑∑总 模型解释:第一个函数为研究点距离污染源的距离.第二个函数为综合考虑多个污染源对于研究点的污染效果, 为叠加的效应. 第三个函数为考虑单个污染源时, 对研究点的污染效果.第四、五个函数为正态分布中标准差与均值的求解.在模型3.2.1中已论述σ与金属属性及环境有关, 为定值. 因此可通过带值计算得到.针对第二个函数, 给出图像解释与说明, 如图3-7图3-7图中蓝色与红色的曲线分别代表了由不同污染源作用下产生的污染传播图像, 虚线代表两种污染作用叠加后的综合污染数值分布图. 从图像中可较为直观地得出污染的叠加效应. 此叠加效应符合正常的传播逻辑.3.2.3模型检验根据模型, 针对污染源A 点, 计算单污染源的传播模型的各个系数, 对数值取整, 得到以下较为简单的式子:)32exp(33)(211d d P -= 同样地,对于污染源B 点,计算单污染源的传播模型,可以得到以下近似的式子)32exp(21)(222d d P -=. 根据∑=)(i i d P P 总可以列出研究点的综合污染的函数: ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-+-=-+-+-=-+-=222222212221)040.0()5.8()0.6()007.0()2.3()4.2()32exp(21)32exp(33z y x d z y x d d d P 总(1)绘制出)(1d P 的图像,见图3-8图3-8由图可知)(1d P 取5、10、15、20、25、30时依次对应的d 值为6.1811、5.0230、4.0031、2.9806、1.7464. 数据解释:当eo lg =5时,与污染源的距离为d =6.1811km. 根据数值可以绘制半径为6.1811km,此圆上点eo lg 均为5.(2)绘制)(2d P 的图像,如图3-9图3-9由图可知)(2d P 取5、10、15、20时依次对应的d 值为6.7766、4.8726、3.2813、1.2495数据解释:当eo lg =5时,与污染源的距离为d =6.7766km ,根据数值可以绘制半径为6.7766km,此圆上点eo lg 均为5. 将根据)(1d P 与)(2d P 得出的数据,绘制等高图3-10.图3-10通过与图3-1的比较,可以发现所建立的模型得到的污染源位置与实际污染源位置大致符合,污染扩散对周边地区的影响也与实际污染传播特征相类似,契合度较高,表明我们的模型建立是科学的、合理的.4问题四4.1收集的相关信息地质环境系统特征(即收集的相关信息):我们从地质灾害、气候、资源、产业结构变化等方面分析该城市地质环境的演变模式. 下面是各因素对地质环境的具体影响:1.地质灾害对地质环境的影响:人类一些不合理、不科学的活动将加剧地质灾害的影响, 导致地质环境恶化:如火山对地质环境的影响:各沉积环境火山作用产物及火山岩风化产物的充填;各沉积相被当地多期(次)火山岩控制并埋藏于其下的火山沉积相组合由下至上“螺旋式”规律性变化;引起地表抬升与构造地形的变化, 从而影响排流模式的变化.2.气候的影响:如盛行风.温度的高低、湿度的差异对当地地质环境的影响.3.资源对地质环境的影响:考虑地下水资源, 一方面, 人类大肆开采地下水资源, 导致地下松散地层固结压缩, 引发地面沉降;另一方面, 人类活动产生的地下水漏斗加速了污染物的渗透, 导致了地质环境的进一步恶化.5.产业结构变化对地质环境的影响:产业结构与地质环境有息息相关, 人类产业的过度发展也会产生相关污染, 导致地质环境恶化, 而地质环境的恶化也将抑制有关产业的发展. 因此, 如何调整产业结构才能对城市地质环境产生积极影响显得尤为重要.综合上述影响因素, 我们采用地质环境质量指数来研究城市地质环境的演变模式, 考虑各因素的影响权重, 运用题二中的层次分析法得出地质环境质量指数α与各因素之间的函数关系, 可以根据α的数值大小将城市地质环境的演变划分1-4个模式, 1为地质强恶化城市(α范围待定同下)、2为地质中恶化城市、3为地质轻恶化城市、4为地质优良城市. 根据每隔一定时间段采集的该地区数据, 将该城市地质环境进行划分, 并根据统计理论, 预测之后该城市的地质环境演变模式. (比如每隔10年该地区模式演变为1-2-3-2-3-4, 并对此模式提出评价及相关建议)4.1.1对重金属污染模型深入探讨图4-1若要深入研究重金属污染原因,则需分析了解该地区的布局,并收集到更多工业废水、废渣、废气的成分、汽车尾气排放数据、轮胎磨损概率、生活垃圾与生活污水排放数据,对这些数据进行量纲统一整理,可以得到较为精确的模型,更加细致地分析该地区的土壤中金属污染的各个因素的权重,寻找出最大的污染原因.4.1.2地质演变模型的探讨由于重金属的污染以及其它类型物质的污染均具有一定的演变与扩散特征,所以研究演变扩散的方法与模型具有一定的实际价值. 但扩散是一个动态的过程,需要构建一个动态模型. 对于动态模型,需要收集各样点的各种重金属浓度随时间的变化值,通过分析各金属浓度随时间的变化规律得到金属的扩散速度扩散v , 随着污染的扩散可以知道污染面积将逐步增大, 且污染源周边地区土壤中重金属的含量将有明显增加, 假设污染源以恒定排放速度排放v 造成土壤中重金属的污染.从问题3单污染源污染模型可得到以下高斯式模型:⎪⎪⎩⎪⎪⎨⎧--=--=∑=n i i x n d p P 12222)(11]2)(exp[)0(μσσμ 由于污染源)0(p 点以恒定的速度造成土壤中重金属的污染,则在时间t 后的污染源的土壤重金属值将以一定的速度增加,即满足:)0()0('p v t p +⋅=排放 重金属的扩散速度定义为扩散v则在一维坐标系中扩散的距离扩散v t m ⋅=在二维坐标系中扩散的面积2020)(r v t r S ⋅-⋅+=ππ扩散 在三维坐标系中扩散的体积303034-)(34r v t r V ⋅⋅+=ππ扩散 研究演变的性质:污染的传播性质与波的传播存在一定程度上的相似性,可以运用波的衍射理论来解释污染的传播现象,并能通过波的衍射理论描述土壤中污染物的演变规律. 波的衍射是指波在传播的过程中产生了很多子波源,子波源彼此独立传播,作用效果互相叠加图解4-2.图4-2 图4-3污染模型存在一定的衍射现象,此现象在现实生活中也容易被理解,通常情况下污染物质会以圆形的扩散向外传递,当遇到障碍物时,随着时间的增长,障碍物的另一侧也会被污染,即在圆形扩散受到破坏时污染的传播仍旧存在,如图解4-3.综上,研究地质演变时,需要收集各样点随时间变化的数值,计算污染扩散速度与污染源恒定排放速度,通过扩散模型与衍射模型可以得到地质环境演变的动态模型.模型的优缺点分析优点:1.建立的模型简单明了, 可操作性强.2.对所给数据进行充分分析, 准确性高.3.适用范围广泛, 对于类似的问题, 运用该模型也可以得到很好的解决.4.本模型充分考虑单污染源与多污染源对不同区域引起的污染程度及其扩散不同, 基于高斯点源模型做了改进, 更符合实际情况, 确保了结果的可行性.5.我们运用差值法,对有限的数据进行充分利用,绘制三维图形.缺点:1.未对海拔因素进行充分的考虑.2.本模型没有考虑气体污染扩散的影响, 可能会对结果造成一定的误差.3.数据不够多,差值计算存在偏差,对于模型结果产生一定的影响.参考文献[1]卓金武,魏永生,秦建,李必文. MATLAB在数学建模中的运用,北京:北京航空航天大学出版社,2011[2]柴世伟,温琰茂,张亚雷,赵建夫.地积累指数法在土壤重金属污染评价中的应用,同济大学学报(自然科学版),第34卷第12期:1657-1661,2006年. [3]王雄军,赖健清,鲁艳红,李德胜,周继华,王建武.基于因子分析法研究太原市土壤重金属污染的主要来源,生态环境,第17卷第2期:671-676,2008年.[4]张斌才,赵军.大气污染扩散的高斯烟羽模型及其GIS集成研究,环境监测管理与技术,第20卷第5期:17-19, 2008.。