高二文数(命题及其逻辑关系)复习试题及答案1
- 格式:doc
- 大小:328.50 KB
- 文档页数:4
高中语文逻辑试题及答案一、选择题1. 下列句子中,使用了类比推理的是:A. 他学习勤奋,成绩优异,所以我们应该向他学习。
B. 因为小明是学生,所以小明应该遵守学校的规章制度。
C. 这个苹果和那个苹果一样甜,所以它们是同一种品种。
D. 只有努力学习,才能取得好成绩。
答案:C2. 以下哪个选项是演绎推理的结论?A. 如果下雨,地面就会湿。
B. 因为今天下雨,所以地面湿了。
C. 所有学生都应该遵守纪律。
D. 只有遵守纪律,才能成为优秀的学生。
答案:B3. 以下哪个选项是归纳推理的例子?A. 因为所有观察到的乌鸦都是黑色的,所以所有乌鸦都是黑色的。
B. 如果今天是星期三,那么明天就是星期四。
C. 因为小明和小红都通过了考试,所以班上所有人都通过了考试。
D. 因为今天是晴天,所以明天也是晴天。
答案:A二、简答题1. 请简述归纳推理和演绎推理的区别。
答案:归纳推理是从特殊到一般的推理过程,即从个别事实或实例出发,得出一般性的结论。
演绎推理则是从一般到特殊的推理过程,即从已知的普遍规律出发,推导出特定情况下的结论。
2. 请解释什么是逻辑谬误,并给出一个例子。
答案:逻辑谬误是指在推理过程中违反逻辑规则的错误。
例如,人身攻击谬误:一个人因为不喜欢另一个人的某些特征或行为,就认为这个人的观点是错误的。
三、论述题1. 论述在高中语文学习中,逻辑推理能力的重要性。
答案:在高中语文学习中,逻辑推理能力对于理解和分析文本、构建论证、以及批判性思维的培养具有重要作用。
通过逻辑推理,学生能够更深入地理解文学作品的内在逻辑,提高文学鉴赏能力;在写作中,能够构建有说服力的论证,使文章更加严谨;同时,逻辑推理能力也是培养学生批判性思维的重要工具,有助于他们形成独立思考的习惯。
结束语:通过本次试题的练习,同学们应该对逻辑推理有了更深入的理解和掌握。
逻辑推理不仅在语文学习中有着重要作用,也是日常生活中不可或缺的思维能力。
希望同学们能够将所学知识运用到实际中,不断提高自己的逻辑推理能力。
高二数学命题及其关系试题答案及解析1.对任意复数、,定义,其中是的共轭复数.对任意复数、、,有如下四个命题:①;②;③;④.则真命题的个数是()A.B.C.D.【答案】B【解析】①为真;②为真; ,而③为假;而④为假,答案选B.【考点】复数的概念与运算2.定义“正对数”:,现有四个命题:①若,则②若,则③若,则④若,则其中的真命题有:__________.(写出所有真命题的编号)【答案】①③④【解析】因为定义的“正对数”:是一个分段函数,所以对命题的判断必须分情况讨论:对于命题①(1)当,时,有,从而,,所以;(2)当,时,有,从而,,所以;这样若,则,即命题①正确.对于命题②举反例:当时,,所以,即命题②不正确.对于命题③,首先我们通过定义可知“正对数”有以下性质:,且,(1)当,时,,而,所以;(2)当,时,有,,而,因为,所以;(3)当,时,有,,而,所以;(4)当,时,,而,所以,综上即命题③正确.对于命题④首先我们通过定义可知“正对数”还具有性质:若,则,(1)当,时,有,从而,,所以;(2)当,时,有,从而,,所以;(3)当,时,与(2)同理,所以;(4)当,时,,,因为,所以,从而,综上即命题④正确.通过以上分析可知:真命题有①③④.【考点】指数函数、对数函数及不等式知识的综合.3.某个命题与正整数有关,若当时该命题成立,那么可推得当时该命题也成立,现已知当时该命题不成立,那么可推得()A.当时,该命题不成立B.当时,该命题成立C.当时,该命题成立D.当时,该命题不成立【答案】D【解析】“当时该命题成立,那么可推得当时该命题也成立”它的逆否命题为“当时该命题不成立,那么当时该命题也不成立”,因为它们同真,所以当时该命题不成立,那么可推得当时,该命题也不成立,故选择D.【考点】四种命题和数学归纳法.4.已知,命题,命题.⑴若命题为真命题,求实数的取值范围;⑵若命题为真命题,命题为假命题,求实数的取值范围.【答案】(1),(2).【解析】(1)此小题即为恒成立问题,只需当时,恒成立即可;(2)对于q为真,只要,而命题为真命题,命题为假命题反映的是命题p与命题q一个为真另一个为假,分类讨论即可.试题解析:因为命题,令,所以,根据题意,只要时,即可,也就是,即;⑵由⑴可知,当命题p为真命题时,,命题q为真命题时,,解得,因为命题为真命题,命题为假命题,所以命题p与命题q一真一假,当命题p为真,命题q为假时,,当命题p为假,命题q为真时,,综上所述:或.【考点】恒成立问题,复合命题的基本概念,解不等式组,分类讨论的数学思想.5.下列命题中,真命题是()A.∃x∈R,e x≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.a>1,b>1是ab>1的充分条件【答案】【解析】中,在上恒成立,错误;中,当时,两者相等,错误;中,时, ,错误;所以选择.【考点】命题真假判断;条件判断.6.命题“”的否定为.【答案】,;【解析】全称命题的否定为特称命题,且结论变否定,∴命题的否定为“,”.【考点】逻辑与命题.7.下列命题错误的A.命题“若lnx=0,则x=1”的逆否命题为“若x≠1,则lnx≠0”B.“x>2”是“<”的充分不必要条件C.命题p:∈R,使得sinx>1,则p:∈R,均有sinx≤1D.若p∧q为假命题,则p,q均为假命题【答案】D【解析】若p∧q为假命题,则p,q中至少有一个是假命题.故D错误.【考点】命题的真假判断.8.已知命题函数在上单调递增;命题不等式的解集是.若且为真命题,则实数的取值范围是____________.【答案】【解析】由且为真命题知真真,若命题为真,则;若命题为真,则,解得,∴.【考点】逻辑关系、不等式的解法.9.给定两个命题,.若是的必要而不充分条件,则是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由题可知不能推出,能推出,根据互为逆否命题同真同假,则可得:不能推出,能推出,所以是的充分而不必要条件.【考点】逆否命题的真假判定,充要条件.10.设命题:函数在区间上单调递减;命题:函数的最小值不大于0.如果命题为真命题,为假命题,求实数的取值范围.【答案】a∈(-∞,-2]∪[2,3).【解析】由p为真命题,能够推导出a≥3.再由q为真命题,能够推导出a≤-2或a≥2.由题意P 和q有且只有一个是真命题,所以p真q假⇔⇔a∈ϕ,p假q真⇔⇔a≤-2或2≤a<3.由此能够得到a的取值范围.试题解析:p为真命题⇔f′(x)=3x2-a≤0在[-1,1]上恒成立⇔a≥3x2在[-1,1]上恒成立⇔a≥3.q为真命题⇔Δ=a2-4≥0恒成立⇔a≤-2或a≥2.由题意p和q有且只有一个是真命题.p真q假⇔⇔a∈∅;p假q真⇔⇔a≤-2或2≤a<3.综上所述:a∈(-∞,-2]∪[2,3).【考点】命题的真假判断与应用.11.若命题“”为真命题,则()A.均为真命题B.中至少有一个为真命题C.中至多有一个为真命题D.均为假命题【答案】C【解析】因为命题“”为真命题,所以为假命题,因此中至少有一个为假命题,也即中至多有一个为真命题,所以选C.【考点】命题的真值表12.记命题p为“若a=b,则cosa=cosb”,则在命题p及其逆命题、否命题、逆否命题中,真命题的个数是.【答案】2【解析】命题p为“若a=b,则cosa=cosb”,显然为真命题,所以其逆否命题也为真命题;命题p的逆命题为“若cosa=cosb,则a=b”为假命题,所以其逆否命题,即命题p的否命题也为假命题. 真命题个数是2.【考点】四种命题关系及真假判断13.下列命题中,真命题的是 .①必然事件的概率等于l②命题“若b=3,则b2=9”的逆命题③对立事件一定是互斥事件④命题“相似三角形的对应角相等”的逆否命题【答案】①③④【解析】②“若b=3,则b2=9”的逆命题为“若b2=9,则b=3”明显错误,为假命题;①③④均为真命题.【考点】逻辑与命题.14.下列命题中,真命题的是 .①必然事件的概率等于l②命题“若b=3,则b2=9”的逆命题③对立事件一定是互斥事件④命题“相似三角形的对应角相等”的逆否命题【答案】①③④【解析】②“若b=3,则b2=9”的逆命题为“若b2=9,则b=3”明显错误,为假命题;①③④均为真命题.【考点】逻辑与命题.15.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数【答案】C【解析】由定义知,命题“若,则”的逆否命题是“若,则”,而“都是”的否定为“不都是”,所以正确答案是C.【考点】命题的逆否命题16.下列命题①命题“若,则”的逆否命题是“若,则”.②命题③若为真命题,则p,q均为真命题.④“”是“”的充分不必要条件。
高二数学命题及其关系试题1.下列命题中,真命题是()A.∃x∈R,e x≤0B.∀x∈R,2x>x2C.a+b=0的充要条件是=-1D.a>1,b>1是ab>1的充分条件【答案】【解析】中,在上恒成立,错误;中,当时,两者相等,错误;中,时, ,错误;所以选择.【考点】命题真假判断;条件判断.2.命题“”的否定为.【答案】,;【解析】全称命题的否定为特称命题,且结论变否定,∴命题的否定为“,”.【考点】逻辑与命题.3.若,则或的逆否命题是.【答案】若且,则.【解析】一个命题的逆否命题是把原命题的题设和结论否定并且交换位置,∴命题“若,则或”的逆否命题是,若且,则.【考点】四种命题.4.设原命题:若a+b≥2,则a,b 中至少有一个不小于1。
则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题【答案】A【解析】假设a、b都小于1,显然a+b<2,与已知矛盾,∴原命题为真;当a=1,b=0时a+b=1<2,∴逆命题为假.【考点】四种命题.5.命题“若,则是直角三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是()A.0B.3C.2D. 1【答案】C【解析】逆命题为“若是直角三角形,则”,也可以其它角为直角,为假命题;否命题“若,则不是直角三角形”也可以其它角为直角,为假命题.逆否命题为“若不是直角三角形,则”是真命题.【考点】本题主要考查四种命题的转化.6.若命题“$x∈R,x2+ax+1<0”是真命题,则实数a的取值范围为。
【答案】a∈(-∞,-2)∪(2,+∞)【解析】∵命命题“存在实数x,使x2+ax+1<0”的否定是假命题,∴原命题为真命题,即“存在实数x,使x2+ax+1<0”为真命题,∴△=a2-4>0=∴a<-2或a>2,故答案为:a<-2或a>2.【考点】命题的真假判断与应用.7.下列命题中的假命题是()A.B.C.D.【答案】D【解析】A:因为指数恒大于零,所以为真;B:因为以为边的直角三角形中,所对的角的正切值为,所以为真;C:由,所以当时,因此为真;D:当时,,所以为假【考点】全称命题及存在性命题真假判断8.有下列命题:①是函数的极值点;②三次函数有极值点的充要条件是;③奇函数在区间上是递增的;④曲线在处的切线方程为.其中真命题的序号是 .【答案】②③④【解析】对于①,,所以在R上单调递增,没有极值点;对于②,对于三次函数有极值点的充要条件是有两个不相等的实根,所以即,正确;对于③,因为函数为奇函数,所以即即对任意都成立,所以,此时,所以,当时,,所以在区间上递增;对于④,因为,所以曲线在处的切线方程为即;综上可知②③④正确.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.导数的几何意义;4.充分必要条件.9.已知命题:任意,,命题:函数在上单调递减.(1)若命题为真命题,求实数的取值范围;(2)若和均为真命题,求实数的取值范围.【答案】(1);(2).【解析】对于命题,要使得对于任意,恒成立,只需小于或等于的最小值;对于命题,要使函数在上单调递减,只需,从而得到的取值范围.试题解析:(1)当为真命题时,有恒成立,只需小于或等于的最小值,所以,即实数的取值范围.(2)当为真命题时,有,结合(1)取交集,有实数的取值范围.【考点】本题考查了圆锥曲线的标准方程的掌握,以及对于复合命题真假性关系的判断.10.设命题;命题:不等式对任意恒成立.若为真,且或为真,求的取值范围.【答案】【解析】若为真,且或为真,则可知命题为假命题,为真命题,从而求出参数的取值范围.试题解析:由命题可知,,则,对于命题,因为,恒成立,所以或,即.由题意知为假命题,为真命题的取值范围为.【考点】本题考查了一元二次方程的根的情况,以及对于复合命题真假性关系的判断,属于基础题.11.在下列命题中,所有正确命题的序号是.①三点确定一个平面;②两个不同的平面分别经过两条平行直线,则这两个平面互相平行;③过高的中点且平行于底面的平面截一棱锥,把棱锥分成上下两部分的体积之比为;④平行圆锥轴的截面是一个等腰三角形.【答案】③【解析】根据题意,由于①三点确定一个平面;只有不共线的三点才成立,对于②两个不同的平面分别经过两条平行直线,则这两个平面互相平行;可能相交,错误,对于③过高的中点且平行于底面的平面截一棱锥,把棱锥分成上下两部分的体积之比为,故原命题错误,对于④平行圆锥轴的截面是一个等腰三角形,不一定成立,故答案为③【考点】命题的真假点评:主要是考查了命题的真假的判定,属于基础题。
高二数学命题及其关系试题答案及解析1.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.试题解析:(Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
为假命题.逆否命题:若方程x2+2x+q=0无实根,则q≥1,为真命题.(Ⅱ)逆命题:若x、y全为零,则x2+y2=0,为真命题.逆否命题:若x、y不全为零,则x2+y2≠0,为真命题.【考点】四种命题之间的关系2.下列命题正确的个数是( )①命题“”的否定是“”;②函数的最小正周期为”是“”的必要不充分条件;③在上恒成立在上恒成立;④“平面向量与的夹角是钝角”的充分必要条件是“”.A.1B.2C.3D.4【答案】B【解析】(1)把存在量词改为全称量词,同时把结论否定,正确. (2)函数最小正周期为,则;当,函数的周期为,函数的最小正周期为”是“”的必要不充分条件,正确.(3)在上恒成立在上恒成立;(4)“平面向量与的夹角是钝角”的充分必要条件是,且,错误.【考点】命题的真假性.3.命题r:如果则且;若命题r的否命题为p,命题r的否定为q,则A.P真q假B. P假q真C. p,q都真D. p,q都假【答案】A【解析】由已知有命题r:如果则且,是真命题;由于命题r的否命题为p,则命题p为:如果则或,其逆否命题为:如果且则显然是真命题,故知命题P也是真命题;又因为命题r的否定为q,所以命题q是假命题;故选A.【考点】简易逻辑.4.已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.【答案】或.【解析】首先分别求出命题和命题为真命题时实数的取值范围,然后由是真命题,且为假命题知,真假或假真.最后分别求出这两种情况下的实数的取值范围即可.试题解析:若命题为真,则,若命题为真,则或,即.∵是真命题,且为假命题∴真假或假真∴或,即或.【考点】复合命题的真假.5.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】命题“若,则”的否命题为“若,则”,由指数函数的单调递增性,可知为真命题,A错;命题“使得”的否定为“,满足”B错;若“”为假命题,则和至少有一个假命题,D错;由对数函数单调性可知C正确.【考点】否命题,特称命题的否定,充要条件,简单的复合命题.6.下列说法中正确的是()A.命题“若,则”的否命题为假命题B.命题“使得”的否定为“,满足”C.设为实数,则“”是“”的充要条件D.若“”为假命题,则和都是假命题【答案】C【解析】(1)原命题:“若,则”。
高二数学命题及其关系试题1.下列四个命题中的真命题是( )A.∀x∈R,x2+3<0B.∀x∈N,x2≥1C.∃x∈Z,使x5<1D.∃x∈Q,x2=3【答案】C【解析】选项A显然有x2+3>0,选项B当x=0时不成立,选项C当x=0时显然成立,选项D方程的根都是无理数,答案选C.【考点】全称命题与特称命题真假的判断2.以下有关命题的说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.对于命题,使得,则,则C.“”是“”的充分不必要条件D.若为假命题,则、均为假命题【答案】D【解析】若为假命题,则中至少有一个是假命题所以、均为假命题这种说法不正确.【考点】命题间的关系.3.有下列四个命题:①;②命题“、都是偶数,则+是偶数”的逆否命题是“+不是偶数,则、都不是偶数”;③若有命题p:7≥7,q:ln2>0, 则p且q是真命题;④若一个命题的否命题为真,则它的逆命题一定是真. 其中真命题为()A.①④B.②③C.②④D.③④【答案】D【解析】①应为或;②应为命题“、都是偶数,则+是偶数”的逆否命题是“+不是偶数,则、不都是偶数”;③和④是正确的.考点:命题间的关系及真假判断.4.下列全称命题为真命题的是()A.所有的质数是奇数B.,C.,D.所有的平行向量都相等【答案】B【解析】A:2是质数但不是奇数;B:,正确,C:,;D: 相等向量要求方向相同,大小相等.【考点】命题真假性的判断.5.下列说法正确的是()A.“”是“”的必要条件B.自然数的平方大于0C.存在一个钝角三角形,它的三边长均为整数D.“若都是偶数,则是偶数”的否命题为真【解析】由不能得到,如不对;,不对;存在三边都是整数的钝角三角形,如2,3,4,对;“若都是偶数,则是偶数”的否命题“若不都是偶数,则不是偶数”,不对,如.【考点】命题的真假.6.分别写出下列命题的逆命题、逆否命题,并判断它们的真假:(1)若q<1,则方程x2+2x+q=0有实根;(2)若x2+y2=0,则x,y全为零.【答案】(1)见解析(2)见解析)【解析】逆命题是交换原命题条件和结论,逆否命题是交换原命题条件和结论并否定. (Ⅰ)逆命题:若方程x2+2x+q=0有实根,则q<1。
高二数学常用逻辑用语试题答案及解析1.下列全称命题中真命题的个数是()①末位是0的整数,可以被2整除②角平分线上的点到这个角的两边的距离相等③正四面体中两侧面的夹角相等A.1B.2C.3D.4【答案】C【解析】(1)末位数是O的整数能被2整除。
对(2)角平分线上的点到这个角的两边的距离相等。
对(3)正四面体中两侧面的夹角相等。
对故选C。
【考点】本题主要考查全称命题真假判断。
点评:要判断一个全称命题是真命题,我们要有一个严格的论证过程,但要说明一个全称命题是一个假命题,只需要举出一个反例即可。
此类题综合性较强,主要是涉及知识面广。
2.已知全集U=R,A U,B U,如果命题P:,则命题非P是()A.B.C.D.【答案】C【解析】命题P:,非P是,即,故选C【考点】本题主要考查复合命题与简单逻辑联结词、集合的概念及运算。
点评:理解复合命题的概念及简单逻辑联结词的意义,牢记真值表。
3.在下列结论中,正确的是()①为真是为真的充分不必要条件;②为假是为真的充分不必要条件;③为真是为假的必要不充分条件;④为真是为假的必要不充分条件;A.①②B.①③C.②④D.③④【答案】B【解析】为真即p,q全真,所以为真;为真,p,q中至少有一为真故不一定真。
假,p必真,综合判断①③正确,选B。
【考点】本题主要考查复合命题与简单逻辑联结词、充要条件的判断。
点评:理解复合命题的概念及简单逻辑联结词的意义,牢记真值表。
4.已知命题p:正方形的两条对角线互相垂直;命题q:正方形的两条对角线相等,写出命题“p 或q”“p且q”“非p”,并指出真假.【答案】p或q:正方形的两条对角线互相垂直或相等(真命题)p且q:正方形的对角线互相垂直且相等(真命题)非p:正方形的两条对角线不互相垂直(假命题)【解析】p或q:正方形的两条对角线互相垂直或相等(真命题)p且q:正方形的对角线互相垂直且相等(真命题)非p:正方形的两条对角线不互相垂直(假命题)【考点】本题主要考查复合命题与简单逻辑联结词。
高二数学常用逻辑用语试题答案及解析1.关于x的不等式与指数函数若命题“p的解集为或在内是增函数”是真命题,求实数的取值范围.【答案】【解析】试题分析; 设使p的解集为的的集合为A,使在内是增函数的的集合为B,则本题即求答案为.【考点】本题主要考查简单逻辑联结词、一元二次方程不等式解法、集合的运算。
点评:本题在利用复合命题的真假条件时,实质上涉及到化归思想、分类讨论思想。
2.已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根.若“p或q”为真,“p且q”为假,求m的取值范围.【答案】m≥3或1<m≤2.【解析】若方程x2+mx+1=0有两不等的负根,则解得m>2,即p:m>2若方程4x2+4(m-2)x+1=0无实根,则Δ=16(m-2)2-16=16(m2-4m+3)<0解得:1<m<3.即q:1<m<3.因“p或q”为真,所以p、q至少有一为真,又“p且q”为假,所以p、q至少有一为假,因此,p、q两命题应一真一假,即p为真,q为假或p为假,q为真.∴解得:m≥3或1<m≤2.【考点】本题主要考查简单逻辑联结词、一元二次方程根的讨论、不等式组解法。
点评:本题在利用复合命题的真假条件时,实质上涉及到化归思想、分类讨论思想和集合的“交”、“并”、“补”运算.3.有4个命题:①若=x+y,则p与、共面;②若与、共面,则p=x+y;③若=x+y,则P、M、A、B共面;④若P、M、A、B共面,则=x+y.其中真命题的个数是 .【答案】2【解析】由共面向量定理知②④为真命题。
【考点】本题主要考查向量的概念、共面向量定理。
点评:牢记定理是关键。
4.语句甲:动点到两定点A,B的距离之和 (,且a为常数);语句乙:P点的轨迹是椭圆,则语句甲是语句乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】B【解析】①若点M到F1,F2的距离之和恰好为F1,F2两点之间的距离,则轨迹不是椭圆,所以前者不能推出后者.②根据椭圆的定义,椭圆到两焦点的距离和为常数2a.所以后者能推出前者.故前者是后者的必要不充分条件.故选B.【考点】本题主要考查椭圆的定义,充要条件的概念。
命题逻辑一、选择题(每题3分)1、下列句子中哪个是命题? ( C )A 、你的离散数学考试通过了吗?B 、请系好安全带!C 、 π是有理数D 、 本命题是假的 2、下列句子中哪个不是命题? ( C )A 、你通过了离散数学考试B 、我俩五百年前是一家C 、 我说的是真话D 、 淮海工学院是一座工厂 3、下列联接词运算不可交换的是( C )A 、∧B 、∨C 、 →D 、 ↔ 4、命题公式P Q ⌝→不能表述为( B )A 、P 或QB 、非P 每当QC 、非P 仅当QD 、除非P ,否则Q 5、永真式的否定是 ( B )A 、 永真式B 、永假式C 、可满足式D 、 以上答案均有可能 6、下列哪组赋值使命题公式()P P Q →∧的真值为假( D )A 、P 假Q 真B 、P 假Q 假C 、P 真Q 真D 、P 真Q 假 7、下列为命题公式()P Q R ∧∨⌝成假指派的是( B )A 、100B 、101C 、110D 、111 8、 下列公式中为永真式的是 ( C )A 、()P P Q →∧B 、()P P Q ⌝→∧C 、()P Q Q ∧→D 、()P Q Q ∨→ 9、 下列公式中为非永真式的是( B )A 、 ()P P Q ∧⌝→B 、()P P Q ∨⌝→C 、()P P Q ∧⌝→D 、()P P Q ∨⌝→ 10、下列表达式错误的是( D )A 、()P P Q P ∨∧⇔B 、()P P Q P ∧∨⇔C 、()P P Q P Q ∨⌝∧⇔∨D 、()P P Q P Q ∧⌝∨⇔∨ 11、下列表达式正确的是( D )A 、P P Q ⇒∧B 、P Q P ⇒∨C 、()Q P Q ⌝⇒⌝→D 、Q Q P ⌝⇒→⌝)( 12、下列四个命题中真值为真的命题为( B )(1)224+=当且仅当3是奇数 (2)224+=当且仅当3不是奇数; (3)224+≠当且仅当3是奇数 (4)224+≠当且仅当3不是奇数 A 、(1)与(2) B 、(1)与(4) C 、(2)与(4) D 、(3)与(4)13、设P :龙凤呈祥是成语,Q :雪是黑的,R :太阳从东方升起,则下列假命题为( A ) A 、R Q P ∧→ B 、Q P S →∧ C 、P Q R →∨ D 、 Q P S →∨14、设P :我累,Q :我去打球,则命题:“除非我累,否则我去打球”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝15、设P :我听课,Q :我睡觉,则命题 “我不能一边听课,一边睡觉”的符号化为( B ) A 、P Q → B 、Q P ⌝→ C 、 Q P →⌝ D 、P Q ⌝→⌝ 提示:()P Q P Q ⌝∧⇔→⌝16、设P :停机;Q :语法错误;R :程序错误,则命题 “停机的原因在于语法错误或程序错误” 的符号化为( D )A 、R Q P ∧→B 、P Q R →∨C 、Q R P ∧→D 、Q R P ∨→ 17、设P :你来了;Q :他唱歌;R :你伴奏则命题 “如果你来了,那末他唱不唱歌将看你是否伴奏而定” 的符号化为( D ) A 、()P Q R →∧ B 、()P Q R →→ C 、()P R Q →→ D 、()P Q R →↔ 18、在命运题逻辑中,任何非永真命题公式的主合取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定19、在命题逻辑中,任何非永假命题公式的主析取范式都是( A )A 、 存在并且唯一B 、存在但不唯一C 、 不存在D 、 不能够确定 20、n 个命题变元所产生互不等价的极小项项数为( D )A 、nB 、2nC 、2n D 、2n 21、n 个命题变元所产生互不等价的极大项项数为( D )A 、nB 、2nC 、2n D 、2n二、填充题(每题4分)1、设P :你努力,Q :你失败,则 “虽然你努力了,但还是失败了” 符号化为Q P ∧.2、设P :它占据空间,Q :它有质量,R :它不断运动,S :它叫做物质, 则 “占据空间的,有质量的而且不断运动的叫做物质”符号化为R Q P S ∧∧↔.3、一个命题含有n 个原子命题,则对其所有可能赋值有2n 种.4、推理规则()A A B B ∧→→的名称为假言推理.5、推理规则()B A B A ⌝∧→→⌝的名称为拒取式.6、推理规则()A A B B ⌝∧∨⇒的名称为析取三段论.7、推理规则()()A B B C A C →∧→⇒→的名称为前提三段论.8、当赋予极小项足标相同的指派时,该极小项的真值为1,当赋予极大项足标相同的指派时,该极大项的真值为0.9、任意两个不同极小项的合取式的真值为0,而全体极小项的析取式的真值为1. 10、任意两个不同极大项的析取式的真值为1,而全体极大项的合取式的真值为0. 11、n 个命题变元可构造包括F 的不同的主析取范式类别为22n. 12、n 个命题变元可构造包括T 的不同的主合取范式类别为22n .三、问答题(每题6分)1、设A 、B 是任意命题公式,请问,A B A B →⇒分别表示什么?其有何关系? 答:A B →表示A 蕴含B ,A B ⇒表示A 永真蕴含B ; 其关系表现为:若A B →为永真式,则有A B ⇒.2、设A 、B 是任意命题公式,请问,A B A B ↔⇔分别表示什么?其有何关系? 答:A B ↔表示A 等值于B ,A B ⇔表示A 与B 逻辑等价; 其关系表现为:若A B ↔为永真式,则有A B ⇔.3、设A 、B 、C 是任意命题公式,若A C B C ∨⇔∨ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为真,则A C B C ∨⇔∨成立,但A B ⇔不成立.4、设A 、B 、C 是任意命题公式,若A C B C ∧⇔∧ ,则A B ⇔成立吗?为什么? 答:不一定有A B ⇔;若A 为真,B 为假,C 为假,则A C B C ∧⇔∧成立,但A B ⇔不成立. 5、设A 、B 是任意命题公式,()A A B B ∧→→一定为真吗?为什么?答:一定为真;因()()()()A A B B A A B B A A A B B ∧→→⇔∧⌝∨→⇔∧⌝∨∧→()F A B B A B B T ⇔∨∧→⇔∧→⇔.(用真值表也可证明)6、设A 、B 是任意命题公式,()()A B A B A →∧→⌝↔⌝一定为真吗?为什么? 答:一定为真;因()()()()()A B A B A B A B A B B →∧→⌝⇔⌝∨∧⌝∨⌝⇔⌝∨∧⌝ A F A ⇔⌝∨⇔⌝.(用真值表也可证明)四、填表计算题(每题10分)1、对命题公式 ()()A p q p q =⌝→∧∨,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q p q → ()p q ⌝→p q ∨A 00 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 1 111 0 1主析取范式(2)A ⇔∑ ;主合取范式(0,1,3)A ⇔∏.2、对命题公式 ()A p q r =→↔,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q → A 00 0 1 0 0 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 11111主析取范式(1,3,4,7)A ⇔∑ ;主合取范式(0,2,5,6)A ⇔∏.3、对命题公式 ()()A p q p r =∧∨∧,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:p q r p q ∧ p r ∧ A 00 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 111111主析取范式(5,6,7)A ⇔∑ ;主合取范式(0,1,2,3,4)A ⇔∏.4、对命题公式()()A p q p r =⌝→∧→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(2,3,5,7)A ⇔∑ ;主合取范式(0,1,4,6)A ⇔∏.5、对命题公式()A p q r =⌝∨⌝→,要求(1)用0或1填补其真值表的空格处;(2)求该命题公式的主析取范式与主合取范式. 解:主析取范式(1,3,5,6,7)A ⇔∑ ;主合取范式(0,2,4)A ⇔∏.五、证明题(每题10分)1、证明下列逻辑恒等式:()()()P Q R Q P R Q →∧→⇔∨→. 证明 : 左()()()P Q R Q P R Q ⇔⌝∨∧⌝∨⇔⌝∧⌝∨()P R Q P R Q ⇔⌝∨∨⇔∨→⇔右.(用真值表也可证明) 2、证明下列逻辑恒等式: P Q R R Q P ⌝∧⌝→⌝⇔→∨. 证明:左()P Q R P Q R ⇔⌝⌝∧⌝∨⌝⇔∨∨⌝()R Q P R Q P ⇔⌝∨∨⇔→∨⇔右.(用真值表也可证明)3、证明下列逻辑恒等式:()()()P Q P Q P Q ⌝↔⇔∨∧⌝∧. 证明:左()()()()()P Q P Q P Q P Q ⇔⌝∨⌝∧⌝∨⇔⌝∨⌝∨⌝⌝∨()()()()()()Q Q P Q Q P P P Q P Q P ⌝∨∧∨∧⌝∧⌝∧⌝∨⇔⌝∧∨∧⌝⇔()()⇔⌝∨⌝∧∨⇔Q P Q P ()()P Q P Q ∨∧⌝∧右⇔.(用真值表也可证明)4、用逻辑推理规则证明: ()a b c ∧→ ,d ⌝ ,c d ⌝∨ ⇒ a b ⌝∨⌝ . 证明:(1) c d ⌝∨ P(2) d ⌝ P(3)c ⌝ T (1),(2) (析取三段论) (4) ()a b c ∧→ P(5)()a b ⌝∧ T (3),(4) (拒取式) (6) a b ⌝∨⌝ T (5) (德.摩根律) . 5、用逻辑推理规则证明: , ,p q p s s r r q ∨→→⇒⌝→. 证明: (1) p s → P(2) s r → P (3) p r → T (1),(2) (前提三段论) (4)r p ⌝→⌝ T (3) (逆反律) (5)p q ∨ P (6)p q ⌝→ T (5) (蕴含表达式)(7)r q ⌝→ T (4),(6) (前提三段论) .6、用逻辑推理规则证明:p q →,p r ∧, q r ⌝∨,r ⌝,s p s ⌝∨⇒⌝. 证明: (1) r ⌝ P(2) q r ⌝∨ P(3) q ⌝ T (1),(2) (析取三段论) (4)p q → P(5) p ⌝ T (3),(4) (拒取式) (6) s p ⌝∨ P(7) s ⌝T (5),(6) (析取三段论) .7、用逻辑推理规则证明:()()p q r s ⌝→→⌝∨,()q p r →∨⌝, r p q ⇒↔. 证明: (1) r P(2) ()q p r →∨⌝ P(3) q p → T (1),(2) (析取三段论) (4) r s ∨ T (1) (加法式)(5) ()()p q r s ⌝→→⌝∨ P (6) p q → T (4),(5) (拒取式) (7) ()()p q q p →∧→ T (3),(6) (合取式) (8) p q ↔ T (7) (等值表达式) .8、用逻辑推理规则证明: , ,s p p r q r s q ⌝∨→∧⇒→.证明: (1) s P(2) s p ⌝∨ P(3) p T (1),(2) (析取三段论)(4) p r q →∧ P(5) r q ∧ T (3),(4) (假言推理) (6) q T (5)(简化式) (7) s q → CP . 9、用逻辑推理规则证明:()()p q r p q r ∨→⇒∧→ 证明:(1) p q ∧ P (附加前提)(2) p T (1)(简化式)(3) p q ∨ T (2)(加法式) (4) ()p q r ∨→ P(5) r T (3),(4)(假言推理) (6) ()()p q r p q r ∨→⇒∧→ CP .10、用逻辑推理规则证明:,,p q q r r s p s ⌝∨⌝∨→⇒→. 证明:(1)p P (附加前提)(2) p q ⌝∨ P(3) q T (1),(2) (析取三段论) (4)q r ⌝∨ P(5) r T (3),(4) (析取三段论) (6) r s → P(7) s T (5),(6) (假言推理) (8) p s → CP .11、用逻辑推理规则证明:()()p q r s ∨→∧,()r s t p t ∨→⇒→ . 证明:(1)p P (附加前提) (2)p q ∨ T (1)(加法式) (3)()()p q r s ∨→∧ P(4)r s ∧ T (2),(3)(假言推理) (5)r T (4)(简化式) (6)r s ∨ T (5)(加法式)(7)()r s t ∨→ P (8)t T (6),(7)(假言推理)(9)p t → CP . 12、用逻辑推理规则证明:(),,t w s q s t s q t →⌝→⌝⌝∨→⌝⇒→ 证明:(1)q P (附加前提)(2) q s ⌝∨ P(3) s T (1),(2) (析取三段论)(4) ()t w s →⌝→⌝ P(5)()t w ⌝→⌝ T (3),(4) (拒取式) (6)()t w ⌝⌝∨⌝ T (5) (蕴含表达式) (7) t w ∧ T (6) (德.摩根律) (8) t T (7) (简化式)(9)q t → CP .13、用逻辑推理规则证明:a b c →∧,()e f c →⌝→⌝,()b a s →∧⌝⇒b e →. 证明:(1) b P (附加前提) (2)()b a s →∧⌝ P(3) a s ∧⌝ T (1),(2) (假言推理) (4) a T (3) (简化式) (5) a b c →∧ P(6) b c ∧ T (4),(5) (假言推理)(7) c T (6) (简化式) (8)()e f c →⌝→⌝ P(9) ()e f ⌝→⌝ T (7),(8) (拒取式) (10)()e f ⌝⌝∨⌝ T (9) (蕴含表达式) (11) e f ∧ T (10) (德.摩根律) (12) e T (11) (简化式) (13) b e → CP .14、用逻辑推理规则证明:p q →,p q q ⌝→⇒. 证明:(1) q ⌝ P (附加前提) (2) p q → P(3) p ⌝ T (1),(2) (拒取式) (4) p q ⌝→ P(5) q T (3),(4) (假言推理)(6) q q ⌝∧ T (1),(5) (合取式)由(6)得出矛盾式,故原命题有效.15、用逻辑推理规则证明: p q ∧ ,()()p q t s ↔→∨ ⇒ t s ∨ . 证明:(1)()t s ⌝∨ P (附加前提)(2) ()()p q t s ↔→∨ P(3)()p q ⌝↔ T (1),(2) (拒取式) (4) (()())p q p q ⌝⌝∨∧∨⌝ T (3)(等值与蕴含表达式) (5) ()()p q p q ∧⌝∨⌝∧ T (4) (德.摩根律)(6) ()()p q p q ⌝∨⌝∧∨ T (5) (结合律或范式等价) . (7) p q ⌝∨⌝ T (7) (简化式) (8) ()p q ⌝∧ T (4) (德.摩根律) (9) p q ∧ P(10) ()()p q p q ⌝∧∧∧ T (9),(10) (合取式) 由(10)得出矛盾式,故原命题有效.16、用逻辑推理规则证明:p q →,p r ∧, ()q r ⌝∨不能同时为真. 证明:(1) p r ∧ P(2) p T (1) (简化式) (3) p q → P(4) q T (2),(3) (假言推理) (5) ()q r ⌝∨ P(6) q r ⌝∧⌝ T (5) (德.摩根律) (7) q ⌝ T (6) (简化式) (8) q q ⌝∧ T (4),(7) (合取式)由(8)得出矛盾式,故原命题有效.17、证明下列命题推得的结论有效:或者逻辑难学,或者有少数学生不喜欢它;如果数学容易学,那么逻辑并不难学.因此,如果许多学生喜欢逻辑,那么数学并不难学. 证明:设p :逻辑难学;q :有少数学生不喜欢逻辑学;r :数学容易学.该推理就是要证明:, p q r p q r ∨→⌝⇒⌝→⌝. (1) p q ∨ P(2) p q ⌝→ T (1) (蕴含表达式) (3) r p →⌝ P(4) r q → T (2),(3) (前提三段论)(5) q r ⌝→⌝ T (4) (逆反律) .18、证明下列命题推得的结论有效:如果今天是星期三,那么我有一次离散数学或数字逻辑测验;如果离散数学课老师有事,那么没有离散数学测验;今天是星期三且离散数学老师有事.所以,我有一次数字逻辑测验.证明:设p :今天是星期三;q :我有一次离散数学测验;r :我有一次数字逻辑测验;s :离散数学课老师有事. 该推理就是要证明:(), , p q r s q p s r →∨→⌝∧⇒. (1) p s ∧ P(2) p T (1) (简化式) (3) s T (1) (简化式) (4) s q →⌝ P(5) q ⌝ T (3) ,(4) (假言推理)(6) ()p q r →∨ P(7) q r ∨ T (2) ,(6) (假言推理)(8) r T (5) ,(7) (析取三段论) .19、证明下列命题推得的结论有效:如果马会飞或羊吃草,则母鸡就会是飞鸟;如果母鸡是飞鸟,那么烤熟的鸭子还会跑;烤熟的鸭子不会跑.所以,羊不吃草。
高二数学命题及其关系试题答案及解析1.已知命题;命题均是第一象限的角,且,则,下列命题是真命题的是( )A.B.C.D.【答案】A.【解析】由三角函数的诱导公式知,得命题为真命题;又因为取,,,但不成立,所以命题为假命题.进而根据复合命题的真值表易知,非是假命题,非是真命题.最后判断四个结论的真假即可.【考点】全称命题;复合命题的真假.2.命题“若,则或”的否定是()A.若,则或B.若,则且C.若,则或D.若,则且【答案】B.【解析】命题的否定仅仅否定命题的结论,即或的否定为且,故应选D.【考点】命题的否定.3.用反证法证明某命题时,对结论:“自然数中恰有一个偶数”正确的反设为()A.都是奇数B.都是偶数C.中至少有两个偶数D.中至少有两个偶数或都是奇数【答案】D【解析】因为命题“自然数中恰有一个偶数”是指三个数中只有一个是偶数,所以对它的否定是没有偶数或至少有两个偶数,即都是奇数或至少有两个是偶数,故选D.【考点】1.命题的否定;2.反证法.4.(本小题满分12分)已知命题:,命题:().若“”是“”的必要而不充分条件,求实数的取值范围.【答案】m≥9.【解析】首先可以把p中的x的范围解出来,从而可求得中x的范围,同理可以求得中x的范围,根据题意,是的必要而不充分条件,可知:中x的全体是中x的全体的子集,从而可以得到关于m的不等式,进而求得m的取值范围.3分 6分依题意: 8分12分.【考点】1、充分条件与必要条件;2、集合间的关系.5.若,则或的逆否命题是.【答案】若且,则.【解析】一个命题的逆否命题是把原命题的题设和结论否定并且交换位置,∴命题“若,则或”的逆否命题是,若且,则.【考点】四种命题.6.命题:“若且,则”的逆否命题是_________命题;(填“真”或“假”)【答案】真【解析】原命题为真,则逆否命题是真命题,互为逆否命题的两命题同真同假.【考点】四种命题的关系.7.命题:“若,则”的逆否命题是()A.若,则B.若,则C.若,则D.若,则【答案】D【解析】因为命题:“若,则”的逆否命题是“若,则”,又因为“且”的否定为“且”,所以命题:“若,则”的逆否命题是“若,则”【考点】命题的否定,四种命题关系8.命题“若,则是直角三角形”的逆命题、否命题、逆否命题这三个命题中,真命题的个数是()A.0B.1C.2D.3【答案】B【解析】因为原命题“若,则是直角三角形”是真命题,由互为逆否命题的两个命题的真假性相同可知它的逆否命题也是真命题;而逆命题为“若是直角三角形,则”,这是假命题,因为是直角三角形时,内角、、中有一个是直角即可,所以不一定是,由逆命题与否命题是互为逆否命题的关系,所以否命题也是假命题,故在逆命题、否命题、逆否命题这三个命题中真命题的个数只有一个,选B.【考点】1.命题真假的判断;2.四种命题及其关系.9.命题“若,则”的否命题是:__________________.【答案】若,则【解析】命题的否命题是将命题的题设与结论都否定,所以若,则的否命题是“若,则”.故填若,则.本题的关键是命题的四种形式间的关系,这些题型都要要分清命题的题设与结论,才能正确解题.【考点】1.命题的否命题的表示形式.2.大于的否定是小于等于.10.下列命题为真命题的是()A.B.C.D.【答案】A【解析】A中当时命题成立,故为真命题;B由知,故为假命题,C、D中当时,命题不成立,故C、D为假命题,故选A.【考点】全称命题;特称命题的真假判断.11.命题“若,则”的否命题是A.若,则B.若,则C.若,则D.若,则【答案】D【解析】否定原命题的条件作条件,否定原命题的结论作结论.所以命题“若,则”的否命题是:“若,则”故选D.【考点】四种命题12.已知命题P:不等式;命题q:在△ABC中,“A>B”是“sinA>sinB”成立的必要不充分条件.有下列四个结论:①p真q假;②“p∧q”为真;③“p∨q”为真;④p假q真其中正确结论的序号是 .(请把正确结论填上)【答案】①③【解析】由题意,命题P为真命题,“A>B”是“sinA>sinB”成立的充要条件,所以命题q为假命题,因此“p∧q”为假命题,“p∨q”为真命题.【考点】1、充分条件与必要条件;2、逻辑联结词.13.命题“存在x∈R,2x≤0”的否定是__________.【答案】【解析】该命题为特称命题,其否定是一个全称命题,即其否定为:.【考点】本题考查了特称命题的否定,熟练掌握全(特)称命题的否定命题的格式和方法是解答的关键.14.已知且是的充分而不必要条件,则的取值范围为 .【答案】【解析】命题可化为;可化为,要使得是的充分而不必要条件,只需,则的取值范围是.【考点】本题主要考查了充分、必要条件的关系,解题的关键是掌握两个命题间的关系.15.命题p:函数有零点;命题q:函数是增函数,若命题是真命题,求实数的取值范围.【答案】【解析】根据题意,由于命题p:函数有零点;则可知判别式,对于命题q:函数是增函数,则可知3-2a>1,a<1,由于命题是真命题,则说明p,q都是真命题,则可知参数a的范围是【考点】复合命题的真值点评:主要是考查了方程的解以及函数单调性的运用,属于基础题。
高二数学命题及其关系试题答案及解析1.命题:“若x,y都是奇数,则x+y也是奇数”的逆否命题是( )A.若x+y是奇数,则x与y不都是奇数B.若x+y是奇数,则x与y都不是奇数C.若x+y不是奇数,则x与y不都是奇数D.若x+y不是奇数,则x与y都不是奇数【答案】C【解析】原命题为:若a,则b.逆否命题为:若非b,则非a.注意,条件和结论要同时否定.故选C.【考点】逆否命题的定义.2.以下有关命题的说法错误的是()A.命题“若则x=1”的逆否命题为“若”B.“”是“”的充分不必要条件C.若为假命题,则p、q均为假命题D.对于命题【答案】C【解析】对A,由命题的四种形式知,该命题的逆否命题形式正确;对B因为解为或,所以“”是“”的充分不必要条件是真命题;对C,由复合命题的真值表知p、至少一个为假命题,C错误,故选C考点:命题的四种形式,充要条件,复合命题真假的判定,特称命题的否定.3.命题“若一个数是负数,则它的平方是正数”的逆命题是( ).A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”【答案】B【解析】“若,则”的逆命题是“若,则”;所以“若一个数是负数,则它的平方是正数”的逆命题是“若一个数的平方是正数,则它是负数”.【考点】四种命题.4.已知命题则是().A.B.C.D.【答案】C【解析】由于全称命题:的否定为:,所以命题则是.故选C.【考点】全称命题的否定.5.已知命题p:,.则为A.,B.,C.,D.,【答案】B【解析】p:,.则:.【考点】全称命题与特称命题.6.已知命题;命题均是第一象限的角,且,则,下列命题是真命题的是( )A.B.C.D.【答案】A.【解析】由三角函数的诱导公式知,得命题为真命题;又因为取,,,但不成立,所以命题为假命题.进而根据复合命题的真值表易知,非是假命题,非是真命题.最后判断四个结论的真假即可.【考点】全称命题;复合命题的真假.7.以下有关命题的说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.对于命题,使得,则,则C.“”是“”的充分不必要条件D.若为假命题,则、均为假命题【答案】D【解析】对于A,原命题为“若则”,则逆否命题为“若则”,故A正确;对于B,根据特称命题的否定为全称命题可知,B也正确;对于C,方程的根有两个,,所以“”是“”的充分不必要条件,C正确;对于D,当为假命题时,中至少有一个为假,故都为假或中一真一假,所以D错误,故选D.【考点】1.四种命题;2.全称命题与特称命题;3.充分必要条件;4.逻辑联结词.8.已知,设p:函数在(0,+∞)上单调递减,q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.【答案】a>.【解析】求出命题p,q成立的等价条件,然后利用若“p且q”为假,“﹁q”为假,求a的取值范围.解:p:0<a<1 2分由Δ=(2a 3)2 4>0,得q:a>或0a<. 5分因为“p且q”为假,“﹁q”为假,所以p假q真 7分即∴a>. 10分【考点】复合命题的真假.9.下列命题正确的是A.“”是“”的必要不充分条件B.命题“若,则”的否命题为“若则”C.若为假命题,则均为假命题D.对于命题:,使得,则:均有【答案】D【解析】A中不等式的解集为,故”是“”的充分不必要条件:B命题“若,则”的否命题为“若则. C若为假命题,则为假命题;D正确;【考点】充要条件,否命题,四种命题之间的关系10.命题“若,则”的否命题为.【答案】“若,则”.【解析】否命题是对命题的条件和结论同时否定,同时否定和即可.【考点】四种命题.11.下列命题为真命题的是()A.B.C.D.【答案】A【解析】A中当时命题成立,故为真命题;B由知,故为假命题,C、D中当时,命题不成立,故C、D为假命题,故选A.【考点】全称命题;特称命题的真假判断.12.如果命题“”是真命题,则( )A.命题p、q均为假命题B.命题p、q均为真命题C.命题p、q中至少有一个是真命题D.命题p、q中至多有一个是真命题【答案】D.【解析】由题意可知:“¬(p∧q)”是真命题,∴p∧q是假命题,由复合命题的真假可知:命题p,q中至少有一个是假命题,即命题p,q中至多有一个是真命题,故选D.【考点】复合命题的真假.13.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R”,x2+2ax+2-a=0,若命题“p∧q”是真命题,则实数a的取值范围是()A.a≤-2或a=1B.a≤-2或1≤a≤2C.a≥1D.-2≤a≤1【答案】A【解析】命题p为真命题时,要使∀x∈[1,2],x2-a≥0,只需,因为x∈[1,2]所以,所以,所以①;命题q为真命题时,“∃x∈R”,x2+2ax+2-a=0,即x2+2ax+2-a=0有实数根,所以,解得②。
高二文数复习试题 (命题与逻辑关系)
参考答案
一、选择题
1.若命题“p q ∧”为假,且“p ⌝”为假,则( B )
A .p 或q 为假
B .q 假
C .q 真
D .不能判断q 的真假
2.有下列四个命题:
①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;
③“若1q ≤ ,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题; 其中真命题为( C )
A .①②
B .②③
C .①③
D .③④ 3.设a R ∈,则1a >是11a
< 的( A )
A .充分但不必要条件
B .必要但不充分条件
C .充要条件
D .既不充分也不必要条件
4.命题:“若220(,)a b a b R +=∈,则0a b ==”的逆否命题是( D ) A . 若0(,)a b a b R ≠≠∈,则220a b +≠ B . 若0(,)a b a b R =≠∈,则220a b +≠ C . 若0,0(,)a b a b R ≠≠∈且,则220a b +≠ D . 若0,0(,)a b a b R ≠≠∈或,则2
2
0a b +≠
5.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( D ) A .1a b +≥ B .1a ≥ C .0.5,0.5a b ≥≥且 D .1b <- 二、填空题
1.有下列四个命题: ①、命题“若1=xy ,则x ,y 互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题;
③、命题“若1m ≤,则022
=+-m x x 有实根”的逆否命题;
④、命题“若A B B = ,则A B ⊆”的逆否命题。
其中是真命题的是 ○1○2 ○3 (填上你认为正确的命题的序号)。
2.已知,p q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件,则s 是q 的 充要 条件,r 是q 的 充要 条件,p 是s 的 必要 条件.
3.“△ABC 中,若090C ∠=,则,A B ∠∠都是锐角”的否命题为若090C ∠≠,则,A B ∠∠不都是锐角;
4.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点; 命题βα//:q , 则q p 是的 必要 条件。
5若“[]2,5x ∈且{}|14x x x x ∈<>或”是假命题,则x 的范围是(-∞,4〕∪(5,+∞) 。
三、解答题
1.判断下列命题的真假:
(1)已知,,,,a b c d R ∈若,,.a c b d a b c d ≠≠+≠+或则 假命题 (2)32,x N x x ∀∈> 假命题
(3)若1,m >则方程220x x m -+=无实数根。
真命题 (4)存在一个三角形没有外接圆。
假命题
2.已知命题2:6,:p x x q x Z -≥∈且“p q 且”与“非q ”同时为假命题,求x 的值。
解:非q 为假命题,则q 为真命题;p q 且为假命题,则p 为假命题,即
2
6,x x x Z -<∈且,得22
60
,23,60
x x x x Z x x ⎧--<⎪-<<∈⎨-+>⎪⎩ 1,0,1,2x ∴=-或
3.已知方程22(21)0x k x k +-+=,求使方程有两个大于1的实数根的充要条件。
解:令2
2
()(21)f x x k x k =+-+,方程有两个大于1的实数根
22(21)40
21
12(1)0k k k f ⎧∆=--≥⎪
-⎪⇔->⎨⎪
>⎪⎩
即104k <≤ 所以其充要条件为104k <≤
4.已知下列三个方程:2222
4430,(1)0,220x ax a x a x a x ax a +-+=+-+=+-=至少有一个方程有实数根,求实数a 的取值范围。
解:假设三个方程:22224430,()0,220x ax a x a x a x ax a +-+=+-+=+-= 都没有实数根,则2122
22
1(4)4(43)0(1)40(2)4(2)0a a a a a a ⎧∆=--+<⎪∆=--<⎨⎪∆=--<⎩ ,即3
1221,1320
a a a a ⎧-<<⎪⎪
⎪><-⎨⎪-<<⎪⎪⎩
或
得312
a -
<<- 3,12
a a ∴≤-
≥-或
5.写出下列命题P 的“p ⌝”命题:
(1)正方形的四边相等。
正方形的四边不都相等
(2)平方和为0的两个实数都为0。
平方和为0的两个实数不都为0 (3)若A B C ∆是锐角三角形, 则A B C ∆的任何一个内角是锐角。
若A B C ∆是锐角三角形, 则A B C ∆的某个内角不是锐角
(40abc =,,a b c 0。
若0abc =,则,,a b c 中都不为0 (5)若(1)(2)0,12x x x x --≠≠≠则且。
若(1)(2)0,12x x x x --≠==则或 (6),1x N x ∀∈≥或x=0 ,10x N x x ∃∈〈≠且 6.已知1:123
x p --
≤;)0(012:2
2
>≤-+-m m
x x q 若p ⌝是q ⌝
的必要非充分条件,
求实数m 的取值范围。
解:{}1:12,2,10,|2,103
x p x x A x x x -⌝-
><->=<->或或
{}2
2
:210,1,1,|1,1q x x m x m x m B x x m x m ⌝-+-><->
+=<->+或或
p ⌝
是q ⌝
的必要非充分条件,B
∴A ,
即12
9,9110m m m m -≤-⎧⇒≥∴≥⎨
+≥⎩
(不同时取等号)
7.命题:p 方程2
10x mx ++=有两个不等的正实数根,命题:q 方程
2
44(2)10x m x ++
+=无实数根。
若“p 或q ”为真命题,求m 的取值范围。
解:当p 为真命题时,则21212
40
010m x x m x x ⎧∆=->⎪
+=->⎨⎪=>⎩,得2m <-;
当q 为真命题时,则2
16(2)160,31m m ∆=+-<-<<-得 “p 或q ”为真命题1m ∴<-
8.设0,,1a b c <<,求证:(1),(1),(1)a b b c c a ---不同时大于4
1.(反证法)
证明:假设(1),(1),(1)a b b c c a ---都大于
4
1,
即1
1(1),(1),4
4
a b b c ->
->
1(1)4
c a ->
从而1111,,2
22
2a b b c -+-+≥
>
≥>11,2
2c a
-+≥
>
由不等式同向可加性得11132
2
2
2a b
b c
c a
-+-+-++
+
>
即
3322
>,显然不可能,故假设不成立,所以原命题成立。